
A Microprogrammed
Implementation of EULER on
IBM System/360 Model 30

HELMUT WEBER

International Business Machines Corp.*, Endicott, N. Y.

An experimental processing system for the algorithmic
~anguage EULER has been implemented in microprogramming
on an IBM System/360 Model 30 using a second Read-Only
Storage unit. The system consists of a mlcroprogrammed com-
piler and a microprogrammed String Language Interpreter,
and of an I/O control program written in 360 machine lan-
guage.

The system is described and results are given in terms of
microprogram and main storage space required and compiler
and interpreter performance obtained. The role of micro-
programming is stressed, which opens a new dimension in the
processing of interpretive code. The structure and content of a
higher level language can be matched by an appropriate
interpretive language which can be executed efficiently by
microprograms on existing computer hardware.

l . I n t r o d u c t i o n

Programs written in a procedure-oriented language are
usually processed in two steps. They ~ e first translated
into an equivMent form which is more efficiently interpret-
able; then the translated text is interpreted ("executed")
by an interpretation mechanism. The translation process
is a data-invariant and ftow-invariant operation. It con-
sists of two parts---an anMytical part, which anMyzes the
higher level language text, and a generative part, which
builds up a string of instructions that can be directly
interpreted by a machine. The anMyticM part of the trans-
lator depends on the higher level language; the generative
part depends on a set of instructions interpretable by a
machine. Historically there was only one set of instruc-
tions which could be interpreted efficiently by a machine,
its "machine language." Figure 1 outlines this scheme.

Some of the processors of the IBM System/360 family
are microprogrammed machines. On them the "360
machine language" is interpreted not by wired-in logic but
by an interpretive microprogram, stored in control storage,

* Systems Development Division

Volume 10 / Number 9 / September, 1967

N. WIRTH, Editor

which in turn is interpreted by wired-in logic. Therefore,
in a certain sense the 360 language is not the "machine
language" of these processors but the (efficiently inter-
pretable) language in which the processors of the System/
360 family are compatible. The true "machine language"
of these processors is their microprogram language. This
language is on a lower level than the "360 language";
it contMns the elementary operations of the machine as
operators and the elements of the data flow and storage as
operands.

Now it is conceivable to compile a program written in a
higher level language into a microprogram language string.
This string would undoubtedly contain substrings which
occur over and over in the same sequence. We could call
these substrings procedures and move them out of the
main string, replacing their occurrence by a procedure call
symbol, followed by a parameter designator pointing to
the particular procedure. Our object program then takes
on the appearance of a sequence of call statements. From
here it is only a final step to eliminate the call symbols
and furnish an interpreting mechanism which interprets
the remaining sequence of "procedure designators."

The process just described will result in the definition
of a string language and the development of a micropro-
grammed interpretation system to interpret texts in this
string language. The situation is similar to the System//
360 case: the string language corresponds to the 360
language. Programs written in a higher level language m'e
compiled into string language text to be stored in main
storage. The string language hxterpreter corresponds to
the microprogram which interprets 360 language texts. It
consists of a recognizing part to read the next consecutive
string element and to branch to an appropriate action
routine and of action routines to execute the particular
procedure called for by the string element.

The essential difference between our situation and the
360 case is that the string language reflects the features of

Program in
Higher Level
Language

Input Data

i
- - Machine ~ D a t a
(IQnguage ~ t I (machine Language
dependent) L dependent)

interpreter
k /

V
Data and Flow Invadant Transl~tion

Fro. 1. Processing programs written in higher level languages
via translation to machine language

Comn'lunications of tile ACM 549

the particular higher level language as well as the features
of the particular hardware better than the general purpose
360 language.

What is gained by defining this string language and by
providing a mieroprogrammed interpreter for it? From
the method of definition described, it can be seen that the
elements of the string language correspond directly to the
elements of the higher level language after all simplifying
data-invariant and flow-invariant transformations have
been performed. But the elements of the string language
are also well-adapted to the mieroprogram structure of
the machine. Therefore, during the compiling process (see
Figure 2) only a minimum of generation is necessary to
produce the string language text. The compiler is shorter
and runs faster.

But the more important aspect is that object code
execution is also faster. The string language interpreter in
case 2 will be coded to take care of all necessary operations
in a concise form, whereas in case 1 it will be necessary to
compile a whole sequence of machine language instruc-
tions for an elementary operation in the higher level
language. Examples of this are the compilation of 360
code for an add operation in COBOL of two numbers with
different scaling factors or the compilation of machine
instructions for table lookup or search operations, etc.
In these cases the string language interpreter of Figure 2
will execute a function much faster than the machine
language interpreter of Figure 1 will execute the equivalent
sequence of machine language instructions. Therefore,
object code execution will be faster in scheme 2.

If object code performance is not us much in demand as
object storage space economy, the string language inter-
preter can also be written such that the string language is
as tightly packed as possible so that the translated pro-
gram is as compact as possible and will take up less storage
space than the equivalent machine language program under
the scheme of Figure 1.

These ideas are applied in an experimental mieropro-
gram system for the higher level lang~mge EULER [1]
described below. Problem areas in this approach are indi-
cated and some ideas for future development are offered.

2. Special Considerat ions for EULER

The higher level language EVLER [1] is a dynamic
language. This means that for programs written in it many
things have to be done at object code execution time which

Input Data

(language dependent) Intermediate
Higher LeVel] ' ~ Text in
Language] Generation of String LanguQge

intermed late text

T
Interpreter

Fro. 2. Processing programs writ ten in higher level languages
via translat ion to interpretive language

l Output
~ " - - ~ Data

550 C o m m u n i c a t i o n s of t h e ACM

can be done at compile time for o{~her l~mgu~ges. [!;~:rLr:a
also contair~s basic functions which do ~+~o~ have compar.
able basic counterparts in the machine languages of most
machines. To compile machine code :for these dynamic
propereies and tbr those special functions would :require
rather lengthy sequences of machine language insl~rucgions,
which would consume considerable object code sp:~ce and
require high objee~ code execution time. Therefore, for a
Ianguage like EVLE~t, interpretation a~ the string lang~age
level by an interpreter into whidh the dynamic features and
special functions are included by mieroeode will yield much
higher object code economy and object code perforrmmee
than compilation to machine language and interpret~tio~
of this machine language.

Three examples from Evlmt~ are given here.

1. Dynamic Type Handling. To a variable irt EULE!R,
constants of varying type can be assigned dynamically.
For example in

A e -3 ; " . ; A ~-'4.51o_,55; . ' . ; A e - t r u e ; - . . ;
A (- - ¢ , . , ~ .

the quantities assigned to the variable A have the t~ypes:
integer, real, logical, procedure. Therefore, in EUL~R each
quantity has to carry its type indicator along and each
operator operating on a variable has to perform a dynamic
type test. The adding operator + for instance in A + B
has to test dynamically whether both operands are of type
number (integer or real). This type testing is done by the
String Language Interpreter in minimum time, whereas it
would require extra instructions if the program were to be
compiled to 360 machine language.

2. Recursive Procedures and Dynamic Storage Alloca-
tion. In EWER, procedures can be called reeursively,
e.g.,

F +- ' f o r m a l N; i f N = O t h e n l e lse N, F(N - 1)';

and storage is allocated dynamically, e.g.,

A e- (3, 4, (5, 6, 7), t r ue , ' - . . ') ;

List operators are provided like tail and cat and sub-
scripting:

B~-- A[3]; C e - B eat A; C ~ tall C;
i

The string language interpreter handles list operations

V o l u m e 10 / N u m b e r 9 / S e p t e m b e r 1967 :j

n ew N; ; N~-- 4; ; b e g i n n e w A ; A ~- - l l s t N;

In order to cope with these problems the EuLE~¢ execution
system uses a run time stack. Each operation is accom-
panied by stack pointer manipulations which by the micro-
program can be accomplished in minimum time (in general,
even without extra time because they are overlapped with
the operation proper), whereas extra instructions would be
required, if the program were compiled.

3. List Processing. EULER includes a list processing
system, and lists are of a general tree structure, e.g.,

(ih'(ctly aixd cff:icient y by special :mieroprogr~ms. If t:he
pr~>gra~m w()uld be compiled to 3(30 machine language, a
se(ttw~c(> of instructiolls would be required for each list,
ope~';~t ion.

3. E{ |~ER Systenl on IB31 System/360 Model 30

A~ experimental processing system for the EIrL~:R
lahguage has been written to demonstrate the validity of
th(~se i(te~s, II) is a system runrting under the IBM B~sic
0pere~ti~g System and consists of three parts:

(1) A ~.ra.aslator, written in Model 30 mieroeode. I This
trartslator is a one-pass syntax-driven compiler
which translates EULER source language pro-
grams into ~ reverse polish string form.

(2) An interpreter, written ia Model 30 microcod@
which interprets string language programs.

(3) A:n I//O ColLtr(1 Program written in 360 machine
language/ This IOCP links the translator and
interpreter to the operating system and han-
dles all I /O requests of the translator and in-
terpreter.

The system is ~m experimental system. Not all the
features of EULEt~ m'e included,--only the general prin-
c:it)les that are to be demonstrated. The restrictions are:

(1) .[le~d tmmbers are not included; only integers are
recognized.

(2) The interpreter mieroprograms for the operator's
Divide, Integer Divide, Remainder, and Ex-
p(mentiation have not been. coded.

(3) The type 'symbol' is not included.
(4) No garbage collector is provided. Therefore, the

system comes to an error stop if a list processing
program has used up all available storage space
(32K bytes).

Also for reasons of simplicity, the system is written only
for a 64K System/360 Model 30 and the storage areas for"

.... tables, compiled programs, stacks and fi'ec space are as-
signed fixed addresses.

The string language into which source programs are
tra~Lslated is defined as closely a,s possible to the inter-
pretive language used in the defi[fition of EULER [1].
The question whether this is the ideal directly interpret-
able language corresponding to the EULER source language
given the Model 30 hardware is left open. Also no a t tempt
is made to define the string language so that it becomes
relocatable for use in time sharing or eonversationM
processing mode.

) The three storage m'eas used by tile execution system
are:

(1) ProgTam Area

~Stored in the second Read-Only Storage (Compatibility ROS)
of Model 30.

The 360 mieroprograms are stored in the first Read-Only Storage
(360 ROS) of the Model 30.

Volume 10 / Number 9 / September, 1967

(2) Stack
(3) Variable Area.

Program Area. A translated program in string language
COltSiStS of a sequence of one-byte symbols for the operators
(.+, - , begin, end, +--, go to, etc.). Some of tile symbols
haxe trailer bytes associated with them; for instance, tile
symbol +number has three trailer bytes for a 24-bit
absolute value of the integer constant.

um~ber ~OlU6,
The symbol reJ?rence (@) has two trailer bytes, one

containing the block number (bn), the second one the
ordinal number (on).

I@ I bo Ioo I

The operators then, else, and, or and ' have two
trailer bytes containing a 16-bit absolute program address,
e.g.,

Other operators with trailer bytes are label and the
list-building operator.

Stack. The execution time stack consists of a sequence
of 32-bit words. It contains block and procedure marks to
control the processing of blocks and procedures and tem-
porary values of the various types. The first 4-bit digit of
a word in stack always is a type indiexLor. The format of
these words is given in Figure 3.

Variable Area. The variable ~rea is an area (32K
bytes long) of 32-bit words used for the storage of values
assigned to variables and lists (and Mso for auxiliary words
in procedure descriptors; see type procedure ill Figure 3).
The format of the entries is exactly the same as the format
of the stack entries (see Figure 3), the only exception being
that a mark can never occur in the variable area.

4. Mieroprogramming the IBM System/360
Model 30 [2]

Microprograms are sequences of mieroprograin words.
A_ microprogram word is composed of 60 bits and contains
various fields which control the basic functions in the IBM
System/360 Model 30 CPU. These basic flmctions are
storage control, control of the data flow registers and the
Arithmetic-Logic-Unit (ALU), nfieroprogram sequencing
and branching control, and status bit-setting control.
Microprogram words are stored in a Card Capacitor Read-
Only Storage (CCROS). Fetching one mieroprogram word
and executing it takes 750 nsec, the basic machine cycle.

C o m m u n i c a t i o n s of t h e ACM 551

Type undefined ~ ~ / / ~ 7 ~

sign: +0 I 'g MOILI
- 1 I

value: magnitude in hexadecimal (< 16 6)

Type logical
value: true 1

false 0
i ,.oJV//XI/X//A

Type l abe l 14!m,'p I I
mp: mark pointer, points to the stack location of the mark for
the block in which the label is defined.
pa: 16-bit absolute program address

Type reference 15 i ~ P i '~C ,I

mp: mark pointer, points to the stack location of the mark for
the block ia which the variable is defined.
loc: location of word in variable area which contains value
assigned to variable.

Type procedure

l ' ' I 6: link
l

16FJJ bn I p;o I
rap: mark pointer, points to the stack location of the mark for
the block (or procedure) in which the procedure is defined.
link: pointer to a word in variable area which contains
additional information.
bn: block number of the block (or procedure) in which the
procedure is defined.
pa: 16-bit program address, where string code for procedure
starts.

L71, :ogthi ,6c !
length: number of elements in list (< 16 ~)
lee: 16-bit location of first list element in variable area (lists
are stored in consecutive storage locations).

M,,k 9;"°"°,,o. bn
9idyhamic rett~rn

,' Ijnk ,address
7 ilebgth I{c

A mark consists of 3 words in stack; it is built each time a block or
a procedure is entered.

static link: static link to mark of embracing block.
bn: block number.
dynamic link: dynamic link to mark of erabraeing block (or
procedure).
return address: 16-bit program address to which to return
upon normal exit of procedure (for procedure marks only, this
field is 0 for block marks).

The last stack word in a mark is a list descriptor (see type list)
for the variaMe list (in a block mark) or the actual parameter list
(in a procedure mark),

Fro. 3. Format of words in stack and variable area

552 Communications of the ACM

Figure 4 shows in sirnplified herin the d~tt~ flow of t,he
IBM System/g60 (IBM 2030 CPU).] t consists of ~b (',ore
storage with up to 65,536 8-bit bytes and a tectal storage
(accessible by the t~ficroprogrammer but not explicitly
by the 360 language programmer), a 16-bit ston~ge :~d-
dress register (M, N), a set of 10 8-bit d~ta registers
(I, J, . . . , R), an arithmetic-logic-unit (ALU), connect-
ing 8-bit wide buses (Z, A, B, M, N-bus), tempor~ry
registers (A, B), switches and gates.

Figure 5 shows the more i inportant fields of a micro-
program word. Only 47 bits m'e shown. Other fields con-
gain various par i ty bits and special control bits. The field
int, erpretation given in Figure 55 is as for mieroprogram
words in the second Read-Only Storage unit (Compati-
bility IIOS) if the machine is equipped with the 1620
Compatibili ty Feature. The meaning of the mieroprogram
word fields is explained in connection with Figure 6 which
shows the symbolic representation of a mieroprogram word
together with an example as it appears on a microprogram
documentation sheet.

The fields of the mieroprogram word can be grouped in
five categories:

1. ALU control fields: CA, CF, CB, CG, CV, CD,
CO

2. Storage control fields: CM, CU
3. MicroprogTam sequencing and branching fields:

CN, CH, CL
4. Status bit setting field: CS
5. Constant field : CK

ALU Control Fief&. On the line designated " ALU" in
Figure 6, an ALU statement can appear. I t will specify an
A-source and a B-source, possibly an A-source modifier
and a B-source modifier, an operator, a destination, and
possibly a carry-in control and a carry-out control.

CA is the A-source field. I t controls which one of the 10
8-bit data registers is connected to the transient A-register
and therefore to the A4nput of the ALU.

CB is the B-source field. I t controls whether the R, L,
or D-register or the CK-field is connected to the transient
B-register and therefore to the B-input of the ALU. If
"t<" (C B = 3) is specified in this field, the 4-bit constant
field CK is doubled up; i.e., the same four bits are used as
the high digit and the low digit.

Between the A-register and the ALU input is a straight/
cross switch and a high/low gate. Its function is controlled
by the CF-field. Depending on the value of this field, no
input is gated into the ALU (0) or only the low (L) or
high digit (H) is admitted. CF = 3 gates all eight bits
straight through, whereas the codes CF = 5, 6, artd 7
cross over the two digits of the byte before admitting the
low (XL) or high digit (XH) or both digits (X).

Between the B-register and the ALU input is a high/low
gate and a t rue/complement control. The high/low gate is
controlled by the CG-field in the same manner as the
high/low gate in the A-input. The t rue /complement cot>
trol is operated by the CV-field. I t Mmits the true byte to

Volume 10 / Number 9 / September, 119677

fl~e ALU (+) or the inverted byte (-) o r controls ~ six-
correct mechanism for decimal ~ddition (@).

g'iie operator and carry controls are given by the CC-
field. This field specifies bimu'y addition withouL carry

h:mdling (@0), :~ddil, ioa with injection of :~r 1 (@ 1) (~Or
instance, t o simuLtLe subtraction in compeer ion with the
B-input inverter), ad(:litior~ with saving tilt c:u'ry ia bit 3
of register S (+0,Save C, and +.l,Save C), :rod ~ddition

Z BUS

............... T T
F-r-1

kq

A BUS

B BUS

M BUS T

"1 r-r-1

~ s t o r e

li lil

F

T

](
CARRY

+ LAST CARRY
÷1

FIG. 4. Simplified data flow of the IBM System/360 Model 30

0000
0 0 0 1
0 0 1 0
0 0 1 1

0 1 0 0
0 1 0 1
Oi IO
0 1 1 1

I 000
I 0 0 1
I 0 1 0
[0 1 1

[..... CN] CH l - CL [CM I CU] c A I,,c_B I , CK [C O l CF I CG i CV l' CC [CS J

I 1 0 0
I I 0 1
I I 1 0
I I I I

0 0 WRITE i' MS * R o z o
1 1 NOACCESS i L S ~ L 1 -X- L

RO -X- STORE I ~ ~-" D 2 ~X- H ,
S.L -X- IJ -PM N ~ ~ K 5 ~ T HROU£~,4i

~" G I UV~MN S 4 "Yr

q=VAUD DEC LT--MN I -X- 5 * X L
ALU CARRY R,JL -X- ~ 6 S X H

SO ~=0 ~ j R 7 R X
q

R2 G7 D 8 0
$ 2 $3 L 9 L
$ 4 $5 G X'A G
S 6 $7 T X ~B' T

q
GO R5 V X'C' ; V
G2 G3 U X~D s U

0 +
L --
H

THR @

NO STATUS
+0 SETTING
+ £ L Z - * " $5
AND H2: ~ $4
OR H~-S4,,LZ-S~

I-O,SAVE (0-,,-54,0 -- S,~
I-I,S.aVE C £ ~ S J.
~C~SAVE C 0 ~ S 0

XOR j ,L ~ SO
i I

0 - . - S 2
ANS,N~: ~ $2
0 ~ S 6
J. - , - $ 6

O -o -S7
.L - P S 7

1 X'A' means hexadecimal digit A = 1010

FIG. 5. IBM System 360 Model 30 microprogram word. (Detailed explanation is provided in text.) The field interpretation is given
f o r microprogram words in compatibility ROS if the machine is equipped with the 1620 compatibility feature. Fields marked "*"

contain designators not explained here in order not to confuse the basic principles.

V o l u m e I0 / Number 9 / September, 1967 Communicat ions of the ACI~I 553

X6X7

CONSTANT

ALU

STORAGE

STATUS SETTING

BRANCHING

COORD

Format of S/mbol{c Representation

ROS ADDR

SEQUENCE

~ C O O R D

Example

II01 Ol I I5D

R ~ KH ~ DC

WRITE

HZ ~ $4, LZ ~ $5

Fro. 6. Symbolic representation of a System/360 Model 30 micro-
program word

using an old carry stored in bit 3 of register S and saving the
new carry in this same bit (-kC,Save C). Other codes
specify logical operations (AND, OR, XOR).

The CD-field specifies into which register the result of
the ALU operation is gated. Any one of the 10 data regis-
ters can be specified. Z means that the ALU output is
gated nowhere and will be lost.

Storage Control Fields. On the line designated "storage"
in Ii'igure 6, a storage statement can appear. I t will specify
whether this rnieroeyele is a read cycle, a write cycle, a
store cycle or a no-storage access cycle, and from where the
storage address is supplied (CM-field) and whether storage
access is to main storage or local storage (CU-field). Note
that a full storage cycle (1.5gsec) corresponds to two read-
only storage cycles (750nsec).

The codes CM = 3, 4, or 5 specify read cycles. The
addresses are supplied from the register pairs I J, UV, and
LT, respectively. A read cycle reads one byte of data from
core storage into the storage data register R.

A write cycle regenerates the data from the storage data
register R at the address supplied in the last read cycle.

A store cycle acts exactly as a write cycle except that it
inhibits in the read cycle immediately preceding it the
insertion of the data byte from storage into the R-register.

The CU-field specifies whether storage access should be
to main storage (MS) or to a local storage of 256 bytes not
explicitly addressable by the 360 language progranmmr.

Microprogram Sequencing and Branching. Each nficro-
program word is stored at a unique address in ROS. A
13-bit ROS address register (W3. . -W7, X 0 . . . X 7) holds
the address of the word being executed. For the symbolic
representation of a microprogram (Figure 6) the ROS

address is given in hexadecimal in tile upper righ{~ eortxer,
arid the l~st two bits of this address m'e repeated in binary
oil the upper margin.

After execution of a microprogram step, the next se-
quential word will not be executed. Instead the address of
the next word to be executed is derived as follows. The
high five bits (W) remain the same, unless they are changed
by a special command in the mieroword, not explMned
here (so-called module switching). The next six bits
(X0 . . .X5) are supplied from the CN-field (written in
hexadecimal in the symbolic representation of Figure 6).
The low two bits are set according to conditions specified
in the CH and CL fields. X6 is set according to the condi-
tion specified by CH. For instance, if CH = 8, then the
bit R2 is transferred to X6; if CH = 6, then X6 is set to
one if in the last ALU operation a carry had occurred. I t is
set to zero if no carry had occurred. X7 is controlled by CL.
If, for instance, CL = 0, then X7 is set to zero ; if X7 = ;5,
then X7 is set to one if both digits in R are valid decimal
digits (i.e., R 0 . . . R 3 < 9 and R 4 . . . R 7 G 9), X7 is set
to zero if either digit in R is not a valid decimal ctigit
(i.e., R0. • .R3 > 9 or R4. • .R7 > 9). This mieroprogram
sequencing scheme allows a four-way branch after the
execution of each mieroprogram word.

Status Bit Setting. The CS-field allows the uncondi-
tionM or conditional setting of certain status bits to be
specified, combined in Register S. If, for instance, CS = 3,
then $4 is set to one if the result of the ALU operation
performed in this microprogram cycle shows a zero in the
high digit (i.e., Z 0 = Z i = Z 2 = Z 3 = 0) ; $4 is set to zero
otherwise. At the same time, $5 is set to one if the result of
the ALU operation shows a zero in the low digit (i.e.,
Z4 = Z5 = Z6 = Z7 = 0) ; $5 is set to zero otherwise. If
CS = 9, then $2 is set to one if the result of the ALU opera-
tion is not zero (i.e., at least one of the bits Z0 . . .Z7 :is
equal to 1). If the result of the ALU operation is zero, then
$2 is not changed.

Constant Field. The 4-bit CK-field is used for various
purposes. One instance explained in the ALU statement is
to supply a constant B-source for an ALU operation.
Other examples not explained here any further are the
addressing of a few specific scratchpad local storage loca-
tions, module switching (replacement of the high part W
of the ROS address), and the control of certain special
functions.

Symbolic Representation of Mio'oprograms. Micro-
programs are symbolically represented as a network of
boxes (Figure 6) each representing a microword, connected
by nets indicating the possible branching ways. Figure 7
gives an example of a mieroprogram (to be explained in
the next section). There exist programming systems to
aid in the development of microprograms. They contain
symbolic translators to translate the contents of a box
according to Figure 6 into the contents of the actual fields

554 Communicat ions of the ACM Volume 10 / Number 9 / September, 1967

I I

m~

I
m

1

?
,)

i .? ,~
~ ~ ;~! ~fi~ ~ ~ °'i

t t, I l

~1o

I ~ ~ I ~ ~

o

of the m i e r o p r o g r a m word accord ing to F igu re 5. A dry,w- 1117:

ing p r o g r a m genera tes d o c u m e n t a t i o n (F igu re 7 is d r a w n
wi th such a p r o g r a m) . These sy s t ems usua l ly also con ta in
p r o g r a m s ibr s imu la t ion and genera t ion of (,tie ac tua l

R O S cards.

5. S t r i n g L a n g u a g e I n t e r p r e t e r f o r E U L E R

T h e s t r ing l anguage i n t e r p r e t e r for EuL~m is en t i re ly

wr i t t en in M o d e l 30 mierocode . I t consis ts of a few micro-
1171:

p r o g r a m s teps to read the nex t sequent~ial s y m b o l f rom the
p r o g r a m s t r ing and to do a func t ion b r anch on the s y m b o l
and of a g roup of m i e r o p r o g r a m rou t ines which pe r fo rm
the necessary ope ra t i ons for t he p r o g r a m b y t e read. These
rou t ines also t a k e care of d y n a m i c t y p e t es t ing and s tack
po in te r man ipu la t ions . T h e rou t ines are equ iva l en t to the

rou t ines descr ibed in t h e def in i t ion of the s t r ing l anguage 1151):

for EULER [11.
F igu re 7 shows as an example , the m i c r o p r o g r a m to

i n t e r p r e t the p r o g r a m s t r ing s y m b o l s a n d (in te rna l repre-
s en t a t i on X'52 '3) , o r X ' 5 0 ' a n d t h e n X ' 5 3 ' . These opera-
tors t e s t if t h e h ighest e n t r y in the s t a c k is a va lue of t y p e
logicM. T h e logical o p e r a t o r s in EuLE~¢ work in t he F o a -
TRAN sense, no t in t he ALGOL sense: if af ter t he eva lua t i on
of the first o p e r a n d the resu l t is d e t e r m i n e d (fa l se for a n d ,
t r u e for o r) , t hen t h e second o p e r a n d is n o t e v a l u a t e d
b u t sk ipped over . If an a n d o p e r a t o r f inds the va lue f a l s e ,
t hen a b r anch occurs to t he p r o g r a m address g iven in t he
two t ra i l e r by tes . I f an a n d finds t h e va lue t r u e , then i t
de le tes th is va lue f rom the s t a c k a n d proceeds to the next
s y m b o l in t h e p r o g r a m s t r ing (to e v a l u a t e the second
o p e r a n d of a n d) . S imi l a r l y if an o r o p e r a t o r f inds the
va lue t r u e , t h e n a b r a n c h occurs to the p r o g r a m address 11C4:

given in t he two t ra i l e r by tes . I f an o r f inds t he wflue
f a l s e , t hen i t de le tes th is va lue f rom the s t ack and pro-
ceeds to t he nex t s y m b o l in t he p r o g r a m str ing. T h e t h e n
o p e r a t o r is a cond i t iona l b r a n c h code: i t de le tes the logical
va lue f rom the s tack. I f th is va lue was fa l s e , t hen a b r a n c h
is t a k e n to t he p r o g r a m address g iven in t he two t ra i l e r
by tes . I f th i s va lue was t r u e , t hen the nex t s y m b o l in t h e
p r o g r a m s t r ing is executed .

T h e po in te r to t h e s y m b o l in t h e p r o g r a m s t r ing (the
ins t ruc t ion counter) is loca ted in t h e func t iona l ly associ-
a ted pa i r of regis ters I and J in the M o d e l 30. T h e po in t e r
to t he le f t -mos t b y t e of t he h ighes t e n t r y in the s t a c k (the
s t ack po in te r) is loca ted in t he two regis te rs U and V in t h e

M o d e l 30.
I n t he fol lowing the ind iv idua l s teps in th is ra ie ropro- l lCB:

g r a m are exp la ined in more deta i l .

Address Location Description
in Figure

1161: Ci : The instruction counter IJ addresses main
storage. The addressed byte in main
storage is read out into the storage da ta
register R. The instruction counter is up-
dated by adding 1 to register J. A possible
carry is saved to be added to 1.

number composed of the X 'nn' represents the hexadecimal
digits n (n = 0,...,9, A,...,F).

C2:

C3:

C4:

L4:

G5:

The operator has been read out from ~uain
storage :i~rto I~,. {~) is also l;ra~lsfccrcd
(through Uhe ;~LU) to register G. A [our-
way branch occurs on the two high(,st bits
:R0 and t)H of the operator. For the opera-
tots 52, 53, and 50 this branch goes to }LOS
word 1171, whereas other operators cause a
branch to 1170, 1172, or 11.73, indicated by
tile three lines not cotltinued,

To complete the updating of the iustruc..
tion cmmtcr, tile carry from 1161 is added
into I, The first byte of tile highest entry
of the stack is addressed by UV and read
out into [{. A further four-way branch otr
the operator is made (G2, G3). For our
operators the branch goes to 115D.

Tire high order byte of the highest, stack
entry has been read out of storage into R.
I t contains the type of entry in tile high
digit and if this type was logical then it
contains the value t rue (1) or false (0) in
the second digit. This byte is tested by
adding X'DO' to it and observing tire
result, ignoring the carry. 84 is set to 1
when the type was 3(logical) otherwise to
0. $5 is set to 1 when the low digit of bhis
byte was 0 (value false) , $5 is set to 0
when the low digit of this byte was 1 (wlue
t rue) . Another four-way branch occurs on
the bits G4 and G5 of the operator. If the
operator is 50(or), 51 (cannot occur), 52
(and), or 53(then), then a branch to 11C4
occurs.

Tile next byte is read from the program
string, it is the high byte of the two-byte
program address trailing the operator. The
instruction counter is updated again by
adding a 1to J, saving a possible carry.
Another four-way branchoccurs on the bit
G6 of the operator and thevalue of the stack
entry. If the operator was and or then (G6 =
1) and the value was fa lse ($5 = 1), then
branching to I lCB occurs; if the operator
was or (G6 = 0) and the value was t rue
($5 = 0), then branching to 11C8 occurs.
If the operator was or (G6 = O) and the
vMue was false ($5 = 1), then branching
to 11C9 occurs. If the operator was and
or t hen (G6 = 1) and the wdue was t rue
($5 = 0), then branching to l lCA occurs.

This word is executed for the operators
and and then when the value was false.
Here the type test is made. If the type was
not logical ($4 = 0), then a branch to 11C1
occurs. If the type was correct, then the
microprogram proceeds to fetching the
trailing program address (two bytes) to
store i t as the new instruction counter in
IJ. This is done for the and operator (G7
= 0) in this word and the following two
words 11C3 and 111E; for the then opera-
tor (G7 = 1) it is done in this word and the
words 11C3 and 111F.

556 Communica t ions of the ACM Volume 10 / Number 9 / September, 1967

11C3,
111:E:

J6, J7 : The two bytes trailing of the operators and
or or are stored as the new instruction
counter I& The operation is completed.
The mieroprogram branches back to 1161
to read out the next operator.

11C3,
111F:

J6, L7: The ~wo bytes trailing of the operator
then are stored as the new instruction
counter in IJ. The carry-saving bit $3 is
forced to zero.

11CE,
1144:

N8, N9 : The stackpointer is decremented by four
(the operator ' - ' means complement add)
which in effect deletes the highest entry
from the stack. Observe that when these
two words are entered from l l lF (then
operator with value fa lse) the micro-
program will not go through 1145 because
we have forced $3 to zero in l l lF. The
operation is completed, and the micro-
program branches back to 1161 to read out
the next operator.

11C8: JS: This word is executed for the operator or
when the value was true . Similarly as in
llCB, the typetest is taken. For types
not logical a branch to llC1 occurs. If the
type was correct, then the mieroprogram
proceeds to fetching the trailing program
address (two bytes) to store it as the new
instruction counter in IJ (words 11C3,
111E).

11C9: N5: This word is executed for the operator or
when the vahm was fa l se . A typetest is
made. If the type was correct, then the
trailing program address is skipped and IJ
is updated by 1 twice in 11C4, 11C9 (pos-
sible carries out of J handled in l lCF or
1145). The stackpointer is decremented by
four in 11CE, 1144.

11CA: Q5: This word is executed for the operators
and and then when the value was true.
A typetest is made. If the type was correct
then the trailing address is skipped, IJ is
updated by i twice in 11C4, 11CA (possible
carries out of J handled in 11CF or 1145).
The stackpointer is decremented by four
in llCE, 1144.

11C1,
llCC,
l lCD:

G6,L6,N6 These words are executed when a typetest
occurs. An error code 01 is set up in L and
a branch occurs to the error routine not
drawn here.

I t can be seen from Figure 7 tha t the execution times of
the mieroprograms including the readout of the operator
(LCyele) are the following:

a n d 6gsec 4 (8 mieroprogram steps)
or 6gsec (8 mieroprogram steps)
t h e n 6#see for value t r u e (8 mieroprogram steps)

7.5gsee for value f a l s e (10 mieroprogram steps)

The cases where carries occur in the IJ and UV updating are
disregarded for timing purposes.

V o l u m e 10 / N u m b e r 9 / September , 1967

I n order to coinp~re this with a hypothetical EULER
system for Sys tem/360 language, leg us assume tha t the
compiler produces in-line code (which probably will give
the highest performance al though it, will be very wasteful
with respect to storage space). Then a reasonable sequence
for a n d might be:

CLI 0 (STACK), LOGFALSE
BE ANDFALSE
CLI 0 (STACK), LOGTRUE
BNE TYPEERIt
SE STACK, = '4'

Timing: true: 90see; false: 32~ec.

This comparison seems to indicate tha t the mieropro-
gTam interpreter is about an order of magnitude faster
than the equivalent program in 360 language. However,
this comparison will o N y yield such a high factor for time-
tions of EULEn which do not have simple System/360 Inn-
image counterparts (as for instance the list-operators,
begin-, end-, and procedure-call-operator) or where the
ove rheM for dynamic testing and stackpointer manipu-
lation is heavy as in the above example of the logical
operations. For functions which do have System/360
language counterparts and which are slower so tha t the
overhead is relatively lighter as, for instance, ari thmetic
operations (especially for real numbers), the mieropro-
g rammed interpreter will still be faster than the Sys t em/
360 language program, but not by a factor of 10.

The total ROS space requirement for the String Lan-
guage Interpreter is:

Coded routines
Routines for real number

handling
Divide, Exponentiat ion,

etc.
Garbage collector

1000 microwords
500 microwords (esti-

mated)
400 microwords (esti-

mated)
600 microwords (esti-

mated)

2500 microwords

6. E U I , E R C o m p i l e r

The t ranslator to translate EULER source language into
the Reverse Polish String Language is a one-pass, syntax-
driven compiler. The syntax of the language and the
precedence functions F and G over the terminal and non-
terminal symbols are stored in table form is Model 30
main storage. There is also main storage space reserved for
t ranslat ion tables for character delimiters and word
delimiters and for a compile t ime stack, a name table, and,
of course, for the compiled code. All these areas are at
fixed storage locations because of the experimental nature
of the system.

The microprogram consists of the following parts:
1. A routine reads the next input character f rom the

input buffer to translate it to a 1-byte internal format, if it
is a delimiter, or to collect it into a name buffer if it is
par t of an identifier, or to convert it to hexadecimal if it is

C o m m u n i c a t i o n s of the ACM 557

part of a numeric constant and to c o{leei, the m:mlber btIo a
buffer. This "prescan" requires 100+ mierowords.

2. As soon as an input unit is collected (ddimiter ,
identifier, number) the main parsing loop is entered whielh
makes use of the precedence tables and the syntax tal)le ill
main storage. This syntactic analyzer loop requires l () 0 -
microwords.

3. When the parsing bop identifies a syntactic unit. to
be reduced, it ealls the appropriate generation routine
which performs essentially the functions described as the
semantic interpretation rules in the EU[,EIt defi:nition.
The Inicroprogram space required tbr these programs
amounts to approximately 250 ROS words.

4. If a syntactic error is detected, the system signals an
error aim does not t ry to continue with the compilation
process. Though this procedure is totally inadequate for a
praetieMly useful system, it was deemed sufficient to
prove the essential point, t?or this minimum error analysis
and for linkage to the 360 mieroprograms (IOCP),
approximately 60 mierowords are required.

The total compiler microprogram space is therefore
approximately 500 ROS words. The total main storage
space required is approximately 1200 bytes.

The speed of this compiler is limited by the speed of the
card-reader of the system (10()0 cards/minnte). This
excellent performance has three main reasons: (1) EuL~t
as a simple precedence language is a language extremely
easy to compile. (2) The functions of a compiler are mMnly
of a table lookup and bit and byte-testing type. Micro-
programming is extremely well-suited for these kinds of
operations. (3) Since the target language is String Code
and not, for example, 360 Machine Language, the genera-
live par t of the compiler is relatively short.

I t is very difficult to assess the individual contributions
of these three main reasons to the higll compiler perform-
ante. Therefore, it is not possible at this stage to make a
statement as to whether tile nature of the language
EULER or the tact tha t the compiler is microprogrammed
is the dominant factor.

7. Development of the Microprogram

Since there is no higher level language to express micro-
program procedures and no compiler to compile microcode,
the microprograms were written in the symbolic language
explained in Figm'e 6. Actually the process was a hand
translation of the algorithms in the EULE~ definition to the
symbolic microprogram language. Tile microprogTams were
translated into actual microcode and sinmlated before they
were put on the System/360 Model 30 by means of a general
mieroprogram development system.

8. Outlook and General Discussion

It is hoped that the development of this experimental
system for EULEI~ shows that with the help of mieropro-
gramming we can create systems for higher level languages
or special applications, which utilize existing computer

558 Communications of the ACM

grammi:ag systems.
Among the t h o u g h t s which are rMsed by this schome a>

the folbwfflg:
1. There should t)e mt invostigatiorl to determine t}e

ideal directly interp:regable languages which correspond to
higher level languages. Although several attempts here.
been made to define str'ing hmguages for interpretive
systems (for instance in [1, 4]), to the author's knowledg,:-.-
no work has been pub l i shed which attacks this (lUe~iion it:,
a general and theoret ical ly founded mariner.

2. A proliferation of interpretive language,s ~md the:-

development of m]croprogramrned irRert)reters can b~,
justified when be t te r tools are developed to reduce tl>,.
cost of mieroprogramnting. I t is necessary that we b~-,,
able to express mieroprogramming concepts (and ak, c:~
machine design concepts) in a higher level language for~a
and that we develop compilers which trat~late the l~icrno-~
programs from higher level language form i:o aehml mic>
code. Also, good nf ic roprogram simulation and debugging;<
tools are called for.

3. Tile whole relat ionship betweet~, prograrmning:,
mieroprogramming, an d machine design should be view~d
with a common denomina to r : how shouM tile tradeoffs b
made such that the u l t ima te goal can tie reached n > r .
et teetively, . . , how t o solve a user's l)r()blem? Green [5!
offers some thinking in this direction but the state of ill<
art has to progTess f u r t h e r before we will have a eomplut~:,
understanding of w h a t these relationships and iradeoff>
art.

Acknowledgment . I wish to ll-mnk Jack Caa'man, wh,~>
wrote the I /O Control P rogram and the Operating Syst(q~ ~
linkage for the EULEa system and Miss Shells Mon'iso~..
who helped prepare t h e figures. I am also gyateful for th<:.
wduat)le criticism of fered by the referee, W. C. MeG~(:~,,
as well as by Professor N. Wirth and t,',. SatterthwaRe.

RECEIVED DECEMBER, 1966; ItEVlSF, t) Ma t 1967

REFERENCES

1. WIRTH, g . , AND W:EBIa3Rt H. EULER: A generalization ,~,i:
ALGOL, and its formal defirLRion: Pt. t, Comm ACM 9, ?
(Jan. 1966), 13-25; Pt- II, Cemm ACM 9, 2 (Feb. 1966), 89d¢_* -

2. FAGG, P., BRowN, J. L., HIPP, J. A., DooDs:, I). T . .
FAIRCLOUGft, J. ~'V., itND GRtSENE, J. IBM System/360 e~:~ "
gineering. Prec. AFIPS 1964 Fall Joint Comput. Conf,, VeT2 *
28, pp. 205-231.

3. IIAINES, L. H. Serial compilation and the 1401 FORTt{A,Tq
compiler. I B M S y s . J- 4 1 (Jan. 1965), 73---80. See also: FOt¢ "
TRAN speeifieg~tions and operating procedures, IBM 1,i0~ ..
IBM Systems Ref. Lib. C244455-2.

4. M~:LBOURNE, A. J., &NI) PUGMII~E, J.M. A small computer fc~ ~'~
the direct processing of FORTRAN statements. Comim~* ~

J. 8(April 1965), 24-'27.
5. GREEN, J. Microprogramming, emulators and programmiI~g:

languages. Com~ A C M 9, 3 (Mar. 1966), 230-231.

Vol~tne 10 / Number 9 / September, 19~ 77

