A Microprogrammed
Implementation of EULER on
IBM System/ 360 Model 30

Hervmur WEBER
International Business Machines Corp.*, Endicott, N. Y.

An experimental processing system for the algorithmic
language EULER has been implemented in microprogramming
on an IBM System/360 Model 30 using a second Read-Only
Storage unit. The system consists of o microprogrammed com-
piler and a microprogrammed String Language Interpreter,
and of an 1/O control program written in 360 machine lan-
guage.

The system is described and results are given in terms of
microprogram and main storage space required and compiler
and interpreter performance obtained. The role of micro-
programming is stressed, which opens a new dimension in the
processing of interpretive code. The structure and content of a
higher level language can be matched by an appropriate
interpretive language which can be executed efficiently by
microprograms on existing computer hardware,

1. Introduction

Programs written in a procedure-oriented language are
usually processed in two steps. They are first translated
into an equivalent form which is more efficiently interpret-
able; then the translated text is interpreted (“‘executed’)
by an interpretation mechanism. The translation process
is a data-invariant and flow-invariant operation. It con-
sists of two parts—an analytical part, which analyzes the
higher level language text, and a generative part, which
builds up a string of instructions that can be directly
interpreted by a machine. The analytical part of the trans-
lator depends on the higher level language; the generative
part depends on a set of instructions interpretable by a
machine. Historically there was only one set of instruc-
tions which could be interpreted efficiently by a machine,
its “‘machine language.” Tligure 1 outlines this scheme.

Some of the processors of the IBM System/360 family
are microprogrammed machines. On them the “360
machine language” is interpreted not by wired-in logic but
by an interpretive microprogram, stored in eontrol storage,

* Systems Development Diviston

Volume 10 / Number 9 / September, 1967

N. WIRTH, Editor
which in turn is interpreted by wired-in logic. Therefore,
in a certain sense the 360 language is not the “machine
language” of these processors but the (efficiently inter-
pretable) language in which the processors of the System/
360 family are compatible. The true “machine language”
of these processors is their microprogram language. This
language is on a lower level than the “360 language”;
it contains the elementary operations of the machine as
operators and the elements of the data flow and storage as
operands.

Now it is conceivable to compile a program written in a
higher level language into a microprogram language string.
This string would undoubtedly contain substrings which
oceur over and over in the same sequence. We could call
these substrings procedures and move them out of the
main string, replacing their occurrence by a procedure call
symbol, followed by a parameter designator pointing to
the particular procedure. Our object program then takes
on the appearance of a sequence of call statements. From
here it is only a final step to eliminate the call symbols
and furnish an interpreting mechanism which interprets
the remaining sequence of “procedure designators.”

The process just described will result in the definition
of a string language and the development of a micropro-
grammed interpretation system to interpret texts in this
string language. The situation is similar to the System/
360 case: the string language corresponds to the 360
language. Programs written in a higher level language are
compiled into string language text to be stored in main
storage. The string language interpreter corresponds to
the microprogram which interprets 360 language texts. It
consists of a recognizing part to read the next consecutive
string element and to branch to an appropriate action
routine and of action routines to execute the particular
procedure called for by the string element.

The essential difference between our situation and the
360 case is that the string language reflects the features of

input Data
Analysis [T~ ™ 7 ™7 Generation
Program in ‘ } | . ! Pragrom in Output
Higher Level |~ Infermediote 1 = Machine - Data -
Language {language ! Text { (machine tanguage
dependent) bom e e e w4 pendent) ?
Interpreter
\ /

\V
Data and Flow Invariant Translation

Fre. 1. Processing programs written in higher level languages
via translation to machine language

Communications of the ACM 549

the particular higher level language as well as the features
of the particular hardware better than the general purpose
360 language.

What is gained by defining this string language and by
providing a microprogrammed interpreter for it? From
the method of definition described, it can be seen that the
elements of the string language correspond directly to the
elements of the higher level language after all simplifying
data-invariant and flow-invariant transformations have
been performed. But the elements of the string language
are also well-adapted to the microprogram structure of
the machine. Therefore, during the compiling process (see
Figure 2) only a minimum of generation is necessary to
produce the string language text. The compiler is shorter
and runs faster.

But the more important aspect is that object code
execution is also faster. The string language interpreter in
case 2 will be coded to take care of all necessary operations
in a coneise form, whereas in case 1 it will be necessary to
compile a whole sequence of machine language instruc-
tions for an elementary operation in the higher level
language. Examples of this are the compilation of 360
code for an add operation in CoBoL of two numbers with
different scaling factors or the compilation of machine
instructions for table lookup or search operations, ete.
In these cases the string language interpreter of Figure 2
will execute a function much faster than the machine
language interpreter of Figure 1 will execute the equivalent
sequence of machine language instructions. Therefore,
object code execution will be faster in scheme 2.

If object code performance is not as much in demand as
object storage space economy, the string language inter-
preter can also be written such that the string language is
as tightly packed as possible so that the translated pro-
gram is as compact as possible and will take up less storage
space than the equivalent machine language program under
the scheme of Figure 1.

These ideas are applied in an experimental micropro-
gram system for the higher level language Eurmr [1]
described below. Problem areas in this approach are indi-
cated and some ideas for future development are offered.

2. Special Considerations for EULER

The higher level language EuLer {1} is a dynamic
language. This means that for programs written in it many
things have to be done at object code execution time which

Input Dafa
Analysis __L_*\
Program in (language dependent) Intermediate Outout
Higher Leve! Text in SN Dofa
Language Generation of String Language

intermediate text T

Interpreter

Fie. 2. Processing programs written in higher level languages
via translation to interpretive language

550 Communications of the ACM

can be done at compile time for other languages. Fuieg
also contains basic functions which do not have compap.
able basic counterparts in the machine languages of most
machines. To compile machine code for these dynamie
properties and for those special functions would require
rather lengthy sequences of machine language instructions,
which would consume considerable object code space and
require high object code execution time. Therefore, for g
language like EuLER, interpretation at the string language
level by an interpreter into which the dynamic features and
special functions are included by microcode will yield much
higher object code economy and object code performance
than compilation to machine language and interpretation
of this machine language.
Three examples from FuLEr are given here.

L. Dynamic Type Handling. To a variable in EuLEg,
constants of varying type can be assigned dynamically,
For example in

A3 vy Aed450 5, -

A < true; ---;

e £ .
A« ses s

the quantities assigned to the variable A have the types:
integer, real, logical, procedure. Therefore, in EvLER each
quantity has to carry its type indicator along and each
operator operating on a variable has to perform a dynamic
type test. The adding operator - for instance in 4 -+ B
has to test dynamically whether both operands are of type
number (integer or real). This type testing is done by the
String Language Interpreter in minimum time, whereas it
would require extra instructions if the program were to be
compiled to 360 machine language.

2. Recursive Procedures and Dynamic Storage Alloca-
tion. In EuLER, procedures can be called recursively,

e.g.,
F « ‘formal N; if N = 0 then 1 else N+F(N — 1)’;
and storage is allocated dynamically, e.g.,

N« 4; ..-.; begin new A; A « list N;

In order to cope with these problems the EULER execution
system uses a run time stack. Each operation is accont-
panied by stack pointer manipulations which by the micro-
program can be accomplished in minimum time (in general,
even without extra time because they are overlapped with
the operation proper), whereas extra instructions would be
required, if the program were compiled.

3. Last Processing. EuLer includes a list processing
system, and lists are of a general tree structure, e.g.,

A« (3,4, (5,6, 7), true, *--.");

List operators are provided like tail and cat and sub-
seripting:

B« A3]; C+—Beat A; C « tail ¢;
The string language interpreter handles list operations

Volume 10 / Number 9 / September, 1967

direetly and efficiently by speeial microprograms. If the
program would be compiled to 360 machine language, a
sequence of instruetions would be required for each list

operation.
5. EULER System on IBM System,360 Model 30

An experimental processing system for the Eurer
language has been written to demonstrate the validity of
these ideas. Tt is a system running under the IBM Basic
Operating System and consists of three parts:

(1) A translator, written in Model 30 microcode.! This
translator is a one-pass syntax-driven compiler
which translates ILULER source language pro-
grams into a reverse polish string form.

(2) An interpreter, written in Model 30 microcode,!
which interprets string language programs.

(3) An I/O Control Program written in 360 machine
language.? This TOCP links the translator and
interpreter to the operating system and han-
dles all I/O requests of the translator and in-
terpreter.

The system Is an experimental systema. Not all the
features of EuLer are included,—only the general prin-
ciples that are to be demonstrated. The restrictions are:

{1) Real numbers are not included; only integers are
recognized.

(2y The interpreter microprograms for the operators
Divide, Integer Divide, Remainder, and Ex-
ponentiation have not been coded.

{3) The type ‘symbol’ is not included.

(4) No garbage collector is provided. Therefore, the
system comes to an error stop if a list processing
program has used up all available storage space
(32K bytes).

Also for reasons of simplicity, the system is written only
for a 64X System/360 Model 30 and the storage areas for
tables, compiled programs, stacks and free space are as-
signed fixed addresses.

The string language into which source programs are
translated is defined as closely as possible to the inter-
pretive language used in the definition of EvLer [1].
The question whether this is the ideal directly interpret-
able language corresponding to the EuLER source language
given the Model 30 hardware is left open. Also no attempt
is made to define the string language so that it becomes
relocatable for use in time sharing or conversational
processing mode.

The three storage areas used by the execution system
are:

(1) Program Area

1:b‘t0red in the second Read-Only Storage (Compatibility ROS)
of Model 30.

2 'I:h@ 360 microprograms are stored in the first Read-Only Storage
(360 ROS) of the Model 30.

Volume 10 / Number 9 / September, 1967

(2) Stack
(3) Variable Area,

Programn Area. A translated program in siring language
consists of a sequence of one-byte symbols for the operators
(4, —, begin, end, «—, go to, etc.). Some of the symbols
have trailer bytes associated with them; for instance, the
symbol --number has three trailer bytes for a 24-bit
absolute value of the integer constant.

+
number|

value

The symbol reference (@) has two trailer bytes, one
containing the block number (bn), the second one the
ordinal number (on).

@ |bn jon

The operators then, else, and, or and ‘ have two
trailer bytes containing a 16-bit absolute program address,
e.g.,

then pa

Other operators with trailer bytes are label and the
list-building operator.

Stack. The execution time stack consists of a sequence
of 32-bit words. It contains block and procedure marks to
control the processing of blocks and procedures and tem-
porary values of the various types. The first 4-bit digit of
a word in stack always is a type indicator. The format of
these words is given in Figure 3.

Variable Area. The variable area is an area (32K
bytes long) of 32-bit words used for the storage of values
assigned to variables and lists (and also for auxiliary words
in procedure descriptors; see type procedure in Figure 3).
The format of the entries is exactly the same as the format
of the stack entries (see Figure 3), the only exception being
that a mark can never occur in the variable area.

4. Microprogramming the IBM System/360
Model 30 [2]

Microprograms are sequences of microprogram words.
A microprogram word is composed of 60 bits and contains
various fields which control the basic funetions in the IBM
System/360 Model 30 CPU. These basic functions are
storage control, control of the data flow registers and the
Arithmetic-Logic-Unit (ALU), microprogram sequencing
and branching control, and status bit-setting control.
Mieroprogram words are stored in a Card Capacitor Read-
Only Storage (CCROS). Fetching one microprogram word
and executing it takes 750 nsec, the basic machine eycle.

Communications of the ACM 551

Type undefined 72 4 4
O K
Type integer TS 1 T
sign: + 0 1 ; 'gn VIO |ule
-1

value: magnitude in hexadecimal (< 16%)
W, 994% /
3N

g T
4imp | do
mp: mark pointer, points to the stack location of the mark for

the block in which the label is defined.
pa: 16-bit absolute program address

Type logical
value: truel
false O

Type label

Type reference i bC

5! mp

mp: mark pointer, points to the stack location of the mark for
the block in which the variable is defined.

loc: location of word in variable area which contains value
assigned to variable.

Type procedure

6 mp | link 67]bn] pa
e \

mp: mark pointer, points to the stack location of the mark for
the block (or procedure) in which the procedure is defined.
link: pointer to a word in variable area which contains
additional information.

bn: block number of the block (or procedure) in which the
procedure is defined.

pa: 16-bit program address, where string code for procedure
starts.

Type list

7 ilength

length: number of elements in list (< 16%)
loc: 16-bit location of first list element in variable area (lists
are stored in consecutive storage locations).
Mark 1 static
9. bn

7,
link VA

gidynomic return
! link address

77:! e:ngthl

A mark consists of 8 words in stack; it is built each time a block or
a procedure is entered.
static link: static link to mark of embracing block.
bn: block number.
dypamic link: dynamic link to mark of embracing block (or
procedure).
return address: 16-bit program address to which to return
upon normal exit of procedure (for procedure marks only, this
field is O for block marks).
The last stack word in a mark is a list descriptor (see type list)
for the variable list (in a block mark) or the actual parameter list
(in a procedure mark).

loc

loc

Fia. 3. Format of words in stack and variable area

552 Communications of the ACM

Tigure 4 shows in sitaplified form the data flow of the
TBM Systern/360 (IBM 2030 CPU). It consists of a core
storage with up to 65,536 8-bit bytes and a local storage
(accessible by the microprogrammer but not cxplicitly
by the 360 language programmer), a 16-bit storage ad-
dress register (M, N), a set of 10 8-bit data registers
(I, J, -+, R), an arithmetic-logic-unit (ALU), connect-
ing 8-bit wide buses (Z, A, B, M, N-bus), temporary
registers (A, B), switches and gates.

Figure 5 shows the more important fields of a micro-
program word. Only 47 bits are shown. Other fields con-
tain various parity bits and special control bits. The field
interpretation given in Figure 5 is ag for microprogram
words in the second Read-Only Storage unit (Compali-
bility ROS) if the machine is equipped with the 1620
Compatibility Feature. The meaning of the microprogram
word fields is explained in conneetion with Figure 6 which
shows the symbolic representation of a mieroprogram word
together with an example as it appears on a microprogram
documentation sheet.

The fields of the microprogram word can be grouped in
five categories:

1. ALU control fields:
CC

2. Storage control fields: CM, CU

3. Microprogram sequencing and branching fields:
CN, CH, CL

4. Status bit setting field: CS

5. Constant field: CK

ALU Control Fields. On the line designated “ALU” in
Figure 6, an ALU statement can appear. It will specify an
A-source and a B-source, possibly an A-source modifier
and a B-source modifier, an operator, a destination, and
possibly a carry-in control and a carry-out control.

CA is the A-source field. It controls which one of the 10
8-bit data registers is connected to the transient A-register
and therefore to the A-input of the ALU.

CB is the B-source field. It controls whether the R, L,
or D-register or the CK-field is connected to the transient
B-register and therefore to the B-input of the ALU. If
“K” (CB=3) is specified in this field, the 4-bit constant
field CK is doubled up; i.e., the same four bits are used as
the high digit and the low digit.

Between the A-register and the ALU input is a straight/
cross switch and a high /low gate. Its function is controlled
by the CF-field. Depending on the value of this field, no
input is gated into the ALU (0) or only the low (L) or
high digit (H) is admitted. CF = 3 gates all eight bits
straight through, whereas the codes CF = 5, 6, and 7
cross over the two digits of the byte before admitting the
low (XL} or high digit (XH) or both digits (X).

Between the B-register and the ALU input is a high/low
gate and a true/complement control. The high/low gate is
controlled by the CG-field in the same manner as the
high/low gate in the A-input. The true/complement con-
trol is operated by the CV-field. It admits the true byte to

CA, CF, CB, CG, CV, CD,

Volume 10 / Number 9 / September, 1967

the ALU () or the inverted byte (—) or controls a six- handling (40), addition with injection of a 1 (+1) (for
correct mechanism for decimal addition (@).
m F — N R PR . . 4 M P T N . " M
The operator and carry controls are given by the CC- B-input inverter), addition with saving the carry in bit 3
> [1P) necifios marv additio Aot G PrY T o S $ - - - y {e1343
field. This field specifies binary addition without carry of register 8 (+0,8ave C, and +1,Save (), and addition

instance, to simulate subtraction in connection with the

Z BUS

|
L

A BUS
8 BUS CORE | |
M BUS STORAGE e
N BUS

o
>
e

H-L

store

] A N

ALU

{ + LAST CARRY
+ 1

|

f

CARRY

Fra. 4. Simplified data flow of the IBM System/360 Model 30

[CN [cH] ct [cwm Jouo] ca Jes] ¢k | co | cF Jes[ev] cc | es |
0000 ¢} 0 WRITEIMS * R 0 z 0 o1+ | +0 HSEEY!T,‘NGGS
coo! L 1 NOACCESS| L S * L L * L L} - +L |LE-~S5
0010 RO * STORE| % * D 2 * H H | % | AND |[HZ -S4
oot SL ¥ Jraemn| % * K 3 #® [THRouGH| THR] @ | OR ME-saLzess
0100 * 61 JuveMmN S 4 * * 10 SAVE CJO=54,0+55
0101 * R=VALID DECRT =MN * 5 * XL i savec) 4 =S4
ot10 ALU CARRY RL ¥ * 6 S XH hcsavecjO —= S0
[N SO Z=0 * R 7 R X XOR |1 -= S0
1000 R2 G7 D 8 0 O —=52
1001 s2 53 L 9, L ANSNZ + 52
toto S4 §5 G XA [0 -=$6
1011 $6 ST T x'8' T 1—=56
1100 G0 R3 v X'ct v 0-+S7
1101 62 63 U XDt u L-=ST7
1110 G4 G5 hg X'E' J *
tind G& INTERRUPY I X'F I 0-=5Sl

1 X'A' means hexadecimal digit A = 1010

Fic. 5. IBM System 360 Model 30 microprogram word. (Detailed explanation is provided in text.) The field interpretation is given

for microprogram words in compatibility ROS if the machine is equipped with the 1620 compatibility feature. Fields marked

1L 224

contain designators not explained here in order not to confuse the basic principles.

Yolume 10 / Number 9 / September,

1967

Communications of the ACM 553

XbX7 e RS ADDR

CONSTANT

ALU

STORAGE
STATUS SETTING

BRANCHING SEQUENCE

COORD ——COORD
Format of Symbolic Representation

01 ———ree—— 115D

1o

R+KH - DC

WRITE

HZ —$4, LZ S5

G4, G§ C4

C4 ~——CD

Example

Fic. 6. Symbolic representation of a System/360 Model 30 micro-
program word

using an old carry stored in bit 3 of register S and saving the
new carry in this same bit (4-C,Save C). Other codes
specify logical operations (AND, OR, XOR).

The CD-field specifies into which register the result of
the ALU operation is gated. Any one of the 10 data regis-
ters can be specified. Z means that the ALU output is
gated nowhere and will be lost.

Storage Control Fields. On the line designated “storage”
in Figure 6, a storage statement can appear. It will specify
whether this microcycle is a read cycle, a write cycle, a
store cycle or a no-storage access c¢ycle, and from where the
storage address is supplied (CM-field) and whether storage
access is to main storage or local storage (CU-field). Note
that a full storage eycle (1.5usec) corresponds to two read-
only storage cycles (750nsec).

The codes CM = 3, 4, or 5 specify read cycles. The
addresses are supplied from the register pairs IJ, UV, and
LT, respectively. A read cycle reads one byte of data from
core storage into the storage data register R.

A write cycle regenerates the data from the storage data
register R at the address supplied in the last read cycle.

A store cycle acts exactly as a write cycle except that it
inhibits in the read cycle immediately preceding it the
insertion of the data byte from storage into the R-register.

The CU-field specifies whether storage aceess should be
to0 main storage (MS) or to a local storage of 256 bytes not
explicitly addressable by the 360 language programmer.

Microprogram Sequencing and Branching. Xach micro-
program word is stored at a unique address in ROS. A
13-bit ROS address register (W3- --W7, X0---X7) holds
the address of the word being executed. For the symbolic
representation of a microprogram (Figure 6) the ROS

554 Communications of the ACM

address is given in hexadecimal in the upper right corner,
and the lagt two bits of this address are repeated in binary
on the upper margin.

After execution of a microprogram step, the next se-
quential word will not be executed. Instead the address of
the next word to be executed is derived as follows. The
high five bits (W) remain the same, unless they are changed
by a special command in the microword, not explained
here (so-called module switching). The next six bits
(X0---X5) are supplied from the CN-field (written in
hexadecimal in the symbolie representation of Figure 6).
The low two bits are set according to conditions specified
in the CH and CL fields. X6 is set according to the condi-
tion specified by CH. For instance, if CH = 8, then the
bit R2 is transferred to X6; if CH = 6, then X6 is set to
one if in the last ALU operation a carry had occurred. It is
set to zero if no carry had oceurred. X7 is controlled by CL.
If, for instance, CL = 0, then X7 is set to zero; if X7 = 5,
then X7 is set to one if both digits in R are valid decimal
digits (i.e., RO---R3 < 9 and R4---R7 < 9), X7 is set
to zero if either digit in R is not a valid decimal digit
(ie, RO---R3 > 9 or R4---R7 > 9). This microprogram
sequencing scheme allows a four-way branch after the
execution of each mieroprogram word.

Status Bit Setting. The CSfield allows the uncondi-
tional or conditional setting of certain status bits to be
specified, combined in Register S. If, for instance, C8 = 3,
then 84 is set to one if the result of the ALU operation
performed in this microprogram cycle shows a zero in the
high digit (ie., Z0=21=72=73=0); 84 is set to zero
otherwise. At the same time, S5 is set to one if the result of
the ALU operation shows a zero in the low digit (i.e.,
74 =705=726=77=0); S5 is set to zero otherwise. If
CS = 9, then 82 is set to one if the result of the ALU opera-
tion is not zero (i.e., at least one of the bits Z0---Z7 is
equal to 1). If the result of the ALU operation is zero, then
S2 is not changed.

Constant Field. The 4-bit CK-field is used for various
purposes. One instance explained in the ALU statement is
to supply a constant B-source for an ALU operation.
Other examples not explained here any further are the
addressing of a few specific seratchpad local storage loca-
tions, module switching (replacement, of the high part W
of the ROS address), and the control of certain special
functions.

Symbolic Represeniation of Microprograms. Micro-
programs are symbolically represented as a network of
boxes (Figure 6) each representing a microword, connected
by nets indieating the possible branching ways. Figure 7
gives an example of a microprogram (to be explained in
the next section). There exist programming systems to
aid in the development of microprograms. They contain
symbolic translators to translate the contents of a box
according to Figure 6 into the contents of the actual fields

Volume 10 / Number 9 / September, 1967

‘a1 pus ‘1o ‘pur srojviado oyy o] weiBoxdordty ‘2 BIF

INAL SNFHL
3NHL sany
{0 - o— —5
L) 134 3 £5498
¥ e e JLIUM |
TeTH04I oreT4odn
HOTT = {1 ¥21r — o1
— 354 ¥
= ; ot =g = -3 gl -
03 T4 11 €50 ﬁ 00 et] €548
ple ol FLTUR ey
OneH0=n g:ﬁw..w ﬁ. WIHR IreTdH
401
2911 —~— 00 0T~ 01 QOTY == 10 I =~ 10
¢ 64 £5 3ou0d
33 NaWl 08y 1531 3gAl NIHL Yup Oy
e i iy —1 T —5
i jes) o1 o8 EL4 &% §543% —
S o s 3 RO At
e TG IeTHIH
I — 21— 00
£ e —3f
o9 e a1 841
L DATHM Dbt | S ALY
(21 Ted
TIT s O1 €311 —— 11
doMu? 1S3 R
ol g
o0 T
% Ot ZLIyR jeem
WTHO+0 ITEO4CHT
17 = 1o JTT = 1T

—Z3 G =
TGy 14 17

AHLNT 34D T
sW il e ——
IrETHOH

£3T] e IT TATY = 10

of the microprogram word according to Figure 5. A draw-
ing program generates documentation (Figure 7 is drawn
with such a program), These systems usually also contaln
programs for simulation and generation of the actual
ROS cards.

5. String Language Interpreter for EULER

The string language interpreter for Eungr is entirely
written in Model 30 microcode. It consists of a few micro-
program steps to read the next sequential symbol from the
program string and to do a function branch on the symbol
and of a group of microprogram routines which perform
the necessary operations for the program byte read. These
routines also take care of dynamic type testing and stack
pointer manipulations. The routines are equivalent to the
routines described in the definition of the string language
for BuLer [1].

Tigure 7 shows as an example, the microprogram to
interpret the program string symbols and (internal repre-
sentation X'52%), or X'50' and then X'53'. These opera-
tors test if the highest entry in the stack is a value of type
logical. The logical operators in EvLer work in the For-
TRAN sense, not in the ArLgoL sense: if after the evaluation
of the first operand the result is determined (false for and,
true for or), then the second operand is not evaluated
but skipped over. If an and operator finds the value false,
then a branch oceurs to the program address given in the
two trailer bytes. If an and finds the value true, then it
deletes this value from the stack and proceeds to the next
symbol in the program string (to evaluate the second
operand of and). Similarly if an or operator finds the
value true, then a branch occurs to the program address
given in the two trailer bytes. If an or finds the value
false, then it deletes this value from the stack and pro-
ceeds to the next symbol in the program string. The then
operator is a conditional branch code: it deletes the logical
value from the stack. If this value was false, then a branch
is taken to the program address given in the two trailer
bytes. If this value was true, then the next symbol in the
program string is executed.

The pointer to the symbol in the program string (the
instruction counter) is located in the functionally associ-
ated pair of registers I and J in the Model 30. The pointer
to the left-most byte of the highest entry in the stack (the
stack pointer) is located in the two registers U and V in the
Model 30.

In the following the individual steps in this micropro-
gram are explained in more detail.

Address Location Description
in Figure
1161: Cl: The instruction counter IJ addresses main

storage. The addressed byte in main
storage is read out into the storage data
register R. The instruction counter is up-
dated by adding 1 to register J. A possible
carry is saved to be added to 1.

#X 'mwn' represents the hexadecimal number composed of the
digits n (n = 0,....9, 4,...,F).

556 Communications of the ACM

1117:

1171:

115D

11C4:

11CB:

C2:

C3:

C4:

L4:

G5:

The operator has been read out {rom main
storage into R. It is also transferrved
(through the ALU) to register {x. A four-
way branch oceurs on the two highest bitg
RO and R1 of the operator. For the opera-
tors 52, 53, and 50 this branch goes to ROS
word 1171, whereas other operators cause a
branch to 1170, 1172, or 1173, indicated by
the three lines not continued,

To complete the updating of the instruc.
tion counter, the earry from 1161 is added
into 1. The first byte of the highest entry
of the stack is addressed by UV and read
out into K. A further four-way branch on
the operator is made (G2, G3). For our
operators the branch goes to 115D,

The high order byte of the highest stack
entry has been read out of storage into R.
It contains the type of entry in the high
digit and if this type was logical then it
contains the value true (1) or false (0) in
the second digit. This byte is tested by
adding X'DO' to it and observing the
result, ignoring the carry. S4 is set to 1
when the type was 3(logical) otherwise to
0. S5 is set to 1 when the low digit of this
byte was 0 (value false), S5 is set to 0
when the low digit of this byte was 1 (value
true). Another four-way branch oceurs on
the bits G4 and G& of the operator. If the
operator is 50(or), 51 (cannot occur), 52
(and), or 533(then), then a branch to 11C4
oceurs.

The next byte is read from the program
string, it is the high byte of the two-byte
program address trailing the operator. The
instruction counter is updated again by
adding alto J, saving a possible carry.
Another four-way branchoccurs on the bit
G6 of the operator and the value of thestack
entry. If the operator was and orthen (G6 =
1) and the value was false (S5 = 1), then
branching to 11CB occurs; if the operator
was or (G6 = 0) and the value was true
(85 = 0), then branching to 11C8 oceurs.
If the operator was or (G6 = 0) and the
value was false (85 = 1), then branching
to 11C9 occurs. If the operator was and
or then (G6 = 1) and the value was true
(85 = 0), then branching to 11CA ocecurs.

This word is executed for the operators
and and then when the value was false.
Here the type test is made. If the type was
not logical (84 = 0), then a branch to 11C1
occurs. If the type was correct, then the
microprogram proceeds to fetching the
trailing program address (two bytes) to
store it as the new instruction counter in
1J. This is done for the and operator (G7
= () in this word and the following two
words 11C3 and 111E; for the then opera-
tor (G7 = 1) it is done in this word and the
words 11C3 and 111F,

Volume 10 / Number 9 / September, 1967

11C3, J6, J7: The two bytes trailing of the operators and
1115 or or are stored as the new instruction
counter 1J. The operation is completed.
The microprogram branches back to 1161
to read out the next operator,
11C3, J6, L7: The two bytes trailing of the operator
111F: then are stored as the new instruction
counter in IJ. The carry-saving bit 83 is
forced to zero.
11CE, N8, N9: The stackpointer is decremented by four

1144 (the operator “’ means complement add)
which in effect deletes the highest entry
from the stack. Observe that when these
two words are entered from 111F (then
operator with value false) the micro-
program will not go through 1145 because
we have forced S3 to zero in 111F. The
operation is completed, and the micro-
program branches back to 1161 to read out
the next operator.

This word is executed for the operator or
when the value was true. Similarly as in
11CB, the typetest is taken. For types
not logical a branch to 11C1 occurs. If the
type was correct, then the microprogram
proceeds to fetching the trailing program
address (two bytes) to store it as the new
instruction counter in I1J (words 11C3,
111E).

11C8: J5:

This word is executed for the operator or
when the value was false. A typetest is
made. If the type was correct, then the
trailing program address is skipped and IJ
is updated by 1 twice in 11C4, 11C9 (pos-
sible carries out of J handled in 11CF or
1145). The stackpointer is decremented by
four in 11CE, 1144.

11C9: N5:

This word is executed for the operators
and and then when the value was true.
A typetest is made. If the type was correct
then the trailing address is skipped, 1J is
updated by 1 twice in 11C4, 11CA (possible
arries out of J handled in 11CF or 1145).
The stackpointer is decremented by four
in 11CE, 1144.

11CA: Q5:

G6,L6,N6 These words are executed when a typetest
oceurs. An error code 01 is set up in L and
a branch occurs to the error routine not
drawn here.

11C1,
11CC,
11CD:

It can be seen from Figure 7 that the execution times of
the microprograms including the readout of the operator
(I-Cycle) are the following:

and 6usect (8 microprogram steps)
or 6usec (8 microprogram steps) -
then 6usec for value true (8 microprogram steps)

7.5usec for value false (10 microprogram steps)

¢ The cases where carries occur in the IJ and UV updating are
disregarded for timing purposes.

Volume 10 / Number 9 / September, 1967

In order to compare this with a hypothetical EvrLer
system for System/360 language, let us assume that the
compiler produces in-line code (which probably will give
the highest performance although it will be very wasteful
with respect to storage space). Then a reasonable sequence
for and might be:

CLI 0 (STACK), LOGFALSE
BE ANDFALSE

CLI 0 (STACK), LOGTRUE
BNE TYPEERR

SH STACK, = '4'

Timing: true: 90upsec; false: 32usec.

This comparison seems to indicate that the micropro-
gram interpreter is about an order of magnitude faster
than the equivalent program in 360 language. However,
this comparison will only yield such a high factor for fune-
tions of EuLer which do not have simple System/360 lan-
guage counterparts (as for instance the list-operators,
begin-, end-, and procedure-call-operator) or where the
overhead for dynamic testing and stackpointer manipu-
lation is heavy as in the above example of the logical
operations. For functions which do have System/360
language counterparts and which are slower so that the
overhead is relatively lighter as, for instance, arithmetic
operations (especially for real numbers), the micropro-
grammed interpreter will still be faster than the System/
360 language program, but not by a factor of 10.

The total ROS space requirement for the String Lan-
guage Interpreter is:

Coded routines
Routines for real number

1000 microwords
500 microwords (esti-

handling mated)
Divide, Exponentiation, 400 microwords (esti-
ete. mated)

600 microwords (esti-
mated)

2500 microwords

Garbage collector

6. EULER Compiler

The translator to translate EULER source language into
the Reverse Polish String Language is a one-pass, syntax-
driven compiler. The syntax of the language and the
precedence functions F and G over the terminal and non-
terminal symbols are stored in table form is Model 30
main storage. There is also main storage space reserved for
translation tables for character delimiters and word
delimiters and for a compile time stack, a name table, and,
of course, for the compiled code. All these areas are at
fixed storage locations because of the experimental nature
of the system.

The microprogram consists of the following parts:

1. A routine reads the next input character from the
input buffer to translate it to a I-byte internal format, if it
is a delimiter, or to collect it into a name buffer if it is
part of an identifier, or to convert it to hexadecimal if it is

Communiecations of the ACM 557

part of a numeric constant and to collect the number into a
buffer. This “prescan” requires 100+ microwords.

2. As soon as an input unit is collected (delimiter,
identifier, number) the main parsing loop is entered which
makes use of the precedence tables and the syntax table in
main storage. This syntactic analyzer loop requires 100 —
microwords.

3. When the parsing loop identifies a syntactic unit to
be reduced, it calls the appropriate generation routine
which performs essentially the functions described as the
semantic interpretation rules in the LuLer definition.
The microprogram space required for these programs
amounts to approximately 250 ROS words.

4. If a syntactic error is detected, the system signals an
error and does not try to continue with the compilation
process. Though this procedure is totally inadequate for a
practically useful system, it was deemed sufficient to
prove the essential point. For this minimum error analysis
and for linkage to the 360 microprograms (IOCP),
approximately 60 microwords are required.

The total compiler microprogram space is therefore
approximately 500 ROS words. The total main storage
space required is approximately 1200 bytes.

The speed of this compiler is limited by the speed of the
card-reader of the system (1000 cards/minute). This
excellent performance has three main reasons: (1) FuLer
as a simple precedence language is a language extremely
easy to compile. (2) The functions of a compiler are mainly
of a table lookup and bit and byte-testing type. Micro-
programming is extremely well-suited for these kinds of
operations. (3) Since the target language is String Code
and not, for example, 360 Machine Language, the genera-
tive part of the compiler is relatively short.

It 1s very difficult to assess the individual contributions
of these three main reasons to the high compiler perform-
ance. Therefore, it is not possible at this stage to make a
statement as to whether the nature of the language
Eurer or the fact that the compiler is microprogrammed
is the dominant factor.

7. Development of the Microprogram

Since there is no higher level language to express micro-
program procedures and no compiler to compile microcode,
the microprograms were written in the symbolic language
explained in Figure 6. Actually the process was a hand

“translation of the algorithms in the Evigr definition to the
symbolic microprogram language. The microprograms were
translated into actual microcode and simulated before they
were put on the System/360 Model 30 by means of a general
microprogram development system.

8. Outlook and General Discussion

Tt is hoped that the development of this experimental
system for EuLer shows that with the help of micropro-
gramming we can create systems for higher level languages
or special applications, which utilize existing computer

558 Communications of the ACM

hardware to a much higher degree than conventinnal pro-
gramming systens.

Among the thoughts which are raised by this secheme are
the following:

1. There should be an investigation to determine the
ideal directly interpretable languages which correspond 1o
higher level languages. Although several attempts have
been made to define string languages for interpretive
systems (for instance in [1, 4]), to the author’s knowledge
no work has been published which attacks this question in
a general and theoretically founded manner.

2. A proliferation of interpretive languages and the
development of microprogrammed interpreters can be
justified when better tools are developed to reduce the
cost of microprogramming. It is necessary thal we be
able to express microprogramming concepts (and alses
machine design concepts) in a higher level language forny
and that we develop compilers which translate the micro-
programs from higher level language form to actual micro-
code. Also, good microprogram simulation and debugging
tools are called for.

3. The whole relationship ;
microprogramming, and machine design should be viewed
with a common denominator: how should the tradecffs b
made such that the ultimate goal can be reached mo
effectively, ... how to solve a user’s problem? CGreen
offers some thinking in this direction but the state of the

between programiming

art has to progress further before we will have a comple
understanding of what these relationships and tradeofis
are.

Acknowledgmeni. 1 wish to thank Jack Carman, whes
wrote the I/0 Control Program and the Operating Systews
linkage for the Burer system and Miss Sheila Morrisors
who helped prepare the figures. I am also grateful for thes
valuable eriticism offered by the referee, W. C. MeGee,
as well as by Professor N. Wirth and E. Satterthwaite,

Receivep Decemper, 1966; REVIsED May, 1967

REFERENCES

1. Wirte, N., anp Weser, H. EULER: A generalization
ALGOL, and its formal definition: Pt. ¥, Comm ACM 9,
(Jan. 1966), 13-25; Pt. LT, Comm ACM 9, 2 (Feb. 1966, 8-1

2. Fage, P., Brown, J. L., Hwe, J. A, Doopy, D. T..
Farrcrouven, J. W., aNp Greexg, J. IBM System/360 e
gineering. Proc. APIPS 1964 Fall Joint Comput. Conf., ¥
28, pp. 205-231. i

3. Harnes, L. H. Serial compilation and the 1401 FORTRAD
compiler. IBM Sys. J. 4 1 (Jan. 1965}, 73-80. See also: FOI ~
TRAN specifications aund operating procedures, IBM 140 -
IBM Systems Ref. Lib. C24-1455-2.

4. MELBOURNE, A, J., AND Puayirg, J. M. A small computer {cs
the direct processing of FORTRAN statements. Compus -
J. 8(April 1965), 24-27-

5. GrEeExN, J, Micropmgramming, emulators and programmir
languages. Comne ACM 9,3 (Mar. 1966), 230-231.

e

Volume 10 / Number 9 / September, 1957

