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An experimental processing system for the algorithmic 
~anguage EULER has been implemented in microprogramming 
on an IBM System/360 Model 30 using a second Read-Only 
Storage unit. The system consists of a mlcroprogrammed com- 
piler and a microprogrammed String Language Interpreter, 
and of an I/O control program written in 360 machine lan- 
guage. 

The system is described and results are given in terms of 
microprogram and main storage space required and compiler 
and interpreter performance obtained. The role of micro- 
programming is stressed, which opens a new dimension in the 
processing of interpretive code. The structure and content of a 
higher level language can be matched by an appropriate 
interpretive language which can be executed efficiently by 
microprograms on existing computer hardware. 

l .  I n t r o d u c t i o n  

Programs written in a procedure-oriented language are 
usually processed in two steps. They ~ e  first translated 
into an equivMent form which is more efficiently interpret- 
able; then the translated text is interpreted ("executed") 
by an interpretation mechanism. The translation process 
is a data-invariant and ftow-invariant operation. It  con- 
sists of two parts---an anMytical part, which anMyzes the 
higher level language text, and a generative part, which 
builds up a string of instructions that can be directly 
interpreted by a machine. The anMyticM part of the trans- 
lator depends on the higher level language; the generative 
part  depends on a set of instructions interpretable by a 
machine. Historically there was only one set of instruc- 
tions which could be interpreted efficiently by a machine, 
its "machine language." Figure 1 outlines this scheme. 

Some of the processors of the IBM System/360 family 
are microprogrammed machines. On them the "360 
machine language" is interpreted not by wired-in logic but  
by an interpretive microprogram, stored in control storage, 
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which in turn is interpreted by wired-in logic. Therefore, 
in a certain sense the 360 language is not the "machine 
language" of these processors but the (efficiently inter- 
pretable) language in which the processors of the System/ 
360 family are compatible. The true "machine language" 
of these processors is their microprogram language. This 
language is on a lower level than the "360 language"; 
it contMns the elementary operations of the machine as 
operators and the elements of the data flow and storage as 
operands. 

Now it is conceivable to compile a program written in a 
higher level language into a microprogram language string. 
This string would undoubtedly contain substrings which 
occur over and over in the same sequence. We could call 
these substrings procedures and move them out of the 
main string, replacing their occurrence by a procedure call 
symbol, followed by a parameter designator pointing to 
the particular procedure. Our object program then takes 
on the appearance of a sequence of call statements. From 
here it is only a final step to eliminate the call symbols 
and furnish an interpreting mechanism which interprets 
the remaining sequence of "procedure designators." 

The process just described will result in the definition 
of a string language and the development of a micropro- 
grammed interpretation system to interpret texts in this 
string language. The situation is similar to the System// 
360 case: the string language corresponds to the 360 
language. Programs written in a higher level language m'e 
compiled into string language text to be stored in main 
storage. The string language hxterpreter corresponds to 
the microprogram which interprets 360 language texts. It 
consists of a recognizing part to read the next consecutive 
string element and to branch to an appropriate action 
routine and of action routines to execute the particular 
procedure called for by the string element. 

The essential difference between our situation and the 
360 case is that the string language reflects the features of 
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Fro. 1. Processing programs written in higher level languages 
via translation to machine language 
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the particular higher level language as well as the features 
of the particular hardware better than the general purpose 
360 language. 

What is gained by defining this string language and by 
providing a mieroprogrammed interpreter for it? From 
the method of definition described, it can be seen that the 
elements of the string language correspond directly to the 
elements of the higher level language after all simplifying 
data-invariant and flow-invariant transformations have 
been performed. But the elements of the string language 
are also well-adapted to the mieroprogram structure of 
the machine. Therefore, during the compiling process (see 
Figure 2) only a minimum of generation is necessary to 
produce the string language text. The compiler is shorter 
and runs faster. 

But the more important aspect is that object code 
execution is also faster. The string language interpreter in 
case 2 will be coded to take care of all necessary operations 
in a concise form, whereas in case 1 it will be necessary to 
compile a whole sequence of machine language instruc- 
tions for an elementary operation in the higher level 
language. Examples of this are the compilation of 360 
code for an add operation in COBOL of two numbers with 
different scaling factors or the compilation of machine 
instructions for table lookup or search operations, etc. 
In these cases the string language interpreter of Figure 2 
will execute a function much faster than the machine 
language interpreter of Figure 1 will execute the equivalent 
sequence of machine language instructions. Therefore, 
object code execution will be faster in scheme 2. 

If object code performance is not us much in demand as 
object storage space economy, the string language inter- 
preter can also be written such that the string language is 
as tightly packed as possible so that the translated pro- 
gram is as compact as possible and will take up less storage 
space than the equivalent machine language program under 
the scheme of Figure 1. 

These ideas are applied in an experimental mieropro- 
gram system for the higher level lang~mge EULER [1] 
described below. Problem areas in this approach are indi- 
cated and some ideas for future development are offered. 

2. Special Considerat ions for EULER 

The higher level language EVLER [1] is a dynamic 
language. This means that for programs written in it many 
things have to be done at object code execution time which 
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Fro. 2. Processing programs writ ten in higher level languages 
via translat ion to interpretive language 
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can be done at compile time for o{~her l~mgu~ges. [!;~:rLr:a 
also contair~s basic functions which do ~+~o~ have compar. 
able basic counterparts in the machine languages of most 
machines. To compile machine code :for these dynamic 
propereies and tbr those special functions would :require 
rather lengthy sequences of machine language insl~rucgions, 
which would consume considerable object code sp:~ce and 
require high objee~ code execution time. Therefore, for a 
Ianguage like EVLE~t, interpretation a~ the string lang~age 
level by an interpreter into whidh the dynamic features and 
special functions are included by mieroeode will yield much 
higher object code economy and object code perforrmmee 
than compilation to machine language and interpret~tio~ 
of this machine language. 

Three examples from Evlmt~ are given here. 

1. Dynamic Type Handling. To a variable irt EULE!R, 
constants of varying type can be assigned dynamically. 
For example in 

A e -3 ;  " . ;  A ~-'4.51o_,55; . ' . ;  A e - t r u e ;  - . . ;  
A ( - - ¢ , . ,  ~ . 

the quantities assigned to the variable A have the t~ypes: 
integer, real, logical, procedure. Therefore, in EUL~R each 
quantity has to carry its type indicator along and each 
operator operating on a variable has to perform a dynamic 
type test. The adding operator + for instance in A + B 
has to test dynamically whether both operands are of type 
number (integer or real). This type testing is done by the 
String Language Interpreter in minimum time, whereas it 
would require extra instructions if the program were to be 
compiled to 360 machine language. 

2. Recursive Procedures and Dynamic Storage Alloca- 
tion. In EWER, procedures can be called reeursively, 
e.g., 

F +- ' f o r m a l  N;  i f N  = O t h e n  l e lse  N,  F(N - 1)'; 

and storage is allocated dynamically, e.g., 

A e- (3, 4, (5, 6, 7), t r ue ,  ' - . . ' ) ;  

List operators are provided like tail and cat  and sub- 
scripting: 

B~-- A[3]; C e - B  eat A; C ~  tall  C; 
i 

The string language interpreter handles list operations 
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n ew  N; . . . .  ; N~--  4; . . . .  ; b e g i n  n e w A ;  A ~- - l l s t  N; 

In order to cope with these problems the EuLE~¢ execution 
system uses a run time stack. Each operation is accom- 
panied by stack pointer manipulations which by the micro- 
program can be accomplished in minimum time (in general, 
even without extra time because they are overlapped with 
the operation proper), whereas extra instructions would be 
required, if the program were compiled. 

3. List Processing. EULER includes a list processing 
system, and lists are of a general tree structure, e.g., 



(ih'(ctly aixd cff:icient y by special :mieroprogr~ms. If t:he 
pr~>gra~m w()uld be compiled to 3(30 machine language, a 
se(ttw~c(> of instructiolls would be required for each list, 
ope~';~t ion. 

3. E{ |~ER Systenl on IB31 System/360 Model 30 

A~ experimental processing system for the EIrL~:R 
lahguage has been written to demonstrate the validity of 
th(~se i(te~s, II) is a system runrting under the IBM B~sic 
0pere~ti~g System and consists of three parts: 

(1) A ~.ra.aslator, written in Model 30 mieroeode. I This 
trartslator is a one-pass syntax-driven compiler 
which translates EULER source language pro- 
grams into ~ reverse polish string form. 

(2) An interpreter, written ia Model 30 microcod@ 
which interprets string language programs. 

(3) A:n I//O ColLtr(1 Program written in 360 machine 
language/ This IOCP links the translator and 
interpreter to the operating system and han- 
dles all I /O requests of the translator and in- 
terpreter. 

The system is ~m experimental system. Not all the 
features of EULEt~ m'e included,--only the general prin- 
c:it)les that  are to be demonstrated. The restrictions are: 

(1) .[le~d tmmbers are not included; only integers are 
recognized. 

(2) The interpreter mieroprograms for the operator's 
Divide, Integer Divide, Remainder, and Ex- 
p(mentiation have not been. coded. 

(3) The type 'symbol' is not included. 
(4) No garbage collector is provided. Therefore, the 

system comes to an error stop if a list processing 
program has used up all available storage space 
(32K bytes). 

Also for reasons of simplicity, the system is written only 
for a 64K System/360 Model 30 and the storage areas for" 

.... tables, compiled programs, stacks and fi'ec space are as- 
signed fixed addresses. 

The string language into which source programs are 
tra~Lslated is defined as closely a,s possible to the inter- 
pretive language used in the defi[fition of EULER [1]. 
The question whether this is the ideal directly interpret- 
able language corresponding to the EULER source language 
given the Model 30 hardware is left open. Also no a t tempt  
is made to define the string language so that it becomes 
relocatable for use in time sharing or eonversationM 
processing mode. 

) The three storage m'eas used by tile execution system 
are: 

(1) ProgTam Area 

~Stored in the second Read-Only Storage (Compatibility ROS) 
of Model 30. 

The 360 mieroprograms are stored in the first Read-Only Storage 
(360 ROS) of the Model 30. 
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(2) Stack 
(3) Variable Area. 

Program Area. A translated program in string language 
COltSiStS of a sequence of one-byte symbols for the operators 
(.+, - ,  begin,  end,  +--, go to,  etc.). Some of tile symbols 
haxe trailer bytes associated with them; for instance, tile 
symbol +number has three trailer bytes for a 24-bit 
absolute value of the integer constant. 

um~ber ~OlU6, 
The symbol reJ?rence (@) has two trailer bytes, one 

containing the block number (bn), the second one the 
ordinal number (on). 

I@ I bo Ioo I 

The operators then, else, and, or and ' have two 
trailer bytes containing a 16-bit absolute program address, 
e.g., 

Other operators with trailer bytes are label and the 
list-building operator. 

Stack. The execution time stack consists of a sequence 
of 32-bit words. It contains block and procedure marks to 
control the processing of blocks and procedures and tem- 
porary values of the various types. The first 4-bit digit of 
a word in stack always is a type indiexLor. The format of 
these words is given in Figure 3. 

Variable Area. The variable ~rea is an area (32K 
bytes long) of 32-bit words used for the storage of values 
assigned to variables and lists (and Mso for auxiliary words 
in procedure descriptors; see type procedure ill Figure 3). 
The format of the entries is exactly the same as the format 
of the stack entries (see Figure 3), the only exception being 
that a mark can never occur in the variable area. 

4. Mieroprogramming the IBM System/360 
Model 30 [2] 

Microprograms are sequences of mieroprograin words. 
A_ microprogram word is composed of 60 bits and contains 
various fields which control the basic functions in the IBM 
System/360 Model 30 CPU. These basic flmctions are 
storage control, control of the data flow registers and the 
Arithmetic-Logic-Unit (ALU), nfieroprogram sequencing 
and branching control, and status bit-setting control. 
Microprogram words are stored in a Card Capacitor Read- 
Only Storage (CCROS). Fetching one mieroprogram word 
and executing it takes 750 nsec, the basic machine cycle. 
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Type undefined ~ . . . . ~ / / ~ 7 ~  

sign: +0 I 'g MOILI 
- 1  I 

value: magnitude in hexadecimal (< 16 6) 

Type logical 
value: true 1 

false 0 
i ,.oJV//XI/X//A 

Type l abe l  14!m,'p I I 
mp: mark pointer, points to the stack location of the mark for 
the block in which the label is defined. 
pa: 16-bit absolute program address 

Type reference 15 i ~ P i  '~C ,I 

mp: mark pointer, points to the stack location of the mark for 
the block ia which the variable is defined. 
loc: location of word in variable area which contains value 
assigned to variable. 

Type procedure 

l ' '  I 6: link 
l 

16FJJ bn I p;o I 
rap: mark pointer, points to the stack location of the mark for 
the block (or procedure) in which the procedure is defined. 
link: pointer to a word in variable area which contains 
additional information. 
bn: block number of the block (or procedure) in which the 
procedure is defined. 
pa: 16-bit program address, where string code for procedure 
starts. 

L71, :ogthi ,6c ! 
length: number of elements in list (< 16 ~) 
lee: 16-bit location of first list element in variable area (lists 
are stored in consecutive storage locations). 

M,,k 9;"°"°,,o. bn 
9idyhamic rett~rn 

,' Ijnk ,address 
7 ilebgth I{c 

A mark consists of 3 words in stack; it is built each time a block or 
a procedure is entered. 

static link: static link to mark of embracing block. 
bn: block number. 
dynamic link: dynamic link to mark of erabraeing block (or 
procedure). 
return address: 16-bit program address to which to return 
upon normal exit of procedure (for procedure marks only, this 
field is 0 for block marks). 

The last stack word in a mark is a list descriptor (see type list) 
for the variaMe list (in a block mark) or the actual parameter list 
(in a procedure mark), 

Fro. 3. Format of words in stack and variable area 
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Figure 4 shows in sirnplified herin the d~tt~ flow of t,he 
IBM System/g60 ( IBM 2030 CPU). ] t  consists of ~b (',ore 
storage with up to 65,536 8-bit bytes and a tectal storage 
(accessible by the t~ficroprogrammer but  not  explicitly 
by the 360 language programmer),  a 16-bit ston~ge :~d- 
dress register (M, N), a set of 10 8-bit d~ta registers 
(I, J, . . . ,  R), an arithmetic-logic-unit (ALU), connect- 
ing 8-bit wide buses (Z, A, B, M, N-bus), tempor~ry 
registers (A, B), switches and gates. 

Figure 5 shows the more i inportant fields of a micro- 
program word. Only 47 bits m'e shown. Other fields con- 
gain various par i ty  bits and special control bits. The field 
int, erpretation given in Figure 55 is as for mieroprogram 
words in the second Read-Only Storage unit  (Compati- 
bility IIOS) if the machine is equipped with the 1620 
Compatibili ty Feature.  The meaning of the mieroprogram 
word fields is explained in connection with Figure 6 which 
shows the symbolic representation of a mieroprogram word 
together with an example as it appears on a microprogram 
documentation sheet. 

The  fields of the mieroprogram word can be grouped in 
five categories: 

1. ALU control fields: CA, CF, CB, CG, CV, CD, 
CO 

2. Storage control fields: CM, CU 
3. MicroprogTam sequencing and branching fields: 

CN, CH, CL 
4. Status bit  setting field: CS 
5. Constant field : CK 

ALU Control Fief&. On the line designated " ALU"  in 
Figure 6, an ALU statement can appear. I t  will specify an 
A-source and a B-source, possibly an A-source modifier 
and a B-source modifier, an operator, a destination, and 
possibly a carry-in control and a carry-out control. 

CA is the A-source field. I t  controls which one of the 10 
8-bit data registers is connected to the transient  A-register 
and therefore to the A4nput  of the ALU. 

CB is the B-source field. I t  controls whether the R, L, 
or D-register or the CK-field is connected to the transient 
B-register and therefore to the B-input of the ALU. If  
"t<" ( C B = 3 )  is specified in this field, the 4-bit constant 
field CK is doubled up;  i.e., the same four bits are used as 
the high digit and the low digit. 

Between the A-register and the ALU input is a straight/  
cross switch and a high/low gate. Its function is controlled 
by  the CF-field. Depending on the value of this field, no 
input is gated into the ALU (0) or only the low (L) or 
high digit (H) is admitted. CF = 3 gates all eight bits 
straight through, whereas the codes CF = 5, 6, artd 7 
cross over the two digits of the byte  before admitting the 
low (XL) or high digit (XH) or both digits (X). 

Between the B-register and the ALU input is a high/low 
gate and a t rue/complement  control. The  high/low gate is 
controlled by the CG-field in the same manner  as the 
high/low gate in the A-input. The t rue /complement  cot> 
trol is operated by the CV-field. I t  Mmits  the true byte to 
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fl~e ALU ( + )  or the inverted byte ( - )  o r  controls ~ six- 
correct mechanism for decimal ~ddition (@). 

g'iie operator and carry controls are given by the CC- 
field. This field specifies bimu'y addition withouL carry 

h:mdling (@0), :~ddil, ioa with injection of :~r 1 (@ 1) (~Or 
instance, t o  simuLtLe subtraction in compeer ion with the 
B-input inverter), ad(:litior~ with saving tilt c:u'ry ia bit 3 
of register S (+0,Save C, and +.l,Save C), :rod ~ddition 

Z BUS 

............... T T 
F-r-1 

kq 

A BUS 

B BUS 

M BUS T 

"1 r-r-1 

~ s t o r e  

li lil 

F 

T 

]( 
CARRY 

+ LAST CARRY 
÷1 

FIG. 4. Simplified data flow of the IBM System/360 Model 30 

0000 
0 0 0 1  
0 0 1 0  
0 0 1 1  

0 1 0 0  
0 1 0 1  
Oi IO  
0 1 1 1  

I 000 
I 0 0 1  
I 0 1 0  
[ 0 1 1  

[ ..... CN ] CH l -  CL [ CM I CU ] c A  I,,c_B I , CK [ C O  l CF I CG i CV l'  CC [ CS J 

I 1 0 0  
I I 0 1  
I I 1 0  
I I I I  

0 0 WRITE i' MS * R o z o 
1 1 NOACCESS i L S ~ L 1 -X- L 

RO -X- STORE I ~ ~-" D 2 ~X- H , 
S.L -X- IJ -PM N ~ ~ K 5 ~ T HROU£~,4i 

~" G I  UV~MN S 4 "Yr 

q=VAUD DEC LT--MN I -X- 5 * X L 
ALU CARRY R,JL -X- ~ 6 S X H 

SO ~=0 ~ j R 7 R X 
q 

R2 G7 D 8 0 
$ 2  $3 L 9 L 
$ 4  $5 G X'A G 
S 6 $7 T X ~B' T 

q 
GO R5 V X'C' ; V 
G2 G3 U X~D s U 

0 + 
L -- 
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THR @ 

NO STATUS 
+0 SETTING 
+ £  L Z - * "  $5  
AND H2: ~ $4  
OR H~-S4,,LZ-S~ 

I-O,SAVE ( 0-,,-54,0 -- S,~ 
I-I,S.aVE C £ ~ S J. 
~C~SAVE C 0 ~ S 0 

XOR j ,L ~ SO 
i I 

0 - . - S 2  
ANS,N~: ~ $2 
0 ~ S 6  
J. - , - $ 6  

O -o -S7  
.L - P S 7  

1 X'A' means hexadecimal digit A = 1010 

FIG. 5. IBM System 360 Model 30 microprogram word. (Detailed explanation is provided in text.) The field interpretation is given 
f o r  microprogram words in compatibility ROS if the machine is equipped with the 1620 compatibility feature. Fields marked "*" 

contain designators not explained here in order not to confuse the basic principles. 
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X6X7 

CONSTANT 

ALU 

STORAGE 

STATUS SETTING 

BRANCHING 

COORD 

Format of S/mbol{c Representation 

ROS ADDR 

SEQUENCE 

~ C O O R D  

Example 

II01 Ol I I5D 

R ~ KH ~ DC 

WRITE 

HZ ~ $4, LZ ~ $5 

Fro. 6. Symbolic representation of a System/360 Model 30 micro- 
program word 

using an old carry stored in bit 3 of register S and saving the 
new carry in this same bit (-kC,Save C). Other codes 
specify logical operations (AND, OR, XOR). 

The CD-field specifies into which register the result of 
the ALU operation is gated. Any one of the 10 data regis- 
ters can be specified. Z means that  the ALU output is 
gated nowhere and will be lost. 

Storage Control Fields. On the line designated "storage" 
in Ii'igure 6, a storage statement can appear. I t  will specify 
whether this rnieroeyele is a read cycle, a write cycle, a 
store cycle or a no-storage access cycle, and from where the 
storage address is supplied (CM-field) and whether storage 
access is to main storage or local storage (CU-field). Note 
that  a full storage cycle (1.5gsec) corresponds to two read- 
only storage cycles (750nsec). 

The codes CM = 3, 4, or 5 specify read cycles. The 
addresses are supplied from the register pairs I J, UV, and 
LT, respectively. A read cycle reads one byte of data from 
core storage into the storage data register R. 

A write cycle regenerates the data  from the storage data  
register R at the address supplied in the last read cycle. 

A store cycle acts exactly as a write cycle except that  it 
inhibits in the read cycle immediately preceding it the 
insertion of the data byte from storage into the R-register. 

The CU-field specifies whether storage access should be 
to main storage (MS) or to a local storage of 256 bytes not 
explicitly addressable by the 360 language progranmmr. 

Microprogram Sequencing and Branching. Each nficro- 
program word is stored at a unique address in ROS. A 
13-bit ROS address register (W3. . -W7,  X 0 . . . X 7 )  holds 
the address of the word being executed. For the symbolic 
representation of a microprogram (Figure 6) the ROS 

address is given in hexadecimal in tile upper righ{~ eortxer, 
arid the l~st two bits of this address m'e repeated in binary 
oil the upper margin. 

After execution of a microprogram step, the next se- 
quential word will not be executed. Instead the address of 
the next word to be executed is derived as follows. The 
high five bits (W) remain the same, unless they are changed 
by a special command in the mieroword, not explMned 
here (so-called module switching). The next six bits 
(X0 . . .X5)  are supplied from the CN-field (written in 
hexadecimal in the symbolic representation of Figure 6). 
The low two bits are set according to conditions specified 
in the CH and CL fields. X6 is set according to the condi- 
tion specified by CH. For instance, if CH = 8, then the 
bit R2 is transferred to X6; if CH = 6, then X6 is set to 
one if in the last ALU operation a carry had occurred. I t  is 
set to zero if no carry had occurred. X7 is controlled by CL. 
If, for instance, CL = 0, then X7 is set to zero ; if X7 = ;5, 
then X7 is set to one if both digits in R are valid decimal 
digits (i.e., R 0 . . . R 3  < 9 and R 4 . . . R 7  G 9), X7 is set 
to zero if either digit in R is not a valid decimal ctigit 
(i.e., R0. • .R3 > 9 or R4. • .R7 > 9). This mieroprogram 
sequencing scheme allows a four-way branch after the 
execution of each mieroprogram word. 

Status Bit Setting. The CS-field allows the uncondi- 
tionM or conditional setting of certain status bits to be 
specified, combined in Register S. If, for instance, CS = 3, 
then $4 is set to one if the result of the ALU operation 
performed in this microprogram cycle shows a zero in the 
high digit (i.e., Z 0 = Z i = Z 2 = Z 3 = 0 ) ;  $4 is set to zero 
otherwise. At the same time, $5 is set to one if the result of 
the ALU operation shows a zero in the low digit (i.e., 
Z4 = Z5 = Z6 = Z7 = 0) ; $5 is set to zero otherwise. If 
CS = 9, then $2 is set to one if the result of the ALU opera- 
tion is not zero (i.e., at least one of the bits Z0 . . .Z7  :is 
equal to 1). If the result of the ALU operation is zero, then 
$2 is not changed. 

Constant Field. The 4-bit CK-field is used for various 
purposes. One instance explained in the ALU statement is 
to supply a constant B-source for an ALU operation. 
Other examples not explained here any further are the 
addressing of a few specific scratchpad local storage loca- 
tions, module switching (replacement of the high part W 
of the ROS address), and the control of certain special 
functions. 

Symbolic Representation of Mio'oprograms. Micro- 
programs are symbolically represented as a network of 
boxes (Figure 6) each representing a microword, connected 
by nets indicating the possible branching ways. Figure 7 
gives an example of a mieroprogram (to be explained in 
the next section). There exist programming systems to 
aid in the development of microprograms. They contain 
symbolic translators to translate the contents of a box 
according to Figure 6 into the contents of the actual fields 
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of the  m i e r o p r o g r a m  word  accord ing  to F igu re  5. A dry,w- 1117: 

ing p r o g r a m  genera tes  d o c u m e n t a t i o n  (F igu re  7 is d r a w n  
wi th  such  a p r o g r a m ) .  These  sy s t ems  usua l ly  also con ta in  
p r o g r a m s  ibr s imu la t ion  and  genera t ion  of  (,tie ac tua l  

R O S  cards.  

5. S t r i n g  L a n g u a g e  I n t e r p r e t e r  f o r  E U L E R  

T h e  s t r ing  l anguage  i n t e r p r e t e r  for EuL~m is en t i re ly  

wr i t t en  in M o d e l  30 mierocode .  I t  consis ts  of a few micro-  
1171: 

p r o g r a m  s teps  to  read  the  nex t  sequent~ial s y m b o l  f rom the  
p r o g r a m  s t r ing and  to  do a func t ion  b r anch  on  the  s y m b o l  
and of a g roup  of m i e r o p r o g r a m  rou t ines  which  pe r fo rm 
the  necessary  ope ra t i ons  for t he  p r o g r a m  b y t e  read.  These  
rou t ines  also t a k e  care  of d y n a m i c  t y p e  t es t ing  and  s tack  
po in te r  man ipu la t ions .  T h e  rou t ines  are  equ iva l en t  to  the  

rou t ines  descr ibed  in t h e  def in i t ion  of the  s t r ing  l anguage  1151): 

for EULER [11. 
F igu re  7 shows as an example ,  the  m i c r o p r o g r a m  to 

i n t e r p r e t  the  p r o g r a m  s t r ing  s y m b o l s  a n d  ( in te rna l  repre-  
s en t a t i on  X'52 '3) ,  o r  X ' 5 0 '  a n d  t h e n  X ' 5 3 ' .  These  opera-  
tors  t e s t  if t h e  h ighest  e n t r y  in the  s t a c k  is a va lue  of t y p e  
logicM. T h e  logical  o p e r a t o r s  in EuLE~¢ work  in t he  F o a -  
TRAN sense, no t  in t he  ALGOL sense:  if af ter  t he  eva lua t i on  
of the  first  o p e r a n d  the  resu l t  is d e t e r m i n e d  ( fa l se  for  a n d ,  
t r u e  for  o r ) ,  t hen  t h e  second o p e r a n d  is n o t  e v a l u a t e d  
b u t  sk ipped  over .  If  an  a n d  o p e r a t o r  f inds the  va lue  f a l s e ,  
t hen  a b r anch  occurs  to  t he  p r o g r a m  address  g iven in t he  
two t ra i l e r  by tes .  I f  an  a n d  finds t h e  va lue  t r u e ,  then  i t  
de le tes  th is  va lue  f rom the  s t a c k  a n d  proceeds  to  the  next  
s y m b o l  in t h e  p r o g r a m  s t r ing  ( to e v a l u a t e  the  second 
o p e r a n d  of a n d ) .  S imi l a r l y  if an o r  o p e r a t o r  f inds the  
va lue  t r u e ,  t h e n  a b r a n c h  occurs  to  the  p r o g r a m  address  11C4: 

given in t he  two t ra i l e r  by tes .  I f  an  o r  f inds t he  wflue 
f a l s e ,  t hen  i t  de le tes  th is  va lue  f rom the  s t ack  and  pro-  
ceeds to  t he  nex t  s y m b o l  in t he  p r o g r a m  str ing.  T h e  t h e n  
o p e r a t o r  is a cond i t iona l  b r a n c h  code:  i t  de le tes  the  logical  
va lue  f rom the  s tack.  I f  th is  va lue  was  fa l s e ,  t hen  a b r a n c h  
is t a k e n  to  t he  p r o g r a m  address  g iven  in t he  two t ra i l e r  
by tes .  I f  th i s  va lue  was  t r u e ,  t hen  the  nex t  s y m b o l  in t h e  
p r o g r a m  s t r ing  is executed .  

T h e  po in te r  to  t h e  s y m b o l  in t h e  p r o g r a m  s t r ing  ( the  
ins t ruc t ion  counter)  is loca ted  in t h e  func t iona l ly  associ- 
a ted  pa i r  of regis ters  I and  J in the  M o d e l  30. T h e  po in t e r  
to t he  le f t -mos t  b y t e  of t he  h ighes t  e n t r y  in  the  s t a c k  ( the  
s t ack  po in te r )  is loca ted  in t he  two regis te rs  U and  V in t h e  

M o d e l  30. 
I n  t he  fol lowing the  ind iv idua l  s teps  in th is  ra ie ropro-  l lCB:  

g r a m  are  exp la ined  in more  deta i l .  

Address Location Description 
in Figure 

1161: Ci :  The instruction counter IJ addresses main 
storage. The addressed byte in main 
storage is read out into the storage da ta  
register R. The instruction counter is up- 
dated by adding 1 to register J. A possible 
carry is saved to be added to 1. 

number composed of the X 'nn' represents the hexadecimal 
digits n (n = 0,...,9, A,...,F). 

C2: 

C3: 

C4: 

L4: 

G5: 

The operator has been read out from ~uain 
storage :i~rto I~,. {~) is also l;ra~lsfccrcd 
(through Uhe ;~LU) to register G. A [our- 
way branch occurs on the two high(,st bits 
:R0 and t)H of the operator. For the opera- 
tots 52, 53, and 50 this branch goes to }LOS 
word 1171, whereas other operators cause a 
branch to 1170, 1172, or 11.73, indicated by 
tile three lines not cotltinued, 

To complete the updating of the iustruc.. 
tion cmmtcr, tile carry from 1161 is added 
into I, The first byte of tile highest entry 
of the stack is addressed by UV and read 
out into [{. A further four-way branch otr 
the operator is made (G2, G3). For our 
operators the branch goes to 115D. 

Tire high order byte of the highest, stack 
entry has been read out of storage into R. 
I t  contains the type of entry in tile high 
digit and if this type was logical then it 
contains the value t rue  (1) or false (0) in 
the second digit. This byte is tested by 
adding X'DO'  to it  and observing tire 
result, ignoring the carry. 84 is set to 1 
when the type was 3(logical) otherwise to 
0. $5 is set to 1 when the low digit of bhis 
byte was 0 (value false) ,  $5 is set to 0 
when the low digit of this byte was 1 (wlue 
t rue) .  Another four-way branch occurs on 
the bits G4 and G5 of the operator. If the 
operator is 50(or), 51 (cannot occur), 52 
(and),  or 53(then), then a branch to 11C4 
occurs. 

Tile next byte is read from the program 
string, it  is the high byte of the two-byte 
program address trailing the operator. The 
instruction counter is updated again by 
adding a 1to J, saving a possible carry. 
Another four-way branchoccurs on the bit 
G6 of the operator and thevalue of the stack 
entry. If the operator was and or then  (G6 = 
1) and the value was fa lse  ($5 = 1), then 
branching to I lCB occurs; if the operator 
was or  (G6 = 0) and the value was t rue  
($5 = 0), then branching to 11C8 occurs. 
If the operator was or  (G6 = O) and the 
vMue was false ($5 = 1), then branching 
to 11C9 occurs. If the operator was and 
or t hen  (G6 = 1) and the wdue was t rue  
($5 = 0), then branching to l lCA occurs. 

This word is executed for the operators 
and and then when the value was false. 
Here the type test is made. If the type was 
not logical ($4 = 0), then a branch to 11C1 
occurs. If the type was correct, then the 
microprogram proceeds to fetching the 
trailing program address (two bytes) to 
store i t  as the new instruction counter in 
IJ. This is done for the and operator (G7 
= 0) in this word and the following two 
words 11C3 and 111E; for the then  opera- 
tor (G7 = 1) it  is done in this word and the 
words 11C3 and 111F. 
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11C3, 
111:E: 

J6, J7 : The two bytes trailing of the operators and 
or or are stored as the new instruction 
counter I& The operation is completed. 
The mieroprogram branches back to 1161 
to read out the next operator. 

11C3, 
111F: 

J6, L7: The ~wo bytes trailing of the operator 
then are stored as the new instruction 
counter in IJ. The carry-saving bit $3 is 
forced to zero. 

11CE, 
1144: 

N8, N9 : The stackpointer is decremented by four 
(the operator ' - '  means complement add) 
which in effect deletes the highest entry 
from the stack. Observe that when these 
two words are entered from l l lF  (then 
operator with value fa lse)  the micro- 
program will not go through 1145 because 
we have forced $3 to zero in l l lF.  The 
operation is completed, and the micro- 
program branches back to 1161 to read out 
the next operator. 

11C8: JS: This word is executed for the operator or 
when the value was true .  Similarly as in 
llCB, the typetest is taken. For types 
not logical a branch to llC1 occurs. If the 
type was correct, then the mieroprogram 
proceeds to fetching the trailing program 
address (two bytes) to store it as the new 
instruction counter in IJ (words 11C3, 
111E). 

11C9: N5: This word is executed for the operator or 
when the vahm was fa l se .  A typetest is 
made. If the type was correct, then the 
trailing program address is skipped and IJ 
is updated by 1 twice in 11C4, 11C9 (pos- 
sible carries out of J handled in l lCF or 
1145). The stackpointer is decremented by 
four in 11CE, 1144. 

11CA: Q5: This word is executed for the operators 
and and then when the value was true.  
A typetest is made. If the type was correct 
then the trailing address is skipped, IJ is 
updated by i twice in 11C4, 11CA (possible 
carries out of J handled in 11CF or 1145). 
The stackpointer is decremented by four 
in llCE, 1144. 

11C1, 
llCC, 
l lCD: 

G6,L6,N6 These words are executed when a typetest 
occurs. An error code 01 is set up in L and 
a branch occurs to the error routine not 
drawn here. 

I t  can be seen from Figure 7 tha t  the execution times of 
the mieroprograms including the readout  of the operator  
(LCyele)  are the following: 

a n d  6gsec 4 (8 mieroprogram steps) 
or  6gsec (8 mieroprogram steps) 
t h e n  6#see for value t r u e  (8 mieroprogram steps) 

7.5gsee for value f a l s e  (10 mieroprogram steps) 

The cases where carries occur in the IJ and UV updating are 
disregarded for timing purposes. 

V o l u m e  10 / N u m b e r  9 / September ,  1967 

I n  order to coinp~re this with a hypothetical  EULER 
system for Sys tem/360  language, leg us assume tha t  the 
compiler produces in-line code (which probably will give 
the highest performance al though it, will be very wasteful 
with respect to storage space). Then a reasonable sequence 
for a n d  might  be: 

CLI 0 (STACK), LOGFALSE 
BE ANDFALSE 
CLI 0 (STACK), LOGTRUE 
BNE TYPEERIt 
SE STACK, = '4' 

Timing: true: 90see; false: 32~ec. 

This comparison seems to indicate tha t  the mieropro- 
gTam interpreter is about  an order of magnitude faster 
than  the equivalent program in 360 language. However,  
this comparison will o N y  yield such a high factor for time- 
tions of EULEn which do not have simple System/360 Inn- 
image counterparts  (as for instance the list-operators, 
begin-, end-, and procedure-call-operator) or where the 
ove rheM for dynamic  testing and stackpointer  manipu- 
lation is heavy as in the above example of the logical 
operations. For  functions which do have System/360 
language counterparts  and which are slower so tha t  the 
overhead is relatively lighter as, for instance, ari thmetic 
operations (especially for real numbers),  the mieropro- 
g rammed interpreter will still be faster than  the Sys t em/  
360 language program, but  not by  a factor of 10. 

The  total ROS space requirement for the String Lan- 
guage Interpreter  is: 

Coded routines 
Routines  for real number  

handling 
Divide, Exponentiat ion,  

etc. 
Garbage collector 

1000 microwords 
500 microwords (esti- 

mated) 
400 microwords (esti- 

mated) 
600 microwords (esti- 

mated) 

2500 microwords 

6. E U I , E R  C o m p i l e r  

The  t ranslator  to translate EULER source language into 
the Reverse Polish String Language is a one-pass, syntax- 
driven compiler. The  syntax of the language and the 
precedence functions F and G over the terminal and non- 
terminal symbols are stored in table form is Model  30 
main storage. There is also main storage space reserved for 
t ranslat ion tables for character delimiters and word 
delimiters and for a compile t ime stack, a name table, and, 
of course, for the compiled code. All these areas are at 
fixed storage locations because of the experimental nature  
of the system. 

The  microprogram consists of the following parts:  
1. A routine reads the next input character f rom the 

input  buffer to translate it to a 1-byte internal format, if it 
is a delimiter, or to collect it into a name buffer if it is 
par t  of an identifier, or to convert  it to  hexadecimal if it is 
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part  of a numeric constant and to c o{leei, the m:mlber btIo a 
buffer. This "prescan" requires 100+ mierowords. 

2. As soon as an input unit is collected (ddimiter ,  
identifier, number) the main parsing loop is entered whielh 
makes use of the precedence tables and the syntax tal)le ill 
main storage. This syntactic analyzer loop requires l ( ) 0 -  
microwords. 

3. When the parsing bop identifies a syntactic unit. to 
be reduced, it ealls the appropriate generation routine 
which performs essentially the functions described as the 
semantic interpretation rules in the EU[,EIt defi:nition. 
The  Inicroprogram space required tbr these programs 
amounts to approximately 250 ROS words. 

4. If a syntactic error is detected, the system signals an 
error aim does not t ry  to continue with the compilation 
process. Though this procedure is totally inadequate for a 
praetieMly useful system, it was deemed sufficient to 
prove the essential point, t?or this minimum error analysis 
and for linkage to the 360 mieroprograms (IOCP),  
approximately 60 mierowords are required. 

The total compiler microprogram space is therefore 
approximately 500 ROS words. The total main storage 
space required is approximately 1200 bytes. 

The speed of this compiler is limited by the speed of the 
card-reader of the system (10()0 cards/minnte). This 
excellent performance has three main reasons: (1) EuL~t  
as a simple precedence language is a language extremely 
easy to compile. (2) The functions of a compiler are mMnly 
of a table lookup and bit and byte-testing type. Micro- 
programming is extremely well-suited for these kinds of 
operations. (3) Since the target language is String Code 
and not, for example, 360 Machine Language, the genera- 
live par t  of the compiler is relatively short. 

I t  is very difficult to assess the individual contributions 
of these three main reasons to the higll compiler perform- 
ante. Therefore, it is not possible at this stage to make a 
statement as to whether tile nature of the language 
EULER or the tact tha t  the compiler is microprogrammed 
is the dominant factor. 

7. Development of the Microprogram 

Since there is no higher level language to express micro- 
program procedures and no compiler to compile microcode, 
the microprograms were written in the symbolic language 
explained in Figm'e 6. Actually the process was a hand 
translation of the algorithms in the EULE~ definition to the 
symbolic microprogram language. Tile microprogTams were 
translated into actual microcode and sinmlated before they 
were put on the System/360 Model 30 by means of a general 
mieroprogram development system. 

8. Outlook and General Discussion 

It is hoped that the development of this experimental 
system for EULEI~ shows that with the help of mieropro- 
gramming we can create systems for higher level languages 
or special applications, which utilize existing computer 
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grammi:ag systems. 
Among the t h o u g h t s  which are rMsed by this schome a> 

the folbwfflg: 
1. There should t)e mt invostigatiorl to determine t}e 

ideal directly interp:regable languages which correspond to 
higher level languages. Although several attempts here. 
been made to define str'ing hmguages for interpretive 
systems (for instance in [1, 4]), to the author's knowledg,:-.- 
no work has been pub l i shed  which attacks this (lUe~iion it:, 
a general and theoret ical ly  founded mariner. 

2. A proliferation of  interpretive language,s ~md the:- 

development of m]croprogramrned irRert)reters can b~, 
justified when be t te r  tools  are developed to reduce tl>,. 
cost of mieroprogramnting.  I t  is necessary that we b~-,, 
able to express mieroprogramming concepts (and ak, c:~ 
machine design concepts)  in a higher level language for~a 
and that  we develop compilers which trat~late the l~icrno-~ 
programs from higher level  language form i:o aehml mic> ..... 
code. Also, good nf ic roprogram simulation and debugging;< 
tools are called for. 

3. Tile whole relat ionship betweet~, prograrmning:, 
mieroprogramming, an d  machine design should be view~d 
with a common denomina to r :  how shouM tile tradeoffs b 
made such that the  u l t ima te  goal can tie reached n > r .  
et teetively, . . ,  how t o  solve a user's l)r()blem? Green [5! 
offers some thinking in  this direction but the state of ill< 
art has to progTess f u r t h e r  before we will have a eomplut~:, 
understanding of w h a t  these relationships and iradeoff> 
art. 
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