Systems Reference Library

File No. 1401 -25
Form C24-1455-2

Fortran Specifications and Operating Procedures

IBM 1401

PROGRAM NUMBER 1401—r0—050, VERSION 3

This reference publication contains the language spec-

ifications necessary to code a 1401 Fortran source pro-

gram and the procedures for assembling and running

the object program. In addition to describing the 1401

Fortran language, the specifications section also con-

tains descriptions of:

1. the control card

2. the phases of the compiler

3. the arithmetic and input/output routines generated
by the compiler

4. the 1401 Fortran facility for linking programs or
segments for continuous processing and

5. the input/output routine option provided in 1401
Fortran.

In addition to the procedures for assembling and
running the object program, the operating procedures
section also includes explanations of:

1. compiler output

2. compiler diagnostics

3. object-program storage allocation and
4., object-program halts.

The reader should be familiar with the Fortran
General Information Manual, Form F28-8074, and the
1BM 1401 configurations required for the assembly and
the execution of the object program. Additional pub-
lications concerning the 1M 1401 system can be found
in the 1M 1401-1460 Bibliography, Form A24-1495.

This is a reprint of an earlier edition, and incorporates the following
Technical Newsletter:

Form No. Pages Date
N21=-0046-0 15, 20, 22, 28, 29 4/27/65

33, 40, and 42

Copies of this and other IBM publications can be obtained through IBM Branch Offices.
A form is included at the back of this manual for readers’ comments. If this form has
been removed, address comments to: IBM Corporation, Product Publications, Dept. 245,
Rochester, Minn. 55901.

© International Business Machines Corporation 1964

Contents

Fortran Specifications — IBM 1401 5
Machine Requirementsc.veevevenivoniiinmiininin . 5
Source Program Characters 6
Writing the Source Program 6
Punching a Sourcc Program 7
Constants, Variables, Subscripts, Functions,

and Expressions 7
Arithmetic Precision 7
CONSTANES 1rvveeiiirreecree s et sbee e s saane 7
VaTIADLES oviiviieiiiriiiticreeee et e e sn e 8
SUDSCIIPES wevevererriiriereeieirirrnee s e 8
TUNCHONS vovvreeiiririeieiireeeniiriteeeieresertressiares s ssbes s sestas s srsressenes 9
Arithmetic EXPressions ..., 10
1401 Fortran Statements ... 11
Arithmetic Statementcccoocvceverininioiniie s 11
Control Statementsccocoeevcevrniiiiinni s 12
Input/Output StatCmMentsccocovveieiniiieniiiver e 14
Specification Statements ... 21
Input/Qutput Option ..., 22
Program Linkage ..., 22
Linkage StatCmentcccccceverivoriconiiinniiiniiiene 23
Title Cards .oooieeieeeereireeesreeienee e 24
The Monitor Programoceecveeiviivnoriviienneenieesienesnenes 25
The Processor Program .. 26
Control Cardocooviriciiierrienres e 26
Logical Flow of the Processor 26
Arithmetic Operationsccoocevveevniieciiieniinnieen 30
Input/Output Operationscc.cccoveeeiiiviiiieiinniein e 35
Performance Datoccocovvevccvivnnreceens 36
Fortran Operating Procedures — IBM 1491 ... 38
Compiling Operation Procedures 38
Object Program Operation Procedures o 42
Running Programs Containing Linkage Routine 43
Sample Programsc.cccocvevemniiennronienne DO TRORRON 43

The M 1401 Fortran is a symbolic programming sys-
tem composed of (1) a language and (2) a processor
program (compiler). Symbolic or source statements are
coded using the 1401 Fortran language, which closely
resembles the language of mathematics. The source
program is a particular sequence of source statements.
After being coded on the Fortran Coding Form, Form
X28-7327 (Figure 1), the source statements are punched
into cards, which are then used as input to the 1401
Fortran compiler. The compiler translates the source
program to a 1401 machine-language program (object
program) that can be executed immediately or punched
into cards for future use.

Fortran Specifications — IBM 1401

Machine Requirements
The minimum machine requirements for the compila-
tion of a 1401 Fortran source program are as follows:

8,000 positions of core storage
Advanced Programming Feature
High-Low-Equal Compare Feature
Multiply-Divide Feature

One BM 1402 Card Read-Punch
One 1M 1403 Printer, Model 1 or 2

One magnetic tape unit, the 18M 729 or the 1M 7330,
may be used to store and load the 1401 Fortran com-

IBM Form X28-7327
Printed in U.S.A.
FORTRAN CODING FORM
Program
Coded By Date ____
Checked By Identification Page___ of
| S EEPE |
[—— C FOR COMMENT & i
voume e FORTRAN STATEMENT
] 5lel7 10 15 20 25 30 35 1 45 50 55 60 65 70 72
1 1 ! ! 1 1 1] ! L i])
| 1 1 1 1 1 1§ 1 1 1 1 I i
i 1 1 1 1 L 1 1 1 1 i 1 B
1]] 1 1 1 1 1 1] L 1 1
i 1 L 1] l.] 1 1 L 1 1 L
L 1 1 i 1 L 1 1 1 1 1. 1 1
1 1] L 1 1 1 1 L 1] 1 1
1 1L 1 1 1 1 i 1 1 1 1 i L |
1 1 1 L L 1 1 1 1 1 1 1 1.
1 1 i L 1 1 1 1 1 1 1 1 1
1 | i 1 1) i 1 1) 1 1 1
1 L 1 1 1 1 1 1 1 L 1 1 1
1 1 1 L 1 1 1 1 1 1] 1 1
1 Il | i 1 1 1 | ! 1 1 1 1
L 1 1 1 1 1] 1 1 L 1 1
] ! 1 1 1 1 1 i ! | 1 1 i
1 1 1 1 1] 1 | 1 1 1 | 1
1 1 1 1 1 1 1 I] 1 1 1 |
i i 1 1 1 1 1 | 1 1 1 1 1
| 1] 1 1 I i 1 1 1 ! I i
L L 1 L] | 1 ! ! I) | 1
Figure 1. Fortran Coding Form

piler. The Sense Switches feature may be used to pro-
vide a 1403 listing of the object program during vari-
ous stages of compilation.

The minimum machine requirements for execution
of the compiled object program are as follows:

8,000 positions of core storage
Advanced Programming Feature
High-Low-Equal Compare Feature
Multiply-Divide Feature

One 1BM 1402 Card Read-Punch
One BM 1403 Printer, Model 1 or 2

Source Program Characters

The following chart indicates thle list of characters
which may be used in a Fortran source program:

Card Card
Character Code Character Code
Blank M 11-4
. 12-3-8 N 11-5
) 12-4-8 o) 11-6
+ 12 P 11-7
$ 11-3-8 Q 11-8
* 11-4-8 R 11-9
- 11 S 0-2
/ 0-1 T 0-3
, 0-3-8 U 0-4
(0-4-8 v 0-5
= 3-8 w 0-6
A 12-1 X 0-7
B 12-2 Y 0-8
C 12-3 Z 0-9
D 12-4 0 0
E 12-5 1 1
F 12-6 2 2
G 12-7 3 3
H 12-8 4 4
1 12-9 5 5
] 11-1 6 6
K 11-2 7 7
L 11-3 8 8
9 9

No other card codes are acceptable in 1401 Fortran
source program statement cards, with the following
exceptions:

4-8 will be taken to mean — (minus).

11-3-8, which normally has meaning $ only when it
appears as H-conversion text in a FORMAT
statement, will be taken to mean * when it ap-
pears elsewhere. In this event a message will
be printed in the source program listing in
the same line as the statement.

6 Fortran: 1401 Specs. and Op. Proc.

0-2-8 (prints as record mark) will be tolerated, but
no characters following it in the statement
will be processed even if it is merely a member

of an H-conversion format specification.

Writing the Source Progam

Each Fortran statement begins a new line of the cod-
ing form. (Two statements may not appear on the
same line.) Statements that are too long to fit on one
line, however, may be continued on subsequent lines.

Statements and information are arranged on the
coding sheet as follows (comments and continuation
lines are handled separately):

1. Columns 1-5 of the first line of a statement may
contain a statement number, which can be refer-
enced by another Fortran statement. Statement
numbers are unsigned and may range from 1 to
99999. Leading and trailing blanks and leading
zeros in statement numbers are ignored by the
1401 Fortran processor. If no statement number is
needed, columns 1-5 may be left blank.

2. Column 6 of the first line of a statement may be
either blank or punched with a zero as the user
wishes. See Continuation Lines.

3. Columns 7-72 contain the Fortran statements. A
statement cannot consist of more than 660 charac-
ters (i. e., 10 lines — see Continuation Lines). The
Fortran processor ignores blank characters except
in the case of H-conversion (see H-Conversion).
Blanks can be used freely to improve the readabil-
ity of the source program.

4. Columns 73-80 are not processed. They can be used
to punch card numbers or other identifying infor-
mation.

Continuation Lines

When a Fortran statement is too long to fit on one line
of the coding sheet, it may be continued on the next
line or lines. A statement may take up to nine con-
tinuation lines, or a total of ten lines (660 characters).

A continuation line is coded as follows:

1. Columns 1-5 are blank.

2. Column 6 contains any character other than zero or
blank.

3. Columns 7-72 contain the continuation of the
Fortran statement. Column 7 can be considered as
following column 72 of the preceding line.

4. Columns 73-78 are used for identification. The
processor does not process these columns.

STATEMENT

=
FOR ©
C“"couuzwr iz

NUMBER |3

FORTRAN STATEMENT

IDENTIFICATION

00000

tl23as

1:1111
202222

3333

44444

55555

46666
niii
%8808

9lg

tl2

999
345

§
6
1
8
9
8

pocooocooco000000000000000000000600006000000000000000000000000000

10111213 14 1516 17 18 19 20 21 22 23 24 25 26 27 26 20 30 31 37 33 34 35 36 37 3 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

IERERERRRRRER RRRR R

- o

22222222222222%22
33333333333333333333233
444444444 4444404A444444448404440448404444444444448444840444444444444
5 555555555655555565555555555555556555555555585555555555555555555555
66666666666666566666666G6686
7771177717711 71771771777117111171771717717119771171117171771711717171171717117711717117117171

388880888888658888808058068088888888368088838088606688880888388888888838

-]

9
10
81

99999998

1213141516 17 10 1

9969

313233 4

9 999999999999909999099999999999999999499
" 3536 37 38 30 40 41 42 43 4 45 45 47 48 49 50 51 52 53 54 55 56 57 53 50 60 61 62 63
57

6465€6 6763637071 72

o~y
Sweeo

00000000
13747578 77 78 79 80
111ttt
22222222
33333333
44444444
55555555
66666666
171111111

886888888

9999999

737475767778 78

Figure 2. Fortran Statement Card

Comments Line

If the user wishes to have comments or notes appear-
ing in the source program listing, he may use a line
(or lines) of the coding sheet strictly for comments.
A comments line is coded as follows:

1. Column 1 contains a C. This identifies the com-
ments line to the processor.
2. Columns 7-72 may be used to contain the comments

or notes.

Columns 73-80 may be used for identification. The
processor does not process these columns.

Punching a Source Program

Each line of the coding sheet is punched, column for
column, into a separate Fortran statement card. The
Fortran statement card is shown in Figure 2. These
punched cards form the Fortran source program deck.

Constants, Variables, Subscripts,

Functions, and Expressions

Constants, variables, and functions separated and re-
lated by arithmetic operation signs form an arith-
metic expression. (Variables can be subscripted to
express one- or two-dimensional variable arrays.) The
degree of precision of the value of an arithmetic ex-
pression is called arithmetic precision.

Arithmetic Precision

The degree of precision of an arithmetic expression
(the number of digits retained) can be set by control
card. The degree of precision for fixed-point and
floating-point arithmetic calculations is set separately.
Fixed-point precision (designated by the letter k) can
be set to any value from 1 through 20. If any result
from a fixed-point calculation exceeds k digits, the
leftmost (high-order) extra digits are dropped.

Floating-point precision (designated by the letter f)
can be set to any value from 2 through 20. All floating-
point calculations are performed to a precision of
f 4 2 digits, and ultimately rounded to f digits.

Where no specification of precision is made:

1. fixed-point precision is 5 decimal digits.
2. floating-point precision is 8 decimal digits.

Constanis

Two types of constants are permitted in a 1401 Fortran
source program: fixed-point and floating-point,

Fixed-Point Constants

General Form: A fixed-point constant consists of from
1 to k decimal digits written without a decimal point
(as integers).

Examples:

1

2

+ 524267
— 28987

Floating-Point Constants

General Form: A floating-point constant consists of
any number of digits with a decimal point. E fol-
lowed by an integer (signed or unsigned) designates
multiplication by a power of 10. Floating-point con-
stants can contain any number of digits but only a
maximum of f significant digits are retained. Float-
ing-point constants of n significant digits, where n
< {, will have n digits of precision. The magnitude
of a floating-point constant may lie between the
limits 10 -190 and (1 — 10-f) X 10 or be exactly
Zero.

Examples:

17.
5.0
.0003
5.0E3 ie., 5.0 X 103
5.0E + 3i.e., 5.0 X 10 +3
5.0E — 3ie., 50 X 103

Within storage, a floating-point constant of n signi-
ficant digits consists of s + 2 digits, where s is the
smaller of n or f. For example, if f is defined as 18, a
number in the source program having 18 or more
significant digits results in a 20-digit real number, 18
for the mantissa and 2 for the characteristic. If the
constant contains 13 significant digits (f = 18), the in-
ternal representation will have the 15 digits: 13 for the
mantissa and 2 for the characteristic.

Variables

Variable quantities are represented in 1401 Fortran
statements by symbolic names. Variable names con-
sist of from one to six alphameric characters (no
special characters), of which the first character must
be alphabetic. The first character of a variable name
denotes which of the two types of variables a parti-
cular variable is: (1) fixed-point or (2) floating-point.

Fixed-Point Variables

General Form: All variables whose symbolic name
begins with the letter I, J, K, L, M, or N are fixed-
point variables.

Examples:

I
M2RB3
JOBNO

8 Fortran: 1401 Specs. and Op. Proc.

A fixed-point variable can assume any integral value
(1, 2, 3, etc.) less than 10k (where k is the integer pre-
cision).

When the value assumed by a fixed-point variable
has fewer than k digits, high-order zeros are added.
When the value exceeds k digits, only the k rightmost
digits are retained.

Floating-Point Variables

General Form: A variable whose symbolic name be-
gins with an alphabetic letter other than1,],K, L, M,
or N is a floating-point variable.

Examples:
A

B7
DELTA1

A floating-point variable can assume any value ex-
pressible as a normalized floating-point number. That
is, it can be between the limits 10100 and (1 — 10-f) X
10, or be exactly zero. A precision of f digits is car-
ried in the mantissa,

Cautions in Naming Variables

To avoid the possibility that a variable name may be
considered by the compiler to be a function name,
two rules should be observed with respect to naming
fixed- or floating-point variables:

1. A wvariable should not be given a name that is
identical to the name of a function without its ter-
minal F. Thus, if a function is named TIMEF, no
variable should be named TIME (see Functions).

2. Subscripted variables should not be given names
ending with F.

Subscripts

A variable can be made to represent any element of a
one- or two-dimensional array of quantities by ap-
pending one, or two subscripts, respectively, to the
variable name. The variable is then a subscripted
variable (see Subscripted Variables). The subscripts
are expressions of a special form whose value deter-
mines the member of the array to which reference is
made.

Form of Subscripts

General Form: A subscript may take only one of the
following forms, where v represents any unsigned,

nonsubscripted fixed-point variable, and ¢ and ¢
represent any unsigned fixed-point constant:

v

c

v+c

v—2cC

c*v
c*v+corc*v—c

(The * denotes multiplication.)

Examples:
IMAS
JO
K2
N-+3
8 * IQUAN
5L +7
4*M—3
7 + 2 * K (invalid)
9+7 (invalid)

Subscripted Variables

General Form: A subscripted variable consists of a
variable name (fixed- or floating-point) followed by
parentheses enclosing one or two subscripts, sepa-
rated by commas.

Examples:
A (D)
K (3)
BETA (8 *J +2,K — 2)
MAX (L J)

1. Any subscripted variable must have the size of its
array (i.e., the maximum values its subscripts can
attain) specified in a DIMENSION statement pre-
ceding the first appearance of the variable in the
source program. See DIMENSION.

2. The variable in a subscript must be greater than
zero, but not greater than the corresponding array
dimension.

Arrangements of Arrays in Storage

One-dimensional variable arrays are stored sequen-
tially. Example: The array A(I), where I takes the
integer values from 1 to 10, is stored in the sequence,
A(l), A(2), A3), . . ., A(10).

A two-dimensional variable subscript can be thought
of as designating rows and columns of variables, for
example, the two-dimensional array designation A(L, J)
can be thought of as A (I row, J column). Two-dimen-
sional arrays are stored sequentially by columns. Ex-
ample: If A (I, J) represents a 3x2 array (I=1, 2, 3 and
J=1, 2), the array is stored in the sequence A(l, 1),
A2, 1), A(3, 1), A(1, 2), A(2, 2), A(3, 2).

Functions

A function consists of a function name and a function
routine. One argument is appended (in parentheses)
to each function name. The argument can be any valid
1401 Fortran expression, either a fixed- or floating-
point expression (as the function routine requires). The
function name links the argument to the function
routine.

Function routines are closed routines, which appear
in the object program only when called, and then
only once, regardless of the number of references.

The function name can be comprised of from 4 to
7 alphameric characters (not special characters). The
first character must be alphabetic, and the last char-
acter must be the letter F. The first character must be
X if and only if the value of the function is to be fixed
point.

Examples:

SINF(A)
LOGF(C)
XFIXF(B)
FLOATF(I)

1401 Fortran Functions
1401 Fortran includes ten function subroutines:

Function Result

SINF trigonometric sine of argument

COSF trigonometric cosine of argument

ATANF trigonometric arctangent of argument

LOGF natural logarithm of argument

EXPF argument power of e

SQRTF positive square root of argument

ABSF absolute value of floating-point argument
XABSF absolute value of fixed-point argument
FLOATF convert fixed-point argument to floating point
XFIXF convert floating-point argument to fixed point

The first seven functions listed require that both the
argument and the computed value of the function be
in floating-point form. For XABSF, both argument and
function are fixed-point. For FLOATF and XFIXF,
argument and function are of opposite form as speci-
fied.

User Functions

1401 Fortran allows the addition of up to twelve user
functions. (Each function consists of a function name
and a corresponding function routine.)

Function Name

The user may choose any name he wishes as long as
it conforms to the specifications previously discussed
under the general form of a function.

The function name is added to the 1401 Fortran
table of functions. See Adding the Function Name.

9

Argument

The argument of the function may be any valid fixed-
or floating-point expression. No single function may
take both fixed- and floating-point arguments.

If a given operation is to give:
1. fixed- and floating-point functions, using

2. both fixed- and floating-point arguments, four sepa-
rate functions must be set up, one for each func-
tion-argument combination.

Note: If more than one function routine for a given operation is

to appear in the same program (or program segment), the name

of the routines may be similar, but not the same. For example,
the following four function names might be used when all four
function-argument combinations are required for a cube-root
operation:

1. CUBRTF (fixed-point argument)

2. CUBRTOF (floating-point argument)

3. XCBRTF (fixed-point argument)

4. XCBRTOF (floating-point argument)

Function Routine

The function routine is to be coded in 1401 Autocoder.
Each function routine is assembled separately, and
the assembled routine is then placed in the 1401 For-
tran compiler. See Incorporating the User's Function
into 1401 Fortran.

The user must consider the following restrictions
when coding his function routines:

1. The routine’s origin must be at position 2000.

2. The routine’s length must be less than 2000 posi-
tions.

3. Any actual address is not relocated.

4. Any symbolic address that is assembled below posi-
tion 2000 is not relocated.

5. No DA, XFR, or EX statements may be used.

6. No address constant whose operand is relocatable
may be used.

In coding a function routine, the user must study
the construction of arithmetic strings and the 1401
Fortran arithmetic routine. The Fortran function sub-
routines can be used as examples of how the func-
tions must be coded to fit into the compiled program.

In the simplest case for example, where the source
statement is:

Y = FUNCF(X),
xxx is the address of the variable X, yyy is the address
of the variable Y, and R is the identifier of the func-
tion FUNCF; the arithmetic string compiled from
the arithmetic statement is:
B700yyy=xxxR ¥

At the time an arithmetic statement is executed,

the three-character machine address of the compiled

10 Fortran: 1401 Specs. and Op. Proc.

statement within the arithmetic string (the first posi-
tion after B 700) is stored in positions 084-086. There-
fore in his function routine the user can refer to the
address of the compiled arithmetic statement contain-
ing the reference to the function by using the contents
of positions 084-086.

For convenience, the address stored in locations
084-086 will be referred to as ARADR. Therefore the
address of yyy in our example is ARADR-2, the ad-
dress of xxx is ARADR-6, and the address of the
next statement to be executed in the program is
ARADR9. Any zone bits present in the tens posi-
tion of xxx and yyy do not refer to address modifica-
tion by an index register.

At the time of the branch to the function, the 1401
Fortran arithmetic routine has processed the argument
X. The value of X is stored in a field whose address is
279-+X3 (index register 3). Position 280 of this field
contains a word mark. If X is a fixed-point variable,
index register 3 contains the fixed-point precision
value, k. If X is a floating-point variable, index register
3 contains the floating-point precision value plus two
(f+2), position 280 contains the most significant (left-
most) digit of the mantissa, and the characteristic
(exponent) is stored in positions 1677-1679. (If the
mantissa is zero, the equal-compare latch is set.)

The following space is available to the user:

1. positions 1-80.

2. the index register positions.

3. positions 100-332.

4. any unused storage.

5. any area reserved by the control card.

Arithmetic Expressions

An expression is a meaningful sequence of constants,
variables (subscripted or non-subscripted), and func-
tions, separated by arithmetic operation symbols.

Examples:

1
A

I

A(I)
A(ID)+(B/C)*2.0
A**I—(2.*B)/C

Arithmetic Operation Symbols

The five basic arithmetic operations are expressed by
the following symbols:

+ (plus sign; addition)

— (minus sign; subtraction)

* (asterisk; multiplication)

/ (slash; division)

*% (two asterisks; exponentiation).

Rules for Writing Expressions

The following rules must be observed when writing
1401 Fortran expressions:

1. The mode of arithmetic in an expression can be
either fixed-point or floating-point, and must not be
mixed except in the following cases:

a. A floating-point quantity can appear in a fixed-
point expression as an argument of a function
such as, XFIXF(C).

b. A fixed-point quantity can appear in a floating-
point expression as a function argument, such as
FLOATF(I); as a subscript such as A(J, K); or
as an exponent such as A**N.

2. Two arithmetic-operation symbols cannot appear
together, unless they are separated by parentheses.
Therefore A*—B and + —A are not valid expres-
sions; however A* (—B) and +(—A) are valid ex-
pressions.

3. In exponentiation:

a. A floating-point exponent should not be used
with a base that is a negative number, because
a non-integer power of a negative number can
lead to imaginary values. Also, if a floating-point
exponent of a negative number is integral, the re-
sult will be a positive number regardless of
whether the exponent is odd or even.

b. A fixed- or floating-point negative number raised
to a fixed-point power gives the answer with
the correct sign.

c. A fixed-point zero raised to a fixed-point power
other than zero results in a fixed-point zero an-
swer. A floating-point zero raised to either a
fixed- or floating-point power other than zero
results in a floating-point zero answer.

d. Zero to the zero power will give the results in-
dicated in each of the following cases:

0**0) =1
0.¥*%0= 1.
0.##0, = 1.

Note: Zero to the zero power also causes the error message
ZTZ to be printed.

Hierarchy of Operations
The use of parentheses in an algebraic expression
clearly establishes the intended sequence of opera-
tions. The heirarchy of operations in an expression not
specified by the use of parentheses is in the usual
order:

Exponentiation

Multiplication and Division

Addition and Subtraction

For example, the expression
A+B/C+D**E*F—G
is taken to mean
A+ (B/C) + ((D**E)*F) — G

Parentheses that have been omitted from a sequence
of consecutive multiplications and divisions (or con-
secutive additions and subtractions) are understood
to be grouped from the left. Thus, if o represents
either * or / (or either 4 or —), then

AoBoCoDoE
will be taken by Fortran to mean
((((AoB)oC)oD)oE)
The expression AB®, which is sometimes considered
meaningful, cannot be written as A**B**C. It should

be written as (A**B) **C or A** (B**C), whichever
is intended.

1401 Fortran Statements

There are 25 different statements in the 1401 Fortran
language. They are divided into four groups:

1. The arithmetic statement specifies a numerical com-
putation.

2. Control statements govern the flow of the program.
There are eleven different control statements.

3. Input/Output statements provide data input and
output in a specified format. There are eleven dif-
ferent input/output statements.

4. Specification statements provide information about
the storage allocation of the variables used in the
program. There are two specification statements.

Arithmetic Statement

The 1401 Fortran arithmetic statement defines a nu-
merical calculation. It closely resembles a conven-
tional arithmetic formula; however, the equal sign of
the statement specifies replacement rather than equiv-
alence.

General Form: a=Db, where:

1. a is fixed- or floating-point subscripted or non-
scripted variable.

2. b is an expression.

Examples:

Q1=K
A (I)=B(I) + SINF (C(I))

11

The result of the arithmetic calculation specified by
the expression (b) is stored in the field designated by
the variable (a) on the left in fixed- or floating-point,
according to whether the variable is fixed point or
floating point.

If the variable on the left is fixed point and the ex-
pression on the right is floating point, the result will
first be computed in floating point and then truncated
to an integer. Thus, if the result is 43.872, the fixed-
point number stored will be +3 (not +4). If the
variable on the left is floating point and the expression
on the right fixed point, the latter will be computed
in fixed point, and then converted to floating point.

Arithmetic statements can produce a number of use-
ful effects. Here are some examples:

A=B Store the value of B in A.

I=B Truncate B to an integer, convert to
fixed point, and store in I.

A=1 Convert I to floating point, and store
in A,

I=1I+41 Add1toI and store in I. This example

illustrates the fact that an arithmetic
statement is not an equation, but is an
instruction to replace a value.

A =3.0"B Replace A by 3B.

However, be careful to avoid invalid statements such
as:

A=23*B Not accepted. The expression is mixed,
i.e., contains both fixed-point and float-
ing-point quantities.

A=1*B Not accepted. The expression is mixed.

Note: If characters that were read under the A-conversion
format-specification (see A-Conversion) are referenced in an
arithmetic statement, only the numeric portion of these charac-
ters (except for the sign) are considered. For example, MIN
would be equivalent to — 495.

Control Statements

The second category of 1401 Fortran statements is a
set of eleven statements enabling the user to control
the sequence in which the program statements are to
be executed.

Unconditional GO TO

General Form: co to n.
n is a statement number.

Example:

Go TO 3

The unconditional co To statement transfers control
of the program to the specified statement.

12 Fortran: 1401 Specs. and Op. Proc.

Computed GO TO

General Form: co 10 (n,, n,, . . ., Nn), &
n,, Ny, ..., hy are statement numbers and i isa
non-subscripted fixed-point variable. The range of
i must be such that the value of i is 1 < i < 10.

Example:
co To (30, 42, 50, 9), 1

The computed co 1o statement transfers control to
statement number n,, n,, n,, . . ., Dy, depending on
whether the value of i at the time of execution is 1, 2,
3, ..., m, respectively, Thus in the example, if I is
3 at the time of execution, a transfer to the statement
whose number is third in the list, statement 50, will
occur. This statement is used to obtain a computed
many-way branch,

IF

General Form: 1F (a) n,, n,, n,
a is an expression and n,, n,, n, are statement num-
bers.

Example:
1r (A (J,K) —B) 10, 4, 30

The 17 statement conditionally transfers control to
another statement of the program. Control is trans-
ferred to the statement number n,, n,, or n,, depend-
ing on whether the value of a is less than, equal to, or
greater than zero. Thus, in the example, if (A(], K) —
B) is zero at the time of execution, transfer to state-
ment number 4 occurs.

Sense Light

General Form: SENSE LIGHT 4
iis 0,1, 2, 8, or 4.

Example:
SENSE LIGHT 3

The term sense light refers to symbolic binary switches
in the 1401 system. If i is 0, all sense lights are turned
off; otherwise sEnNsk LIGHT i is turned on.

IF (Sense Light)

General Form: 1F (SENSE LIGHT i) n,, n,
n, and n, are statement numbers and i is
or 4,

Example:
1F (SENSE LiGHT 3) 30, 40

Control is transferred to statement number n; if sense

light i is on, or statement number n, if sense light i

is off. If sense light i is on, it is turned off.

1) 2’ 37

IF (Sense Switch)

General Form: 1F (SENSE SWITCH i) n,, I,
n, and n, are statement numbers and i is 1, 2, 3, 4,
5, or 6.

Example:
¥ (SENSE swircH 3) 30, 108

Control is transferred to statement number n, if
sense switch i is on, or statement number n, if sense
switch i is off. Sense switches B through G correspond
to the values of i, 1 through 6, respectively.

Last Card Test. A test for the last card can be made
using the statement 1¥ (SENSE swiTcH 0) n,, n,. With
sense switch A on, the 1¥ (sEnsE switcH 0) n,, n,
statement will transfer program control to statement
n, when the last card indicator is on; otherwise
control will transfer to n,. (This particular form of
the statement is unique to 1401 Fortran.)

DO

General Form: po n i = m,, m, or DO 1 { = m,, M,, M,
n is a statement number, i is a nonsubscripted fixed-
point variable, and m,, m,, m, are each either an
unsigned fixed-point constant or nonsubscripted
fixed-point variable. If m, is not stated, it is taken
to be 1.

Examples:

DO301I=1,10

DO30I=1,M,38
The po statement is a command to execute repeatedly
the statements that follow, up to and including state-
ment number n. The first time, the statements are
executed with i = m,. For each succeeding execution,
i is increased by m,. After they have been executed
with i equal to the highest value that does not exceed
m,, control passes to the statement following the last
statement in the range of the po. If, in the initial setup,
m, > m,, there is no execution of the loop.

The range of a po is that set of statements that will
be executed repeatedly; that is, it is the sequence of
consecutive statements immediately following the po,
up to and including the statement numbered n.

The index of a po is the fixed-point variable i, which
is controlled by the po in such a way that its value
begins at m,, and is increased each time by m,, until
it is about to exceed m,. Throughout the range of a
po, i is available as data for any computations, either
as an ordinary fixed-point variable or as the variable
of a subscript. After the last execution of the range,
the po is said to be satisfied.

As an example of the use of a po statement, suppose
that control has reached statement 10 of the program:

.

10 DO 11 I=1, 10
11 A(1) = I*N(I)
12

.

The range of the po is statement 11, and the index is
I. The po sets I to 1 and control passes into the range.
The value of N, is converted to floating point, and
stored in location A,. Because statement 11 is the last
statement in the range of the po and the po is un-
satisfied, I is increased to 2 and control returns to the
beginning of the range, statement 11. The value of
9N, is then computed and stored in location A,. The
process continues until statement 11 has been exe-
cuted with I = 10. Because the po is now satisfied,
control passes to statement 12.

Among the statements in the range of a po can be
other po statements. If the range of a po includes an-
other po, then all of the statements of the included po
must also be in the range of the inclusive po. A set of
pO’s satisfying this rule is called a nest of DO’s (Fig-
ure 3).

No transfer is permitted into the range of any vo
from outside its range. For example, in Figure 3, 1, 2,
and 3 are permitted transfers, but 4, 5, and 6 are not.

When control leaves the range of a po in the ordi-
nary way (that is, when the po becomes satisfied and
control passes on to the next statement after the range)
the exit is said to be a normal exit. After a normal exit

DO

DO ’ 1 Yls> 4 No

-
-k

'3 Yes>6 No

= 2 Yes

5 No

A A

Figure 3. Nest of DO’s

13

from a po occurs, the value of the index controlled by
that po is not defined, and the index cannot be used
again until it is redefined.

However, if exit occurs by a transfer out of the
range, the current value of the index remains available
for any subsequent use. If exit occurs by a transfer
out of the ranges of several po’s, the current values
of all the indexes controlled by those po’s are pre-
served for any subsequent use,

Restrictions on statements in the range of a po are:

1. Any statement that redefines the value of the index
(i) or of any of the indexing parameters (m’s) is
not permitted.

2. The first statement in the range of a po must be an
executable Fortran statement.

3. The last statement is the range of a po cannot be
a branch instruction (see Continue).

Continue

General Form: CONTINUE
Example:

CONTINUE

CONTINUE is a dummy statement that causes no addi-
tional instructions in the object program. It is most
frequently used as the last statement in the range of
a po to provide a branch address for 1r and co To
statements that are intended to begin another repeti-
tion of the po range.

An example of a program that requires a CONTINUE
is:

.

10 DOI2I=1, 100
11 IF (ARG - VALUE (1)) 12, 20, 12
12 CONTINUE

This program will scan the 100-entry vaALUE table
until it finds an entry that equals the value of the
variable ARG, whereupon it exits to statement 20 with
the value of I available for subsequent use. If no entry
in the table equals the value of ARG, a normal exit to
the statement following the cONTINUE occurs.

Pause

General Form: PAUSE or PAUSE n
n is an unsigned fixed-point constant less than 10°.

14 Fortran: 1401 Specs. and Op. Proc.

Examples:

PAUSE
PAUSE T77

During the execution of the object program, the pausk
statement causes the machine to halt and display at
the console the number n (see Object Time Halts or
Error Conditions). If n is not specified, it is understood
to be zero. Pressing the start key causes the object
program to resume execution at the next instruction.

Stop

General Form: sTop or STOP n
n is an unsigned fixed-point constant less than 10°.

Examples:

STOP
sTopr 333

The stop statement causes a halt in such a way that
pressing the start key has no effect. Therefore, in
contrast to PAUSE, this statement is used where a
terminal, rather than a temporary, stop is desired.
When the program halts, the number n is displayed
on the console. (See Object Time Halts or Error Condi-
tions.) If n is not specified, it is understood to be zero.

End
General Form: END

Example:
END

The END statement is the last statement of the source
program. Although the general form of this statement,
as specified for other Fortran systems, is permissible
when used in a 1401 source program, only the word
END has any significance.

Input/Output Statements

There are eleven 1401 Fortran statements available

for specifying the transmission of information, during

execution of the object program, between storage and
input/output units:

1. Five statements (READ, READ INPUT TAPE, PUNCH,
PRINT, and WRITE oUTPUT TAPE) that cause trans-
mission of a specified list of data between storage
and an external input/output medium such as
cards, printed sheet, or magnetic tape.

2. One statement (FORMAT) that is non-executable. It
specifies the arrangement of the information in the
external input/output medium with respect to the
five input/output statements of group 1, and con-
verts the information being transmitted, if nec-
essary, to or from an internal notation.

3. Two statements (READ TAPE, and WRITE TAPE) that
cause the transmission of information that is al-
ready in internal machine notation, and thus nced
not be converted under control of a FORMAT state-
ment.

4, Three statements (END FILE, REWIND, and BACK-
space) that control magnetic tape units.

Lists of Quantities

Of the eleven input/output statements, seven call for
the transmission of information and must include a
list of the quantitics to be transmitted. The order must
be the same as the order in which the words of infor-
mation exist (for input), or will exist (for output) in
the input/output medium.

For example, if the list:
A, B(3), (C(I), D (LK), I =1,10), ((E(L]),
1=1,10,2),F (],8),]=1,X)
is used with an output statement, the information will
be written on the output medium in the order:
A, B (3),C(1),D(1,K), C(2), D(2,K), ., C(10),
D(10, K),
E(1,1),E(3,1), . ,E(9,1),F(1,3),
E(L,2),E(3,2), ,E(92),F(23),

E(1,K),E(8,K),. . ,E(9,K), F(K,3)

If the list is used with an input statement, the in-
formation is read into storage from the input medium.
The order of the list can be considered equivalent to
the “program”:

A

B (3)
DO5I—=1,10
G(I)

D(I, K)
PO9J=1K
DO ST =1,10,2
E(L])

F(],3)

Notc that the parentheses in the original list define
the ranges of the implicd po-loops.

Foralistof the form K, A (K) or K, (A (I),I =1,K)
where an index or indexing parameter itself appears
earlier in the list of an input statement, the indexing
will be carried out with the newly read-in value.

® =1 O Ut b DD

Ne

Matrices

1401 Fortran treats variables according to conventional
matrix practice. Thus, the input/output statement

reap 1, ((A(L]),I1=1,2),T=13)

causes the reading of six (2 rows X 3 columns) items
of information. The items will be read into storage in
the same order as they are found on the input medium:

AI,I A'.'>1 Al".' A272 A1>3 AB?:K‘

Note that the numeral 1, following Rreap, in this
case specifies format statement number 1 (scc Format).

When input/output of an entire matrix is desired, an
abbreviated notation can ke used for the list of the
input/output statement. Only the format-statement
number and the name of the array are required. Thus,
the statcment,

READ 1, A

is sufficient to read in all of the elements of the array
A, according to format statement number 1. In
1401 Fortran, the elements, read in by this notation,
are stored in their natural order, that is, in order of
increasing storage. Note that the dimensions of an ar-
ray must be specified (sce Dimension).

Format

The five input/output statements of group one (scc
Input-Output Statements) require, in addition to a list
of quantities to be transmitted, reference to a FORMAT
statement that describes the type of conversion to be
performed between the internal machine language and
the external notation for each quantity in the list.

General Form:

FORMAT (S, S., ..., Su/S, &, LS)

Each field, S,, is a format specification,

Example:

FORMAT (12/(E12.4, F10.2))

1. FORMAT statements are not executed. They can be
placed anywhere in the source program, cxcept as
the first statement in the range of a po statement.
Fach rormaT statement must be given a statement
number.

2. The rormaT statement indicates, among other
things, the maximum size of each record to be trans-
mitted. In this connection, remember that the ror-
MAT statement is used in conjunction with the list
of some particular input/output statement, except
when a FORMAT statement consists entirely of I
conversion fields. In all other cases, control in the
object program switches back and forth between

15

the list (which specifies whether data remains to be
transmitted) and the FoRMAT statement (which
gives the specifications for transmission of that data).

3. Records must consist of one of the following:

a. A tape record with a maximum length corre-
sponding to the printed line of the printer.

b. A punched card with a maximum of 80 char-
acters,

¢. A line to be printed on-line, with a maximum of
100, or 132 characters, depending on the printer
used.

4. The initial left parenthesis begins a record. In a
read operation this means that a record is read.
However, in a write operation, an output record is
begun, but not written.

5. A slash terminates the current record. If list ele-
ments remain to be transmitted, a slash also begins
a new record. In a read operation a slash means
that no more information is obtained from the last
record read; and in a write operation, that the
output record which has been developed is written
(even though blank, as when two slashes are ad-
jacent).

6. The final right parenthesis of the FORMAT statement
terminates the current record. If list elements re-
main to be transmitted, it also begins a new record
and repeats. A repeat starts with the last repetitive
group if there is one. (See Repetition of Groups.)
Otherwise it starts with the specification immedi-
ately following the first left parenthesis of the
FORMAT statement.

7. During input/output of data, the object program
scans the FORMAT statement to which the relevant
input/output statement refers. When a specification
for a data field is found and list items remain to be
transmitted, editing takes place according to the
specification, and scanning of the ForRMAT statement
resumes. If no list items remain, the current record
and execution of that particular input/output state-
ment are terminated. Thus, an edited input/output
operation is brought to an end when no items re-
main in the list, except when the next element to
the right is an H conversion. In this case, the H
conversion is transmitted.

Format Specification
FORMAT statement specifications designate:

For input:
1. The arrangement of data read in.
2. The type of conversion required for numeric data.

16 Fortran: 1401 Specs. and Op. Proc.

3. The space set aside for alphameric text to be read
in.

4. The input fields to be skipped or ignored.
5. The extent of each input record.

For output:
1. The arrangement of data to be written, punched, or
printed out.

2. The type of conversion and scale factor required
for each numeric field.

3. The alphameric text to be written, punched, or
printed out.

4. The output fields to be skipped or ignored.

5

The extent of each output record.
6. (In printing) the printer carriage-control character.

Numeric Field Specifications

Three types of conversion are available for numeric
data:

Internal Conversion Code External
Floating point E Floating point with E exponent
Floating point F Floating point without exponent
Fixed point I Fixed point

These types of conversion are specified in the forms
Ew.d, Fw.d, Iw, where:
1. E, F, and I represent the type of conversion

2. w is an unsigned fixed-point constant that repre-
sents the field width for converted data. This field
width can be greater than required in order to pro-
vide spacing between numbers.

3. d is an unsigned fixed-point constant or zero that
represents the number of positions of the field that
appear to the right of the decimal point.

For example, the statement rorMaT (1Hb, 12, E12.4,
F10.4) causes the following line to print (when given
in conjunction with a PRINT statement):

Stored data 00027 9320063103 7634352602
Field specifications 12, [El124, F104
Printed line 27b—0.9321Eb02bbb—0.0076

where b represents blanks. (See Carriage Conitrol for
an explanation of the specification 1Hb.)

Notes on E-, F-, and I-Conversion

1. Specifications for successive fields are separated by
commas.

2. No format specification that provides for more char-
acters than permitted for a relevant input/output
record should be given. Thus, a format for a record

to be printed should not provide for more charac-
ters (including blanks) than the capabilities of the
printer.

3. Information to be transmitted with E- and F-con-
version must have floating-point names. Informa-
tion to be transmitted with I-conversion must have
fixed-point names.

4. The field width w, for F-conversion on output, must
include a space for the sign, a space for the decimal
point, and a space for a possible zero which pre-
cedes the decimal if the absolute magnitude is less
than 1. Thus w > d -+ 8.

Note: The maximum value of d that can be used is 20.
The field width w, for E-conversion on output, must
include one space for the sign, one space for possi-
ble rounding, one space for a decimal point, and
four spaces for: the E, exponent sign, and exponent.
Thus w_> the scale factor -+ d -+ 7.

5. The exponent, which can be used with E-conver-
sion, is the power of 10 to which the number must
be raised to obtain its true value. The exponent is
written with an E followed by a minus sign if the
exponent is negative, or a plus sign or a blank if the
exponent is positive, and then followed by one or
two numbers which are the exponent. For example,
the number .002 is equivalent to the number .2E-02.

6. If a number converted by I-conversion on output re-
quires more spaces than are allowed by the field
width w, the excess on the high-order side is lost.
If the number requires fewer than w spaces, the
leftmost spaces are filled with blanks. If the number
is negative, the space preceding the leftmost digit
will contain a minus sign if sufficient spaces have
been reserved, otherwise the minus sign will be lost.

Scale Factors (With Output Only). A scale factor can
be applied to data that is to be written, punched, or
printed as a result of F-type conversion. The scale
factor is the power-of-10 by which data is multiplied
before conversion. The designation nP, preceding an
F-type field specification, indicates a scale factor n.
For example, the specification 2PF10.4 results in multi-
plication of the data by 100 (10%) before conversion.
Thus in the earlier example, the internal data
7634352602 prints as: bbb—0.7634. Scale factor (for
F-type conversion only) can be either a positive or
negative number.

Scale factor can also be used with E-type conver-
sion for output. However, only positive scale factors
are allowed, and the magnitude of the converted data
remains constant because the shifting of the decimal
point to the right is offset by reduction of the E-expo-
nent. Thus in the earlier example, the field specifica-

- 4
tion 2PE12.4 causes the internal data 9320963102 to
print as: —93.2096Eb00.

Scale factors have no effect on I-type conversion.

A scale factor of zero is assumed if no other factor
is given. A scale factor assigned to an E- or F-type
conversion applies to all subsequent E- or F-type con-
versions in the same FORMAT statement, until nullified
by a different scale factor. Thus, for example, the
specifications 2PF10.4, E12.4, 4PF10.4, E12.4, have the
same effect as the specifications 2PF10.4, 2PE12.4,
4PF104, 4PE124.

Alphameric Field Specifications

Fortran provides two ways by which alphameric infor-
mation can be transmitted. The internal representation
of the data is the same as the external for both speci-
fications.

1. The specification Aw causes w characters to be
read into, or written from, a variable or array name.

2. The specification nH introduces alphameric infor-
mation into a FORMAT statement.
The basic difference between A- and H-conversion
is that information handled by A-conversion is
given a variable name or array name. Hence, it can
be referred to by means of this name by more than
one input or output statement list. Whereas, infor-
mation handled by H-conversion is not given a
name and may not be referred to or manipulated in
storage in any way.

A-Conversion. The variable name used in conjunc-
tion with A-conversion must be a floating-point vari-

able.

1. On input, Aw will be interpreted to mean that a
field of w characters is to be stored without con-
version, If w is greater than f, the extra (w —f)
rightmost characters will be dropped. If w is less
than £, the characters will be left-adjusted, and the
words filled out with blanks.

2. On output, Aw will be interpreted to mean that a
field of w characters is to be the result of trans-
mission from storage without conversion. If w ex-
ceeds f, only f characters of output will be trans-
mitted followed by w —f blanks. If w is less than
f the leftmost w characters of the word will be
transmitted.

Note: With f = 8, the format specification A10 will print an
eight-character mantissa and a two-character exponent.

H-Conversion. The specification nH is followed in
the FORMAT statement by n alphameric characters, and

17

XY=b-93.210bbbbbbbb
XY=9999. 999bbSNSSW1
XY=bb28. 768bbbbbbbb

Figure 4. Examples of A- and H-Conversions

should be separated from the next field by a comma.
For example:

81H THIS IS ALPHAMERIC INFORMATION

Note that blanks are considered alphameric charac-
ters and must be included as part of the count n. The
effect of nH depends on whether it is used with input
or output.

1. On input, n characters are extracted from the input
record and replace the n characters included with
the source program FORMAT specification.

2. On output, the n characters following the specifica-
tion, or the characters that replaced them, are writ-
ten as part of the output record.

Figure 4 shows an example of A- and H-conversion
in a FORMAT statement.

The statement FORMAT (4HbXY —, F8.3,A8) might
produce the lines shown in Figure 4 where b indicates
a blank character.

Figure 4 assumes steps in the source program read
the data SNSSW1, print the data when sense switch
1 is on, and print a word containing six blanks when
sense switch 1 is off.

Note: rormat (1Hb,8HXY—=,F8.3,A8) is equivalent to FOR-

mat (4HbXY=,F8.3,A8) where b is a blank. See Carriage
Control.

Blank Fields— X-Conversion

The specification nX introduces n blank characters into
an input/output record where n must be less than or
equal to the maximum record length.

1. Oninput, nX causes n characters in the input record
to be skipped, regardless of what they actually are.

2. On output, nX causes n blanks to be introduced
into the output record.

Repetition of Field Format

It may be desired to perform an input or output op-
eration in the same format on n successive fields with-
in one record. This can be specified by giving n, an
unsigned integer, before E, F, I, or A. Thus, the

18 Fortran: 1401 Specs. and Op. Proc.

field specification SE12.4 is the same as writing E12.4,
El124, E124.

Repetition of Groups

A repetitive group is a nonzero fixed-point constant
followed by a left parenthesis, a specification list, and
a right parenthesis. A repetitive group cannot itself
contain a repetitive group. Thus, FORMAT (2(F10.6,
E10.2), 14) is equivalent to FORMAT (F10.6, E10.2,
F10.6, E10.2, 14).

Multiple-Record Formats
See Format: General Form, items 8, 4, and 5.

The statement rForMaT (3F9.2, 2F10.3 // 12 //)
would specify a multirecord output block in which
records 1, 6, 11 ... have the format (3F9.2, 2F10.3),
records 2, 7, 12.. . .are blank, records 3, 8, 13..
have the format (I2), and records 4 and 5, 9 and 10,
14 and 15,.. . .are blank. On input, the same for-
mat descriptions apply and the blank records are
skipped.

If a multiple-record format is desired in which the
first two records are to be read or written according to
a special format and all remaining records according
to another format, the last record specification should
be defined as a repetitive group by enclosing it in
parentheses; for example,

FORMAT (12, 3E12.4/2F10.3, 3F9.4/(10F12.4))

If data items remain to be transmitted after the for-
mat specification has been completely interpreted, the
format repeats from the last previous left parenthesis.
Group repetition applies again if it is present. For ex-
ample, consider the FORMAT statement:

FORMAT (3E10.8, 2 (12, 2F12.4), E28.17)

If more items in the list are to be transmitted after
this format statement has been completely used, the
FORMAT repeats from the left parenthesis preceding
12, and the 2 for group repetition preceding this left
parenthesis applies again.

As these examples show, both the slash and the right
parenthesis of the FORMAT statement indicate a termi-
nation of a record.

Carriage Control

Control of the printer carriage requires a numerical
character (or blank) in the first position of the output
record for each printed line:

blank Single-space before printing
0 Double-space before printing
1-9 Skip to channel 1-9 before printing,

as indicated.

The control character does not appear in the printed
record. This control character is also required in out-
put tape records that are to be used for off-line tape-
to-printer operations.

The control character is usually provided by a 1H or
1X (see Alphameric Field Specifications) as the first
field specification of a FormaT specification. For ex-
ample, the field specification 1H6 causes a 6 to be in-
serted in the high-order position of the output record.
This in turn causes the printer carriage to skip to
channel 6 before printing. The specification 1X causes
a blank to be inserted in the output record, resulting
in single-spacing the printer carriage.

When alphamerical text is specified for the high-
order field of an output record, the control character
can be included in the alphamerical field specification.
Thus the earlier example under H-Conversion 4HbXY
= is changed to 4H6XY = to cause the printer
carriage to skip to channel 6. The specification can
also be written 1H6, SHXY —.

Data Input to the Object Program

Data input to the object program is punched into cards

according to the following specifications:

1. The data must correspond in order, type, and field
with the field specifications in the FORMAT state-
ment. Punching begins in card column 1.

2. Plus signs can be omitted or indicated by a .
Minus signs are indicated by an 1l-punch, or an
8-4 punch.

3. Blanks in numeric fields:

a. are regarded as zeros when no digits appear in
the field (blank field).

b. under E- and F- conversion are ignored when
they are to the left or to the right of numeric
characters; for example, the field 123bb under
the conversion F5.2 is interpreted as 1.23.

c. under I-conversion are regarded as zeros when
they are to the left or to the right of numeric
characters.

d. are not permitted between characters.

4. Numbers for E- and F-conversion can contain any
number of digits, but only the high-order f digits
of precision will be retained. (No rounding is per-
formed.)

5. In I-conversion only the low-order k digits of pre-
cision will be retained (k is the fixed-point pre-
cision value).

To permit economy in punching, certain relaxations
in input data format are permitted.

1. Numbers for E-conversion need not have four col-
umns devoted to the exponent field. However, if
the exponent field is not four columns, the decimal

point must be punched (see item 2 below). The
start of the exponent field must be marked by an
E or, if that is omitted, by a + or — (not a blank).
Thus, E2, E +- 2, -+ 2 and - 02 are all permissible
exponent fields.

2. Numbers for E- and F-conversion need not have
their decimal point punched. The format specifica-
tion will supply it. For example, the number
—09321 E + 02 with the specification E12.4 will be
treated as though the decimal point had been
punched between the 0 and the 9. If the decimal
point is punched in the card, its position overrides
the position indicated in the FORMAT specification.

Control of 1/O Operations., The FORMAT statement
indicates the maximum size of each record to be trans-
mitted. Except when a FORMAT statement consists en-
tirely of alphamerical fields, the FORMAT statement is
used with the list for some particular input/output
statement. Control in the object program transfers
repetitively between the list, which specifies whether
data remains to be transmitted, and the FORMAT state-
ment, which gives the specifications for transmission
of that data.

During input/output of data, the object program
scans the FORMAT statement to which the input/output
statement refers. When a specification for a numerical
field is found and list items remain to be transmitted,
input/output takes place according to the specification
of the FORMAT statement. If no items remain, trans-
mission ceases.

Read

General Form: READ n, List
n is the statement number of a FORMAT statement,
and List is as previously described under Lists of
Quantities.

Examples:
READ 1, DATA
READ 1, ((ARRAY (I,]),1=1,8),] =1,5)
The READ statement causes data to be read from one
or more cards as specified by its list and the FORMAT
statement to which it refers. The list specifies storage
locations for numerical input data. The FORMAT
statement:
1. Specifies the arrangement of data on the cards.
2. Specifies the type of conversion required for each
numerical data field.
8. Provides space for alphamerical text to be read
from cards.
4. Specifies card columns that are to be ignored.
5. Should specify a maximum of eighty card columns
for each input record (card).

See Format Specification.

19

Read Input Tape

General Form: READ INPUT TAPE i, n, List
i is an unsigned fixed-point constant or a fixed-point
variable, n is the statement number of a FORMAT
statement, and List is as previously described under
Lists of Quantities.

Examples:
READ INPUT TAPE 5, 30, DATA

READ INPUT TAPE N, 30, K, A (])

The READ INPUT TAPE statemcent causes one or more
tape records to be read as specified by its list and the
FORMAT statement to which it refers. Data is read in
external notation by symbolic tape unit i, where i
(constant or variable) can range from 1 to 6. The list
specifies storage locations for numerical input data.
The FORMAT statement:

1. Specifies the arrangement of data within tape rec-
ords.

2. Specifies the type of conversion required for each
numerical data field.

3. Provides space for alphamecrical text to be read

from tape.

Specifies data fields that are to be ignored.

5. Should specify a maximum of 133 characters for
each input tape record.

b

Records should be greater than 13 characters. Records
of 13 characters or less are considered noise records
and are bypassed. See Format Specification.

Punch

General Form: puNcH n, List
n is the statement number of a FORMAT statement,
and List is as previously described under Lists of
Quantities.

Examples:
PUNCH 1, cALC

punch 30, (A(]),] =1, 10)

The puNcH statement causes data to be punched into

one or more cards as specified by its list and the

FORMAT statement to which it refers. The list specifies

storage locations of numerical output data. The FOR-

MAT statement:

1. Specifies the arrangement of data on the cards.

2. Specifies the type of conversion and scale factor
required for each numerical data field.

3. Provides alphamerical text to be punched into
cards.

4. Specifies card columns that are to be skipped.

5. Should specify a maximum of cighty card columns
for each output record (card).

Sce Format Specification.

20 Fortran: 1401 Specs. and Op. Proc.

Print

General Form: pRINT n, List
n is the statement number of a FORMAT statement
and List is as previously described under Lists of
Quantities.

Examples:

PRINT 1, CHART

rrintT 2, (A (]),] =1, 10)
The PRINT statement causes one or more lines of data
to be printed as specified by its list and the FoRMAT
statement to which it refers. The list specifies storage
locations of numerical output data. The rorMaAT state-
ment:

1. Contains a carriage control character that is not
printed (sce Printer Carriage Control).

2. Specifics the arrangement of data to be printed.

3. Specifies the type of conversion and scale factor
required for each numerical ficld.

4. Provides alphamerical text to be printed.

Specifies print positions that are to be skipped.

6. Should specify a maximum of 100 or 132 characters
(exclusive of the carriage control character) de-
pending on the model 1403 used.

Sec Format Specification.

Write Output Tape

General Form: WRITE OUTPUT TAPE i, n, List

i is an unsigned fixed-point constant or a fixed-point
variable, n is the statement number of a FORMAT
statement, and List is as described under Lists of
Quantities.

“

Examples:
WRITE OUTPUT TAPE 4, 30, TOTALS
wriTE ouTruT TAPE L, 30, (A(]),] = 1, 10)
The WRITE OUTPUT TAPE statcment causes one or more
tape records to be written as specified by its list and
the ForMAT statement to which it refers. Data is writ-
ten in external notation by symbolic tape unit i, where
i (constant or variable) can range from 1 to 6. The list
specifies storage locations of numerical output data.
The FoRMAT statement:
1. Specifics the arrangement of data within tape
records.
2. Specifies the type of conversion and scale factor
required for each numerical data field.
Provides alphamecrical text to be written on tape.
Specifies data ficlds that are to be skipped.

5. Should specify a maximum of 133 characters for
each input tape record. All output tape records
are 133 characters long. Any record of less than
133 characters is padded with blanks to produce
a 183-character tape record.

>

See Format Specification.

Read Tape

General Form: READ TAPE i, List
i is an unsigned fixed-point constant or a fixed-point
variable, and List is as previously described under
Lists of Quantities.

Examples:

READ TAPE 2, ARRAY

READ TAPE K, (A(]),J =1, 10)
The READ TAPE statement causes a single tape record
to be read as specified by its list (a FORMAT statement
cannot be used). Data is read in internal notation by
symbolic tape unit i, where ¢ (constant or variable)
can range from 1 to 6. Data read by a READ TAPE
statement must have been written previously by a
WRITE TAPE statement, When the list is a single non-
subscripted array name, the storage space allocated to
the array must be exactly equal to the tape record
length. When the list contains multiple names or sub-
scripted array names, the storage space allocated must
not exceed that specified by the list of the wrIiTE TAPE
statement that produced the tape record.

See Input/Output Option for further information
on READ TAPE statements.

Write Tape

General Form: WRITE TAPE i, List
i is an unsigned fixed-point constant or a fixed-point
variable, and List is as previously described under
Lists of Quantities.

Examples:
WRITE TAPE 4, ARRAY
wrITE TAPE K, (A (J),] = 1, 10)

The wWRITE TAPE statement causes a single tape record
to be written as specified by its list (a FORMAT state-
ment cannot be used). This statement is frequently
used for temporary bulk storage of data, particularly
arrays. Data is written in internal notation by symbolic
tape unit 4, where ¢ (constant or variable) can range
from 1 to 6. The length of the tape record is deter-
mined by the list.

When the list is a single non-subscripted array
name, the maximum length of the record is restricted
only by available storage space. The record length
must not be less than 13 characters, because this is
considercd to be a noise record.

When the list contains multiple names or sub-
scripted array names, the record length must not
exceed 233 characters. There is no minimum record
length, because an intermediate storage area is blank-
filled to produce a 233-character tape record. Note
that array names must be subscripted when they
appear in a multiple-name list.

See Input/Output Option for further information
on WRITE TAPE statements.

End File

General Form: END FILE §
i is an unsigned fixed-point constant or a fixed-point
variable.

Examples:

END FILE 6
END FILE K
The END FILE statement causes a tape mark to be writ-

ten by symbolic-tape-unit .

Rewind

General Form: REWIND {
i is an unsigned fixed-point constant or a fixed-point
variable.

Examples:

REWIND 3

REWIND K
The REWIND statement causes symbolic-tape-unit i to
be rewound.

Backspace

General Form: BACKSPACE {
i is an unsigned fixed-point constant or a fixed-point
variable.

Examples:

BACKSPACE 5

BACKSPACE K
The BACKSPACE statement causes symbolic-tape-unit {
to backspace one physical record. Note that more
than one physical record can be produced by a wriTe
OUTPUT TAPE statement, thereby requiring more than
one BACKSPACE operation.

Specification Statements

The final class of 1401 Fortran statement consists of
the two specification statements: DIMENSION and
EQUIVALENCE. These are non-executable statements
that control and minimize storage allocation.

Dimension

General Form: DIMENSION v, 0, 0, . . .
Each v is the name of an array, subscripted with
one or two unsigned fixed-point constants. Any num-
ber of v’s may be given.

Example:
pIMENSION A (10), B (5, 15), CVAL (3, 4)

21

The DIMENSION statement provides the information
necessary to allocate array storage in the object pro-
gram,.

Each variable that appears in subscripted form in a
program must appear in a DIMENSION statement of that
program. The pIMENSION statement must precede the
first appearance of that variable. The pixtENsION state-
ment lists the maximum dimensions of arrays. In the
object program, references to these arrays can never
exceed the specified dimensions.

In the example given, B is a 2-dimensional array
for which the subscripts never exceed 5 and 15. The
DIMENSION statement, therefore, causes 75 (5 X 15)
storage words to be set aside for the array B.

A single DIMENSION statement can specify the dimen-
sions of any number of arrays.

Symbolic tape unit numbers must not appear in a
DIMENSION statement.

Equivalence

General Form:

EQUIVALENCE {(a, b, ¢, ..), (d, e, f,.. .),...a, b, c,
d, e, f, ... can each be a non-subscripted variable,
or a variable with a single integer subscript.

Example:

EQUIVALENCE (4, B (1), C (5)), (D (17), E (3))

The EQUIVALENCE statement affects core-storage assign-
ment to thz object program by indicating that two or
more variables are to be assigned to the same core-
storage location. Each pair of parentheses in the state-
ment list encloses the names of the variables that are
to be stored in the same location during execution of
the object program.

Any number of equivalences (pairs of parentheses)
can be used in a statement, and any number of vari-
able names can be used within an equivalence. How-
ever, the names within the equivalence must be either
all fixed-point or all floating-point, unless the floating-
point size, plus two, equals the fixed-point size

(f+2=Kk).

Arrays: An equivalence involving elements of two or
more arrays completely defines the relative locations
of these arrays. In the preceding example, the equiv-
alence (D (17), E (3)) implies that D (15) and E
(1) share the same location. If a nonsubscripted ar-.
ray name is given, the subscript is assumed to be 1.
In the example, assuming A is an array name, A (1)
shares core storage with B (1) and C (5).

To include an element of a two-dimensional array
in an equivalence, specify its position in the stored se-
quence of elements of that array. Suppose that D is an

array defined in the following statement:
DIMENSION D (4, 5).

If D (3,2) is to share a core-storage location with the

22 Fortran: 1401 Specs. and Op. Proc.

variable E, D (7) must appear with E in an equiva-
lence, because D (8, 2) is the seventh element of the
array D. See Arrangements of Arrays in Storage.

Simple Variables: 1f a nonsubscripted variable does
not refer to an array and appears in an EQUIVALENCE
statement, it is treated as a one-dimensional array,
and assigned a location towards the end of core stor-
age. Like an array, it is subject to the following re-
strictions:

1. It must not be used to represent symbolic tape-
unit numbers.

2. It must be subscripted when it appears in a mul-
tiple-name list of a READ TAPE Or WRITE TAPE
statement.

Input-Output Option

The user can choose the input-output format routine
or designate that no format routine be included in the
object program, depending on the type of input and
output statements required by the program. If an I/0
format routine is required, the user may choose either
(1) the full I/0 format routine or (2) the limited I/0
format routine or (3) the full format routine plus the
A-conversion format routine. (See Control Card.)

The full format routine occupies about 2600 posi-
tions of core storage and is capable of executing all
types of input and output statements (as described
under Input-Output Statements). The full format rou-
tine plus the A-conversion format occupy about 2900
positions of core storage.

The limited format routine occupies 300 positions of
core storage, and is capable of executing only the
READ TAPE and WRITE TAPE instructions of the follow-
ing form:

READ TAPE i, array:, arrays, . . . , array;

WRITE TAPE i, arrayi, arrays, . . . , array;

Note: Only dimensioned variables can be specified in the list.

Each array is written on tape unit i as a single phy-
sical record, therefore these lists are not subject to the
same length requirements as the lists of the ordinary
READ TAPE and WRITE TAPE statements (see Read Tape
and Write Tape under Input-Output Statements).

Records written by WRITE TAPE statements used with
the limited format routine may be read by READ TAPE
statements used with the full format routine, if the
lists satisfy the restrictions of the full format routine
as described under Read Tape and Write Tape.

Note: Only dimensioned variables can be specified in the list.

If the limited format routine can be used, instead
of the full format routine, a considerable amount of
extra storage can be saved for use in computation

(because the full format routine requires 2500 posi-
tions and the limited format routine only 300 posi-
tions).

Note: The input-output option also applies to the individual

scgments of a segmented program, as though cach segment
were a separate program. See Program Linkage.

Program Linkage

The user may want to link two or more programs to-
gether for continuous processing; or if a program is
too large to fit into core storage, and therefore broken
into segments, he may want to link the segments for
continuous processing. 1401 Fortran provides such a
facility for linking programs or program segments.
(For the following explanation, the word segment is
used in a gencral sense to refer to both programs and
program segments that are to be linked with other
programs or program segments.)

]
9]

1401 Fortran includes a linkage statement (see
Linkage Statement) that causes:

1. the clearing of only a specified area of core storage
for the next segment to be read, therefore allowing
certain processed data from a segment to be pre-
served, in core storage, when the next segment is
read in for execution

2. the reading of the next segment into core storage
for execution.

Segments are compiled separately. The compiled
segments can be read, for execution, from cards, tape,
or both cards and tape (see Preparing the Condensed
Card Decks for Execution under Running Programs
Containing Linkage Routine).

When any compiled segments are to be read from
tape, the user loads those segments with title cards
to identify each segment (see Title Cards) on a tape,
referred to as a library (LIB) tape. Segments are
loaded on the LIB tape using Utility Deck Three
(phase 95 of the 1401 Fortran compiler). In the load-
ing process, Utility Deck Three first supplies and loads
a monitor program on the LIB tape. The monitor pro-
gram makes it possible to find and correct errors in
segments without rewriting the LIB tape and to
change the order in which segments are read from
the LIB tape for execution. See Monitor Program.

For each segment, the user also has the input-output
format-routine option described under Input-Output
Option. Therefore, depending on the type of input and
output statments required in a particular segment,
the user can specify either the full or limited 1/0
format routine, or no format routine if no input and
output statements are required. If the limited format
routine can be used, instead of the full format routine,
a considerable amount of core storage can be saved
for computation in that particular program segment.

Note: The linkage statement allows the user to keep the
processed data from one segment in core storage, while reading
in the next segment. This enables the user to eliminate the
input and output statements that otherwise would have been
required to write or punch out the processed data while the
next segment is read in, and to read in that data for use in the
new segment.

Linkage Statement

General Form: a = XLINKF(m). a represents a fixed-
or floating-point variable-name that is either non-
subscripted or subscripted with a single variable.
The name a designates the location in array storage
from which core storage is cleared before reading
in the next segment. m represents a constant or non-
subscripted fixed-point variable whose magnitude

must be = 999999, The contents of the field desig-
nated by m specifies the location of the next seg-
ment.

Examples:

ADUMMY(2000) = XLINKF(2)
MATRIX(I) = XLINKF(M)

The linkage statement is unique to 1401 Fortran.
Although it is in the form of an arithmetic statement,
it does not perform an arithmetic operation. It is
a control statement that supplies information to a
linkage routine that determines the location of the
next segment to be executed, clears a specified area
of core storage, and reads the next segment into core
storage for execution.

Note: Every segment loaded on the LIB tape must contain
a linkage statement.

Preservation of Array Storage

The variable-name a designates the position in array
storage from which the linkage routine clears storage
before reading in the next segment (see Location of
Next Segment).

1. If a is nonsubscripted or subscripted with a con-
stant, the linkage routine clears storage from the
position preceding the first position of array storage
down through position 700. Therefore, all array
storage is saved for the next segment. For example:
I(3) == XLINKF(M) and A = XLINKF(M) both
will result in all of array storage being saved.

2. If a is subscripted with a variable, the linkage
routine clears core storage from the position pre-
ceding the array represented by @ down through
position 700. Therefore, the portion of array storage
from the array represented by a to the end of array
storage is saved for the next segment. For example:
A(I) = XLINKF(M) results in the portion of array
storage from the beginning of the array A(1), A(2),
.+« A(i) to the end of array storage being saved,
regardless of the present value of the variable I.

a may be a two-dimensional array, but must be
given a single subscript if core storage preceding
the array a is to be cleared. For example, if B is a
two-dimensional array, both B(I) = XLINKF(M)
and B(J) = XLINKF(M) result in core storage pre-
ceding B(1, 1) being cleared.

Array Storage

The pIMENSION statement provides the compiler with
the information necessary to allocate storage for arrays
of variables. Each different variable name that is sub-
scripted must appear (with its largest possible sub-
script) in a DIMENSION statement. Each variable in a

23

DIMENSION statement represents an array to the com-
piler, and the number of clements in the array is deter-
mined by the subscript. For example, if the variable
A(2) were specified in a DIMENSION statement, A(1)
and A(2) make up the corresponding array that would
be allocated storage. See Arrangements of Arrays in
Storage for more examples of arrays.

The order in which the compiler takes arrays for
storage depends on two factors:

1. the order in which the piMENsION statements appear
in the source program and

2. the order in which the subscripted variables appear
in the pIMENSION statement.

Note: The individual elements of each array are stored as
described under Arrangements of Arrays in Storage.

In the following example, Order refers to the order
in which the pIMENSION statements are read into core
storage:

Order Statements
1 DIMENSION MATRIX (3, 4), VECTOR(3)
2 DIMENSION A(2), B(2), C(1)
3 DIMENSION ARG(5), ANS(7)

The resulting array storage is as follows, with ARG(1)
being assigned the low address, VECTOR(3) the high
address, and the remaining variables being assigned
addresses between them in the order specified:

ARG(5), ANS(1), ANS(2), ..., ANS(7),
C, MATRIX(1,1), MATRIX(2,1),

ARG(1), ARG(2), ...,
A(1), A(2), B(1), B(2),

MATRIX(3,1), MATRIX(1,2), ., MATRIX(1,3), . . . ,
MATRIX(1,4), ..., MATRIX(3,4), VECTOR(1), VECTOR(2),
VECTOR(3).

Notes on Array Storage

1. If arrays are to be saved from one segment to the
next:

a. They must be the last arrays specified in the
DIMENSION statement if only one DIMENSION
statement is used.

b. If more than one pDIMENSION statement is used,
the piMENsioN statement(s) defining the addi-
tional arrays should occur after the pIMENsION
statement defining the arrays to be saved.

2. The saved arrays from the previous segment may be
given different variable-names in the current seg-
ment, as long as the size and mode (fixed-point or
floating-point) of each array remains the same. The
same area for both fixed-point and floating-point
arrays may be reserved only if the fixed-point pre-
cision equals the floating-point precision plus two,

thatis, k =1f 4+ 2

24 Fortran: 1401 Specs. and Op. Proc.

3. EQUIVALENCE statements containing elements of ar-
rays affect the allocation of array storage for those
elements. See EQUIVALENCE for an explanation
and example.

4. Simple variables are not saved from one segment
to another, however, they may be saved by includ-
ing them in array storage by:

a. defining them as a single-element array in a
DIMENSION statement, or

b. including them in an EQUIVALENCE statement.

Location of Next Segment

The subscript m specifies whether the next segment is
to be taken from cards or tape and which segment on
tape if tape is designated, or whether control is to
pass to the monitor program.

1. If m = 0, the next segment will be taken from
cards. Any unread data cards that precede the next
segment are ignored. The following examples cause
the next segment to be read from cards:

A = XLINKF (0)
A = XLINKF (M), where the contents
of the field designated by M is zero.

2. If m>0, the next segment will be taken from tape.
In this case the value of m must be a segment
number (see Title Cards) to identify the segment.
The following examples cause segment three to be
taken from tape:

A = XLINKF (3)
A = XLINKF(M), where the field de-
signated by M contains 3.

3. If m <0, control will pass to the monitor program.
(See Monitor Program.) The following examples
cause control to pass to the monitor program:

A =XLINKF (—1)
A = XLINKF (M), where the field designated by
M contains —1.

Title Cards

Each program segment to be written on the LIB tape
must have a title card to give the segment a number.
The format of the title card is as follows:

Columns Contents

8-10 LIB
12-17 Program segment number

The program segment number may be any number
the user wishes, however, it must be six digits long.
Therefore if the program number is 17, columns 12-17
must contain 000017, respectively.

The Monitor Program

If segroents are to be executed from tape or both cards
and tape, Utility Deck Three (phase 95) is used to
load the appropriate segments on tape. Before Utility
Deck Three loads segments on tape, it first supplies
and loads a monitor program. The tape that contains
the monitor program and segments is referred to as a
LIB (library) tape. (If the segments are to be executed
only from cards, Utility Deck Three is not used and,
therefore the monitor program is not supplied.)

The monitor program has three main functions:

1. It initially gets the program into operation by de-
termining the location of the first segment and
reading it into core storage for execution.

2. Between segments it can provide the user with a
core-storage dump of the segment just executed.

3. It provides the user with the facility to change the
order in which segments are normally executed.
(That order was determined by the linkage state-
ments in each of the segments.)

In each case the monitor program requires informa-
tion from a special control card, called a call card.
Call cards are only used with the monitor program.
The format of a call card is as follows:

Card
Columns Contents Explanation
1-4 Either the letter The letter C followed by the three-
C followed by a digit machine address specifies that
three-digit ma- core storage is to be cleared from
chine address the three-digit address down
or blanks. through position 700 before the
next segment, specified by columns
12-17, is read in for execution.
Blanks indicate that no core stor-
age is to be cleared before the next
segment is read in.
8-10 LIB LIB identifies the card.

12-17 Either a six-digit A segment number specifies which
segment number segment on tape is to be read in
or blanks, next for execution. Blanks indicate

the next segment is to be read
from cards.

19-24 Either a six-digit The contents of this field is stored

and used for comparing against
subsequent segments to be read
from tape. When a match is made
with the number of a subsequent
segment, the monitor program is
called instead of the segment.

segment number
or blanks.

Note: The word first can be substituted for the word next in
each of the explanations jf the monitor program is determining
the location of and reading the first segment.

Initialize Operation

The procedure for running a program that has any
segments on tape is such that the monitor program is
always read into core storage first. In this case the first
card in the reader should be a call card, because the
monitor program reads cards until it finds a call card.
Therefore, any cards preceding the call card are ig-
nored and the information from them is lost. The moni-
tor program checks columns 12-17 of the call card to
determine the location of the first segment. The con-
tents of columns 19-24 is stored. If a C followed by a
three-digit machine address is in columns 1-4, the
monitor program will clear the storage specified be-
fore reading in the first segment.

Using the Monitor Program Between Segments

The monitor program can also be called between pro-
gram segments to provide a core-storage dump of the
last segment executed, change the order in which
segments are executed, or both. In each case, as in the
case of determining the first segment, the user must
provide a call card for the monitor program to read.

The linkage statement of a segment calls for the
monitor program when the field designated by the
variable m contains either:

1. anegative number, or

2. a number that equals the segment number stored
from columns 19-24 of the last call card that was
read.

Note: The last call card that was read would be the initial
call card if the monitor program was not previously called.

After the monitor program is called, the linkage
routine reads the monitor program into core storage.
The monitor program will give a core-storage dump
of the segment just executed if (1) the field designated
by m in the linkage statement contains a negative
number and sense switch G is on, or (2) the contents
of the field designated by m matches the segment
number stored from columns 19-24 of the last call card
that was read. The user can suppress the core-storage
dump only if the monitor program is called because
the field designated by m contains a negative number
and sense switch G is off.

After the core-storage dump (if any), the monitor
program reads cards until it finds a call card. Data
from cards preceding the call card is ignored. The
monitor program stores the contents of columns 19-24
of the new call card to replace the stored contents of
columns 19-24 of the previous call card. The monitor
program then reads columns 12-17 of the new call
card to determine the location of the next segment. If

25

columns 1-4 contains a C followed by a three-digit ma-
chine address, the monitor program clears the core
storage specified before reading in the next segment
for execution.

The stored contents of columns 19-24 of the new
call card will later be compared against the contents
of the field designated by the variable m in subsequent
linkage statements until the monitor program is again
called and another call card is read.

The facility to call the monitor program enables
the user to find errors in a segment on the LIB tape,
and later when rerunning the program enter the cor-
rected segment, without rewriting the LIB tape. The
core-storage dump the monitor program provides can
be used to find errors in a segment by calling the
monitor program to provide the dump after the seg-
ment is executed. The core-storage dump is provided
after the linkage statement is executed, therefore a
portion of core storage has been cleared leaving only
the saved arrays and the monitor program. Then, after
correcting the errors and obtaining the corrected
condensed card deck, the user can call the monitor
program just before the segment in error on the LIB
tape is read and can specify in the call card (that the
monitor program will read) that the next segment is to
be taken from cards.

The Processor Program

The 1401 Fortran processor program (compiler) tran-
slates the source program and compiles the object
program. The user, however, must supply certain in-
formation in a control card used by the processor pro-
gram.

Included in this section is a description of the con-
trol card and the logical flow of the processor program.

Control Card

It is necessary for a control card (PARAM) to precede
the first card of the source program or program seg-
ment to communicate the following information to the
compiler:

1. Core storage size. This specification (a three-char-
acter 1401 address) must be equal to or less than
the core storage size of both the compiler machine
and any object machine on which the object pro-
gram is to be executed. If it is less than either ma-
chine size, that part of core storage beyond the
specified address is unaffected during both com-
pilation and execution.

2. The modulus (k) or word-size for the values of
fixed-point (integer) variables in the object pro-
gram.

26 Fortran: 1401 Specs. and Op. Proc.

3. The mantissa length (f) for the values of floating-
point variables in the object program. Because of
the two-position characteristic on the right, the
word-size for floating-point variables is f + 2.

4. Whether or not a self-loading, condensed object
program deck is to be punched following compila-
tion.

5. Whether or not a snapshot of the generated pro-
gram in core storage (not including the arithmetic
and format [I/0] routines) is to be printed follow-
ing compilation.

6. Whether or not 1401 Fortran is being compiled on
the 1410 in the 1401 compatability mode.

7. Whether or not an input/output format routine
other than the ordinary format routine is to be
included in the object program.

Columns Function

1-5 PARAM — this field identifies the control card.

6-8 The machine language for the highest core storage
address (END) to be used by the compiler and object
program. These are normally the physical limits; e.g.,
19Z for 8,000 positions of core storage available, I9R
for 12,000 positions, and 191 for 16,000 positions.

9-10 The fixed-point modulus (k)

bb (blank) means k=5
01, the minimum, means k = 1
02 means k=2
2.0, the maximum, means k - 20

11-12 The floating point mantissa length (f)
bb (blank) means f=28
02, the minimum, means f = 2
03 means f=3
Zb, the maximum, means f = 20
13 P, if condensed deck is desired; blank if not
14 S, if storage snapshot is desired; blank if not
15 T, if processing on the M 1410 in the 1401 compati-
bility mode
16 X, if no format routine is desired

L, if the limited format routine (READ TAPE, WRITE
TAPE operations only) is desired

b (blank), if the ordinary format routine is to be used

A, if the A-conversion format routine is to be added
to the ordinary format routine. The A must be
punched for A-conversion to operate correctly.

Logical Flow of the Processor

Snapshot Phase (00)
1. Sets word marks for constants.

2. Loads snapshot routine into positions 333-680 of
core storage. (This routine performs a core-storage
dump of a specified amount of core storage.) It
remains there throughout compilation.

System Monitor (01)

1. Brings in next phase from system tape or initiates
reading of next phase from cards, depending on
whether the compiler is being used as card or tape
system.

2. Clears previous phase to insure that no group-mark
word-mark characters exist in the compiler area
of storage when operating as a tape system.

Note: The monitor exists in storage throughout compilation.

When a phase has completed its function, it transfers con-
trol back to the monitor.

Loader Phase (02)

1. Stores the information of the control card (PARAM).

2. Checks that the storage size indicated on the con-
trol card does not exceed the machine storage ca-
pacity, unless T is punched in column 15.

3. Stores the source program beginning at the address
indicated on the control card. The source program
is stored backwards to exploit the 1401 machine
instructions that cause address registers to decre-
ment during the scanning of the source program.
Appended on the right of each statement is the
statement number (if any), a one-character position
which will become the statement-type code, and
three positions for the internal sequence number.

4. Eliminates all non-significant blanks from the input
statement while storing it. Blanks are retained only
in the H-conversion part of FORMAT statements.

5. Checks that there are not more than nine continu-
ation cards.

6. Checks for input statement characters (11-3-8
punch) or (4-8 punch), except in the H-conversion
part of FORMAT statements. The former, if present,
is changed to *(11-4-8 punch), the latter to —(11
punch). A record mark is treated as an end-of-card
character.

7. Each statement is bounded by group-mark word-
marks. The appendage is separated from the main
body of the statement by a 5-8 punch character.

8. A sror is generated as the last statement.

Scanner Phase (03)

L. Determines the statement type and inserts the code
in the appendage of each statement.

2. Supplies a sequence number to each statement.

Sort Phase One (04)

Determines if there is enough free storage remaining
to expand each statement by three characters. If not,
the compilation ends. A message is printed indicating
that the object program is too large.

Sort Phase Two (05)

Statements of the same type are chained. Each state-
ment expands by three characters to contain the ad-
dress of the next statement of the same type.

Sort Phase Three (06)

The source program is sorted by statement type. At
the end of the sort, the source program has been
shifted to the leftmost part of available storage.

Insert Group-Mark Phase (07)

The 5-8-punch which separates the main body of the
statement from its appendage is replaced by a group-
mark word-mark.

Squeeze Phase (08)

1. The words which defined the type of statement are
eliminated, shrinking the source program. For ex-
ample, the word dimension in DIMENSION statements
is squeezed out.

2. Statements that do not begin with legal statement-
defining words are noted on the printer and are
eliminated from the source program.

Dimension Phase One (09)

A table of arrays is generated at the end of storage.
Each table element consists of the array name, its di-
mensions and sufficient space for control statements
and data generated by the equivalence phases and by
pIMENSION Phase Two.

Equivalence Phase One (10)

1. Assures all arrays present in EQUIVALENCE state-
ments are defined.

2. Adds simple variables present in EQUIVALENCE
statements to the table of arrays generated by the
previous phase. These variables are treated, in ef-
fect, as one-element arrays.

Equivalence Phase Two (11)

The dimension table is altered to show the relation-
ship between arrays. The procedure, essentially, is to
make every array whose first element is equivalent to
a secondary element of another array know the dis-
tance to the first element of the latter array.

Dimension Phase Two (12)
Arrays are assigned their object-time addresses.

Variables Phase One (13)

The source program is scanned for variables. Simple
variables are merely tagged for later processing by
Variables Phase Four. Subscripted variables whose

27

subscripts are constants are replaced by the object-
time address of the array element. Subscripted vari-
ables whose subscripts are variable are replaced by
the computation required at object time to determine
the array element selected. Non-subscripted array
variables appearing in lists are replaced by two ma-
chine-language addresses representing the limits of
the array. Non-subscripted array variables appearing
elsewhere are replaced by the address of the first ele-
ment of the array.

Variables Phase Two (14)
The entire source program is shifted to the top (left-
most part) of available storage, leaving room for sub-
sequent compiler phases. The remaining storage is
cleared for tables including the array table generated
by Dimension Phase Two.

Variables Phase Three (15)

This phase does housekeeping for Variables Phase
Four.

Variables Phase Four (16)

The compiler first scans input-output lists and the
left side of equal signs for simple variables. Each
unique variable is placed in a table with its object-
time address. In the second scan of this phase, all vari-
ables are matched against the table. When an entry is
found, the object-time address is substituted in the
statement for the variable name. Variable names not
present in the table are undefined.

Variables Phase Five (17)
A check is made for unreferenced variables.

Constants Phase One (18)

Constants in the source program are noted and nor-
malized and/or truncated.

Constants Phase Two (19)

Same as Variables Phase Two. The table of simple
variables is destroyed.

Constants Phase Three (20)

Constants are placed in their object-time locations at
the lower end of storage. The object-time addresses
replace the constants wherever they appear.

Subscripts Phase (21)

Subscripts which must be computed at object time
are reduced to the required parameters.

28 Fortran: 1401 Specs. and Op. Proc.

Statement Numbers Phase One (22)

All statement numbers that appear in the source pro-
gram are reduced to a unique three-character repre-
sentation. Statement numbers within the statement
are moved to the beginning of each source-program
statement (rightmost end of statement in storage) that
contains these elements.

Tamrof Phase One (23)

FORMAT statements are checked to insure that they
are referenced by input-output statements.

Tamrof Phase Two (24)

The object-time format strings are developed and
stored immediately preceding the constants at the
lower (rightmost) end of storage.

Lists Phase One (25)

Duplicate lists are checked and eliminated to optimize
storage at object time.

Lists Phase Two (26)

The object-time list strings are developed and stored
immediately to the left of the format strings at the
lower end of storage.

Lists Phase Three (27)

Each input-output statement is reduced to the ad-
dress of the list string (when present); the format
string (when present); and the tape unit number
(where applicable).

Statement Numbers Phase Two (28)
Same as Variables Phase Two.

Statement Numbers Phase Three (29)

The three-character equivalents of statement numbers
appearing within statements (generated by Statement
Numbers Phase One) are placed in a table.

Statement Numbers Phase Four (30)

The three-character equivalents of statement numbers
which identify statements is matched against the state-
ment number table. When the equivalent is found, the
sequence number generated by the compiler for that
statement is substituted in the table. Unreferenced
and multi-defined statement numbers are checked.

Statement Numbers Phase Five (31)
Undefined statement numbers are noted.

Input /Output Phase One (32)

The linkage to the object format routine from the
input-output statements is generated in-line.

Arith Phase One (23)

This is a housckeeping phase. The unary minus (negate)
and exponentiation operators are changed to unique
one-character symbols. Error checking also takes
place.

Arith Phase Two (34)

All arithmetic and 1F statements are unnested using
a forcing table technique. Error checking continues.

Arith Phase Three (35)
Initialization for Arith Phase Four takes place.

Arith Phase Four (36)

Strings generated by Arith Phase Two are optimized
to reduce the number of temporary storage areas for
each statement.

Arith Phase Five (37)

1IF statement exits and strings for exponentiation are
created.

Arith Phase Six (38)

Optimization of temporary storage areas takes place.
These areas are assigned definite locations in storage.

input/Output Phase Two (39)

In-line instructions are generated for executing END
FILE, REWIND and BACKSPACE statements.

Computed Go To Phase (40)

Statements with two to ten exits generate in-line in-
structions.

Go To Phase (41)

An unconditional BRANCH instruction is generated
in-line in place of the original statement,

Stop/Pause Phase (42)
The proper instructions to
1. mavr

2. halt, continue, and display the number indicated
are generated in-line,

fense Light Phase (43)
In-line instructions are generated.

If (Hardware) Phase (44)

In-line instructions are generated for 1r (SENSE SWITCH
i) and 1¥ (SENSE LIGHT 7).

Continue Phase (45)

No object-time instructions are generated for these
statements. This phase passes information required by
the Resort phases of the compiler.

DO Phase (46)

Strings of unconditional BRANCH instructions and pa-
rameters are generated in-line. An unconditional
BRANCH is generated to follow the last statement within
the range of the po.

Resort Phase 1 (47)

An area is made available for a table to assist in re-
sorting the statements into their original order.

Resort Phase 2 (48)

The resort table is filled with the current location of
each statement.

Resort Phase 3 (49)

The source program is resorted back to its original
order. The statement number table is altered to show
the current address of each statement.

Resort Phase 4 (50A)

The statements are relocated to the positions they will
occupy at object time. The statement number table is
adjusted to show the object time locations of the
statements.

Shift Constants, Formats, and Lists (50B)

Constants, formats, and list strings are moved into
their object core-storage locations above array stor-
age. Array storage-area is cleared.

Replace Phase One (51)

Object-time instructions which reference statement
numbers are corrected to the object-time addresses of
the statement. Subscripts strings are cleaned up.

Load Phase (52) — Sections B and C (52A)

As the object coding may originate at 1697, the coding
for phase 52 must be split into two parts, the first of
which replaces the snapshot coding in positions 333-
680. This phase loads the two sections.

29

Function/Subroutine Loader Phase (52B and 52C)

Relocatable function routines and subroutines are
loaded. A table of the starting addresses of these rou-
tines is created.

Relocatable Package (53)

The relocatable routines loaded in 52B and 52C con-
stitute phase 53A of the compiler.

Reloading Snapshot (53R)

The snapshot coding which was replaced by 52B is
retained. If a snapshot is requested for phases 52 and
53, it is taken at this point.

Snapshot (53S)
Same as snapshot in phase 00.

Format Package Loader Phase (54A)

This phase selects the proper I/O routine and loads
it into its object core-storage location.

Object Time Limited 1/0 Format (54B)
This is the limited I/0 routine loaded by 54A.

Object Time Format (54C)
This is the regular I/0 routine.

Object Time A Format (54D)
This is the A-format routine.

Replace Phase 2 (55)

Addresses of the fixed- and floating-word work-areas
are inserted into the generated object program. In-
structions which branch to the relocatable routines
are corrected to show the object core-storage addresses
of these routines. Unused core storage is cleared.

Snapshot Phase (56)

A snapshot of the generated program is printed if
requested (if there were no source program errors
which would make program execution unrewarding).

Condensed Deck Phase One (57)

When requested (if there are no input errors), the
compiler will punch a self-loading card deck. The
deck is listed on the printer if sense switch B is on.
This phase punches only the clear-storage and boot-
strap cards.

30 Fortran: 1401 Specs. and Op. Proc.

Condensed Deck Phase Two (58)

This phase punches the cards that will initialize the
index registers and sense lights, the snapshot or the
linkage routine, the arithmetic routine, and certain
fixed addresses and constants.

Copy of Snapshot Routine (59A)
This is the object-time snapshot coding loaded by 38.

Fixed XLINK Routine (59B)
This is the object-time linkage routine.

Arithmetic Operations (59C)
This is the object-time arithmetic routine.

Condensed Deck Phase Three (60)

This phase punches the generated instructions, the
constants, lists and format strings, and the i format
routine.

Geaux Phase One (61)

This phase prints the end of compilation message,
initializes the sense lights, and prepares the branch
into the object program coding.

Geaux Phase Two (62)

The arithmetic routine is loaded. Communication is
established between that routine and the generated
coding. The index registers are initialized.

Arithmetic Package (63)

This phase is comprised of the arithmetic routine
which is loaded by Geaux Phase Two.

Arithmetic Operations

The fixed- and floating-point arithmetic operations
necessary for the execution of the compiled program
are performed by an arithmetic routine which always
appears in every compiled Fortran program. It con-
tains a monitor routine which interprets the string
of operand addresses and codes for operations which
is compiled as a part of the procedure for every arith-
metic expression in the source program. It also contains
the various subroutines to accomplish the basic opera-
tions of add, subtract, multiply, and divide for both
fixed-point and floating-point numbers, and a routine
to normalize floating-point results.

In addition, the monitor routine will, when a func-
tion code in the string is encountered, initiate a trans-
fer of control to one of the various function routines.
These are referred to collectively as the relocatable
functions, and are individually and selectively loaded
by the compiler as required.

The arithmetic routine will also transfer control to
a subscript routine, which will calculate the proper
operand address when the string indicates the presence
in the expression of a subscripted variable in which
at least one of the subscripts includes a variable.

Arithmetic Routine

Any expression compiled in the procedure involves
one or more groups of serial simple arithmetic or
function evaluation operations, each terminated by a
store of the result at a location specified in the string.

The result of a single arithmetic or function evalu-
ation operation (within a group) is stored in a working
accumulator (see below). If the result is the terminal
value of a group of operations, it will then be moved
to a temporary storage area, whose address, together
with the “store” operator code appears in its string,
associated with that group. If the result in the work-
ing accumulator is the terminal value of the entire
expression (i. e., terminal value of the final group in
the expression) it will then be moved to the final
storage location, also obtained from the compiled
string. This location is the address assigned to the
variable on the left of the equal sign in an arithmetic
statement, and is an available temporary area if the
expression appeared in an 1F statement.

The working accumulator is used to store the partial
result during the course of a group of operations. This
location and other work areas necessary to arithmetic
operations occupy the arithmetic work area, core stor-
age positions 200-332. The working mantissa precision
during a floating-point expression evaluation is f + 2
positions, providing 2 extra positions beyond the
floating-point precision specified. This provision serves
to improve the accuracy of the calculated value of the
expression. For fixed-point calculations the working
precision is k positions.

The working-accumulator mantissa is thus f +- 2
positions in length (floating point), or k positions
(fixed point), having its leftmost digit at symbolic
address ACCHI +- 1. Its characteristic (floating point
only) is stored in a three-character location whose
rightmost position has the symbolic name EXP.

The size and format of the temporary storage loca-
tions are the same as those of source program vari-
ables, except that the mantissa is f + 2, (not f) digits
long. The two digits of the characteristic make the
total length f 4 4 positions. Temporary storage areas
for fixed point values are k digits long.

During the calculation of an expression, all partial
results are truncated to the f 4+ 2 digits available in
the working accumulator and in the temporary stor-
age. The final value of the expression, however, is

rounded in the f - 1 position before it is stored
to f digits of precision in final storage. Also, any output
value is rounded one position to the right of the last
position output. In fixed point, all results and output
quantities are taken as the integral part of the true
result, modulo 10k,

The floating-point add, subtract, multiply and divide
subroutines are designed to handle one operand (the
working accumulator) of f -+ 2 digits of precision, and
one operand of f 4- 2 or fewer digits of precision. The
latter operand may be either a variable (f digits), a
temporary location (f + 2 digits), or a source program
constant. Such constants are stored by the compiler
only to the precision to which they are written in the
source program statement, up to the precision given
on the control card.

The analogous fixed-point routines handle one oper-
and (the working accumulator) of k digits of precision,
and one operand of k digits or less, again allowing
for the possible smaller precision of source program
constants.

The basic subroutines in the arithmetic routine are
tabulated as follows:

Symbolic Purpose

Name

ARITF Entry point from procedure; monitor and interpret
string

FSIZE Initialize for a floating-point calculation

None Floating-point add/subtract

FMPY Floating-point multiply

FDIV Floating-point divide

NMLZ1 Normalize floating-point result of a single arithmetic
operation; place the normalized result in the work-
ing accumulator. If exponent overflow is detected,
go to ERMSG to print message (NOF); then go to
STR99. If exponent underflow is detected, go to
STRZE.

XSIZE Initialize for a fixed-point calculation.

None Fixed-point add/subtract

XMPY Fixed-point multiply

XDIV Fixed-point divide.

STR99 Exponent overflow; sct result magnitude equal to
largest value possible in floating-point notation; sct
result sign as appropriate. Go to CLRWK,

STRZE Exponent underflow, or result equals zero; set
floating-point result equal to zero. Go to CLRWK.

DVERR Division by zero; go to ERMSG to print message
(DZE); then go to STR99.

QFUNCT Linkage to relocatable function transfer control.

ERMSG Print appropriate error messages, which includes
a mnemonic three-character code and the display
address in the gencrated procedure of the source
program statement being executed. This subroutine
is used to record certain circumstances, occurring
during arithmetic operations, which may affect the
calculations adversely.

CLRWK Clear the work arca after an individual arithmetic

operation. Return to monitor.

31

Accuracy

In what follows, the terms absolute error and relative
error will be used, and are defined as follows:

The absolute error in the calculation of a function
g(x, y) of two arguments x and y (e. g., for addition,
g (x,y) =xy) is equal to: calculated g (x, y) —exact

g (% y).
The relative error is equal to: (calculated g (x, y)—
exact g (x, y)) = exact g (x, y).

Add/Subtract. When two numbers of like sign are
added, or unlike sign subtracted, the absolute value
of the relative error in the result is less than 10 -¢f +),

When two numbers of unlike sign are added, or like
sign subtracted, the absolute value of the absolute
error in the result is less than 10 -¢f +2) + ¢ where c is
the larger of the characteristics of the two numbers.
The relative error can be as high as 10.

Multiply. The absolute value of the relative error
in the product is less than 10 —(f + 1),

Divide. The absolute value of the relative error in
the quotient is less than 10 = + D,

The error limits above do not apply if exponent
overflow or underflow occurs. This will be detected
during normalization of the result. For overflow, con-
trol is transferred to ERMSG, where the code NOF
and the statement address are printed, and then to
STR99. For underflow, control is transferred to STRZE.

Relocatable Function (Library) Routines

A number of relocatable routines designed to find a
specific function of an argument y are included in
the Fortran system deck, and are selected by the
compiler for inclusion in the object program in ac-
cordance with the need for each evidenced by the
source program. Some of these routines may be expli-
citly invoked by the programmer through the use of the
function name assigned to the routine. Some are im-
plicitly invoked by the programmer through the use
of certain types of arithmetic expressions; for instance,
a sub-expression of the form A**B requires both the
exponential routine and the logarithm routine for
evaluation. Figure 5 tabulates each of these functions,
and exhibits the function name available to the pro-
grammer (if any). Also shown are the arithmetic mean-
ing of the function, the correct mode of the argument
and the mode of the calculated function (for those
functions which are named) and the operator code,
used in the generated procedure string, which at object
time indicates to the arithmetic routine that control
is to be transferred to that particular function routine.

32 Fortran: 1401 Specs. and Op. Proc.

Computation Method

The functions square root, exponential, sine, cosine, arc
tangent and natural logarithm are computed during
evaluation of an arithmetic expression wherever codes
tor those operations are encountered in the compiled
string of addresses and operators corresponding to the
source program expression. Control is passed to the
proper function evaluation routine with the mantissa
and exponent of the floating-point argument in fixed
locations. Return from the function routine to the
arithmetic routine occurs in various ways, for instance:

1. control is returned to NMLZ1 for normalization of
the function value.

2. the value of the argument is found to be such that
the result is known, for instance:

a. cos(x) = 1 if x = 0; control is returned to the
routine which will store 4-1 as the result.

b. exp(x) is greater than or equal to 109%; control is
returned to the exponent overflow routine, etc.

The square-root function is computed by the odd-
integer method. The result is calculated from left to
right beginning with the most significant digit of the
argument.

The basic computation for the exponential, sine,
cosine, arc tangent and natural logarithm functions is
an evaluation of the appropriate power series, in
which the last term used depends upon the precision
to which floating-point arithmetic is to be done. The
same series evaluation routine is used for all of the
functions, although it is used to compute a slightly
different series for arc tangent and logarithm than for
the other three functions. The routine is initialized by

Mode of Procedure
Function Meaning Name Argument Function Code

Exponential exp(y) EXPF Floating Floating E
Sine sin(y) SINF Floating Floating S
Cosine cos(y) COSF Floating Floating C
Arctangent tan-!(y) ATANF Floating Floating T
Natural In(y) LOGF Floating Floating G
logarithm
Float Floata FLOATF Fixed Floating F

fixed

number
Fix TFix a XFIXF Floating Fixed X

float

number
Absolute Absolute ABSF Floating Floating A
value value of y
Absolute Absolute XABSF Fixed Fixed A
value value of y
Negate —y N
Square root Yy SQRTF Floating Floating Q

Figure 5. 1M 1401 Fortran Functions

the function main line routine to give the proper result.
Figure 6 exhibits the series used and shows the in-
itialization quantities necessary to produce the dif-
ferent functions.

The power series routine is written to accept argu-
ments of the form:

X-10--
where r > 0, and the magnitude of X is such that
neither the series (partial sum or final sum) nor any
of its terms equals or exceeds 10.

Function of Argument = S(arg)

For EXP, SIN, COS: For LOG:
S(arg) == ¥ 10-2iT, S(arg) = 3. 10-aiT,
1 = 0 1 =0 D,
Where: arg =X.10-r Where: arg = X
Tl:h(X)Tl—:[leh(X)T1_1
D,
D1=Dl-1+cl D =Di-: + C
Ci=Ci-1++B C,=Ci-1+ B
Initialization: EXP SIN COS LOG ATAN
To 1 X 1 <X — 1> X
X+1
a r 2r 2r 0 2r
hX) X -X =X? (X — 1* X
X
Do 0 0 0 1
Co 1 -2 —6 2 2
B 0 8 8 0 0
Thus,
for EXP: S(arg) =1+ X.10-r+X2.10-2r 4, ..
2l
= exp(arg)
for SIN: S(arg) =X - X3.10-2r + X5.10-4r — .,
3l 5!
== 10r sin(arg)
for COS: S(arg) =1 —X2.10-2r + X4.10-4r —, .,
21 4}
= cos(arg)

for ATAN: S(arg) = X — X3 + X5 —
3 5

= ¢ =* tan - {arg)

for LOG:

=

S(arg

--x—1+1 (—1 3 41X —1\5 +.
X+ 5\X T 1

1 log(arg) -+ rdn 10
2

Figure 6. Function Evaluation

To meet these conditions, a quantity for which the sine,
cosine, or exponential function is to be found may
require a reduction in magnitude. This is accom-
plished by the main line routines for the functions,
and has the following mathematical basis:

For exponential: exp (y) = 1049 exp(x)

where: y=qIln10-+x qintegral; | x| <In10
Forsine: ify=nZ+x nintegral; | x| < T,
2 2
then: sin(y) = sin(x) n=0,4,8
sin (y) = cos (x) n=1,59...
sin (y) = — sin (x) n=2,6,10..
sin (y) = — cos(x) n=3,7,11..
For cosine: ify=n T +x nintegral; |x | < X
2 2
then: cos(y) = cos(x) n=0,4,8...
cos(y) = — sin(x) =1,59...
cos(y) = — cos(x) n=2,6,10...
cos(y) = sin(x) n=3"711...
For arc tangent:
ify <0, tan-1(y)=—tan-' (|y])

if y>1tan-t(y)=1T —tan-‘(l)
2 y

then if 0 <y < -42, tan -1 (y) = S(arg), where X =y
if -42 <y <1, tan-! (y) = — S(arg),

where X =(]L — y)
1

the result will be such that: [tan-! (y) | < T .
2

The necessary reductions are thus accomplished when
necessary by a division routine so programmed as to
obtain an integral quotient and remainder. For ex-
ponential, the divisor is In 10; for sine or cosine it
is ™.

2

For logarithm:

ify=x-10 .31 <x<3.1; e integral
then
In(y) =eIn 10+ Inx

Both the series evaluation (CALC) and the division
routine (DIVID) are closed subroutines contained in
a relocatable program called FORTRAN FUNCTION
COMMON DECK. It is made a part of the compiled
program only if one or more of the four functions
(exponential, sine/ cosine, arc tangent and logarithm)
is included in the compiled program.

The task of determining the magnitude of the argu-
ment of the function and of using the COMMON rou-
tines (if necessary to obtain the function value) is left

33

to the individual function main line routines. There
are four such routines, since sine and cosine are evalu-
ated by using two different entry points to the same
routine. When the routines are entered, the mantissa
of the argument y is located in the working accumula-
tor whose leftmost position has the symbolic name
ACCHI1 and whose length is f + 2 positions. The
characteristic of the argument is located in a three-
character location whose rightmost position has the
symbolic name EXP.

Accuracy

In what follows, the terms absolute error and relative
error will be used and are defined as follows:

The absolute error in the calculation of a function
g(y) of an argument y is equal to: calculated g(y)
—exact g(y).

The relative error is equal to: (calculated g(y) —
exact g(y)) = exact g(y).

The error specifications refer to the normalized
function value stored in the working accumulator.

Exponential Function. For 0 < |y | < In 10, the ab-
solute value of the relative error in exp(y) is less than
2% 10-(¢+ 1),

For In 10 = y < 99:In 10, and for — 100+ln 10 =
y < — In 10, the absolute value of the relative error
in exp(y) is less than:

(q+2) - 10-¢+D

where q is the integral quotient obtained when y is
divided by In 10.

For y < —100-In 10, exp(y) < 10 -'90, Thus, the
value of the function is too small to be stored in float-
ing-point notation, a circumstance which is known as
exponent underflow. In this case, the value of the
function is set equal to zero and the program proceeds
to the next calculation.

For y > 99:In 10, exp(y) > 10°°. The value of the
function is too large to be stored and the exponent
overflow routine is invoked. One of two error messages
is printed, either NOF (normalize overflow) or EOF
(exponential overflow), since the condition will be de-
tected in either the normalization routine (if y < 100
In 10) or the main line exponential routine (if y > 100-In
10). In either case, the display address of the state-
ment being executed is also printed, the result man-
tissa is set equal to a field of nines (positive), the result
characteristic is set to 499, and the program proceeds
to the next calculation.

Sine Function. For 0 < |y | < m, the absolute value
2
of the relative error in sin(y) is less than 2 - 10 -,

34 Fortran: 1401 Specs. and Op. Proc.

For angles whose absolute values lie in quadrants
other than the first, the absolute value of the absolute
error in sin(y) is less than:

(a-+2)- 1076+

where q is the integral number of quadrants in the

angle (obtained by taking the integral part of the

product y - 2). The upper bound on the relative
T

error in these quadrants is equal to this quantity di-
vided by sin(y), and can be very large when |y | is
closeton7m,n=1,23,...

For |y | > 10f, no attempt is made to calculate the
sine. The error message SCL (sine-cosine large) is
printed together with the display address of the state-
ment being executed, the function is set equal to zero,
and the program proceeds to the next calculation.

Cosine Function. For 0 = |y | < 1, the absolute

value of the relative error in cos(y) is less than
4-10-¢F+D,

For1 < |y| < m — .04 ~ 153, the absolute value

of the relative error in cos(y) is less than 5 - 10 .

For 1.53 < |y | < =, the absolute value of the ab-

2
solute error in cos(y) is less than 2 - 10 -+ 1 and
for angles in quadrants other than the first, the upper
limit of this absolute error is:

(q+2) - 10-+ 1

where q is defined as for the sine routine. The upper
bound on the relative error in these quadrants, and
near 7 in the first quadrant, is equal to this quantity

2
divided by cos(y), and can be very large when ly|is
closeto (2n—1). = ,n=1,2,3, ...

ojy

For |y | > 10f no attempt is made to calculate the
cosine. The error message and procedure (set function
equal to zero) is the same as the procedure for the
analagous circumstance in the sine routine.

Arc Tangent Function. For arguments less than
10 — (f + 3) in absolute value, the absolute value of
2

the relative error is less than 10 -t + 1),

For arguments less than .42 in absolute value, the
absolute value of the absolute error is less than .5-
10-t+ 1,

For arguments greater than .42 in absolute value,
the absolute value of the absolute error is less than
3.0 -10-U+ 1,

For arguments greater than 10 (f 3‘:3 3) in absolute

value, the absolute value of the absolute error is less
than 10 -(f+ D,

Logarithm Function. For 0 < y < 0.5 and for 2
< vy, the absolute value of the relative error in In(y)
is less than 3.5 - 10,

For 0.5 < y < 0.95 and for 1.05 < y < 2, the ab-
solute value of the relative error in In (y) is less than
18 - 10,

For 095 < y < 1.05, the absolute value of the
absolute error in In(y) is less than 0.5 - 10 -f. The upper
bound on the relative error in this range is equal to
this quantity divided by In(y), and can get very large
as y approaches 1.

If y—O0, the error message LNZ is printed together
with the display address of the statement being exe-
cuted, the function is set equal to the largest negative
number in the floating-point range, and the program
proceeds to the next calculation.

If y <0, the error message is LNN and the function
calculated isIn | y |.

Square Root Function. For 0 <y < 109, the ab-
solute value of the relative error in SQRT (y) is less
than 10 -¢f+ D,

If y is negative, the error message SQN is printed
along with the display address of the statement being
executed. The square root of the absolute value of y
is calculated, and the program proceeds.

Input/Output Operations

Input/output operations necessary to the execution of
the compiled program are performed by the ForMAT
routine.

Format Rowtine

For each Input-Output statement, an entry to the
Format Routine is compiled. Following this appears:

1. a code indicating the appropriate I/O device;

2. the address of the series of instructions (format
string) which determines the arrangement of the
data (compiled from the referenced format state-
ment); and

3. the address of the specified list of data (list string).

The format string consists of:

1. branches to appropriate closed subroutines of the
Format Routine,

2. parameters describing the data which are needed
by these subroutines,

3. the data itself (H-conversion fields), and

4, certain register-updating instructions.

When an item of numerical data is called for by the
format statement, (GETAD), control temporarily
transfers to a list routine, OBLIST (a relocatable and
selectively loaded object time subroutine), which sup-
plies the address required by processing the list string.
The data is then converted to the appropriate internal
(INEFI) or external (EFNTN, INOTN) notation by a
Format Routine subroutine.

The H-conversion subroutine (HOLLR) is divided
into two sections. On output, H-conversion transfers
alphameric information from the format specification
to the output area. On input, H-conversion (HHOLIN)
transfers alphameric data from the input area to the
proper location in the format specification.

Logic Flow

1. Initialization: Work arecas and index registers are
initialized. Counters and switches are reset.

2. Select I/0 routine: Test the code indicating the
appropriate I/0 device and branch to the corre-
sponding subroutine. (Read a card, punch, print,
read input tape, write output tape, write tape, read
tape.)

3. 1/0 Routines: The input I/O routines bring in the
data and place it in the work area. Control is then
transferred to the format specification and the return
address is saved. The output routines clear the out-
put area, branch to the format specification and
save the return address.

4, Control: Processing is now under control of the
format string. This series of instructions branches
to appropriate closed subroutines in the Format
Routine. The subroutines necessary to process For-
mat specifications are:

a. OPNPR: 1. A branch to OPNPR occurs for
each left parenthesis.

2. The OPNPR routine sets up a
counter indicating number of times
this set of parentheses should be
executed. (This number was found
as a parameter in the format speci-
fication).

3. Sets the address of the first exe-
cutable item following the open
parenthesis.

b. CLSPR: 1. A branch to CLSPR occurs for each
right parenthesis except the last.

2. Adjusts counter set up in OPNPR
and determines whether it has been
satisfied. If not, control returns to
last open parenthesis. If satisfied,
control proceeds to next executable
instruction in format string.

35

(The rightmost close parenthesis is

translated as a branch to EOJ1)

c. EOJ1:
1.
2

d. NDLIN: 1.
2
3

e. SCALE: 1.
2

f. GETW: 1.
2
3

g INOTN:

h. EFOUT: 1.
2
3

36 Fortran: 1401

For output, data is transferred (via
NDLIN) to the I/O unit previously
specified. If the list has not been
exhausted, control is sent back to
the last open parenthesis and its
coefficient; otherwise, control is re-
turned to the generated in-line pro-
cedure.

. For input, the list is checked first.

If the list is exhausted, an exit from
the format routine to the procedure
occurs. Otherwise, control is trans-
ferred to the 1/0 subroutine, more
data is read into the work area, and
control returns to the last open
parenthesis.

A branch to NDLIN occurs upon
encountering a slash (/) in the for-
mat specification.

. Resets address of 1/0O work area to

left end position (thereby spacing
a line).

. Branches to I/O subroutine and

either puts out or brings in data.

A branch to SCALE occurs when
the format specification indicates a
scale factor.

. The SCALE subroutine saves the

scaling factor for subsequent proc-
essing of E- and F-conversion data.

A branch to GETW occurs for each
E, I, or I specification in the for-
mat statement.

. Transfers control temporarily to

OBLIST for the purpose of obtain-
ing the address of the data to be
processed.

. Upon return, transfers control to

INEFI, for input data.

Processes I-conversion data for out-
put statements, including when
necessary, the insertion of a lead-
ing minus sign, space permitting.

Processes E- and F-conversion out-
put data.

. Adjusts characteristic of internal

data for scaling.

. Moves data to output area, inserts

sign if necessary, positions decimal

Specs. and Op. Proc.

point and adds E nn as last 4 posi-
tions of data for E-type conversion.

i. INEFI: 1. Determines from the format speci-
fication the location of rightmost
character of E, F, or I input data
within the work area.

2. Scans for first significant digit of
data.

3. Branches to INI for I-conversion
input data.

4. E and F Input data are converted
to internal notation and the char-
acteristic adjusted as required by
a scaling factor and/or decimal
point position.

5. Transfers converted data to storage
as specified by the LIST address.

j. INI: . Processes I-conversion input data.

DO

. Converts data to internal notation.

3. Transfers converted data to storage
as specified by the list address.

Performance Data

The time required to process a 1401 Fortran program
is determined by the following factors:

1. Overhead. This involves the time necessary to read

and pass through the phases of the compiler. The
time required:

a. for a card system: 2 minutes 56 seconds
b. for a tape system: 16 seconds.

(The time difference is because the compiler can
be read faster from tape.)

. Input/Output Operations. This involves the need

to read the source-program deck, print a core-
storage snapshot (dump), and punch the condensed
deck.

. Resorting. This involves the time needed to re-

order the statements into their final core-storage
locations after processing is completed. This time
is the most significant part of compilation time,
particularly when:

a. there are a large number of different types of
statements, and

b. core storage is completely filled.

. Number of Input Characters (size of the source

program). Compilation time varies directly with
the number of input characters.

Minimum and Maximum Compilation Time

The time required to compile a 1401 Fortran program
varies from:

1. 16 seconds to 15 minutes for a tape system (i.e.,
where the compiler is on tape), and

2. 2 minutes 56 seconds to 17 minutes 45 seconds for a
card system i.e., where the compiler is read from
cards. (The difference is that information can be
read faster from tape than from cards.)

The minimum program in this case consists of a
single control statement. The suggested maximum
program is one that:

1. involves the use of every type of Fortran statement.

2. fills core storage (16000 positions in this case). This
would require 400 statements, assuming an average
length of 25 characters per statement.

Examples
The following three cases are presented as examples:

Number of Compilation Core-Storage
Case Input Statements Time Positions Used
1 42 52 secs. 7,996
2 25 1 min. 50 secs. 7,352
3 424 10 min. 35 secs. 15,856

Case 1 (see Figure 8) is a matrix calculation. Case 2
(see Figure 9) illustrates a use of the library functions.
Case 3 calculates characteristics of sort programs.

Input/output operations and sorting and resorting
of statements require the most significant part of com-
pilation time. For example, input/output operations
required approximately:

1. 32 seconds in Case 1 (includes snapshot).

9. 1 minute 26 seconds in Case 2 (includes snapshot
and condensed deck).

3. 4 minutes 35 seconds in Case 3.

In Case 3, more than half of the remaining 6 minutes
was used to sort and resort.

37

Fortran Operating Procedures —IBM 1401

This section contains the information necessary to
compile and execute an object program from a source
program written in 1401 Fortran. Included also are
the diagnostics, halts, and messages that may be en-
countered when compiling and executing the object
program,

Compiling Operation Procedures

Library Tape

The 1401 Fortran system on tape, consists of a self-
loading program, blocked printer records, and blocked
condensed card records. You may retrieve the data
from the tape through the following procedure:

1. Ready the tape on Tape Unit 1.

2. Set the 1/0 check stop switch up.

3. Reset the system.

4. Press Tape Load. A program halt will occur at 364.

5. a. If the symbolic listing is desired, press Start. At
the end of the listing a program halt will occur
at 600. If condensed cards are then desired, press
Start. Otherwise, press Start Reset, then Start to
rewind the tape.

b. If only condensed cards are desired, press Start
Resct, then Start. The tape will be searched past
the symbolic listing records and then commence
punching. After punching is completed, an auto-
matic tape rewind occurs.

The cards which are produced by this operation con-
stitute the 1401 Fortran Compiler Deck, Utility Deck
3, Utility Deck 2, the two sample problems, and Utility
Deck 1 (the compiler tape generator). The decks may
then be used as described below.

Compiler Deck Description

The decks comprising the 1401 Fortran system are
identified as such by 50 in columns 76 and 77. The
version number is punched in column 80. Phase num-
bers punched in columns 78 and 79 identify the func-
tional segments of the system. From an operational
point of view, it is only necessary to locate the follow-
ing phase boundaries in the deck:

1. The end of phase 02, the loader.

38 Fortran: 1401 Specs. and Op. Proc.

2. The beginning of phase 95, Utility Deck 3, the
library tape generator.

3. The beginning of phase 96 (optional, on request),
Utility Deck 2, the relocatable condensor deck.

4. The beginning of phase 97, sample problem 1
(matrix arithmetic).

5. The beginning of phase 98, sample problem 2 (trigo-
nometric, logarithmic, exponential, and square root
functions).

6. The beginning of phase 99, Utility Deck 1, the com-
piler tape generator.

Phases 00-63 are continuously numbered (with gaps be-
tween some phases) in columns 72-75 and constitute
the compiler deck. Set the rest aside. Phases 95-99 are
each continuously numbered in columns 74-75.

Addition of Arbitrary Relocatable Library Functions
This section describes the procedures to follow in:

1. assembling the user’s 1401 Autocoder function rou-
tines

2. including the additional function names in the 1401
Fortran function table, and

3. including the user’s assembled function routine in
the 1401 Fortran compiler. See User Functions.

Assembling the User’s Function Routines

The user’s function routines are assembled using the
1401 Autocoder (on tape) processor and procedures.
No condensed output need be specified in the control
card. If there are no errors:

1. Place the 1401 Fortran Utility Deck 2 (phase 96) in
the 1402 card-read hopper.

2. Press the 1402 load key.

3. Press the start key when the reader stops at the last
card.

A condensed deck without clear-storage and boot-
strap cards will be produced from the data on the
Autocoder tape. This condensed deck will be suitably
zoned so that it can be relocated and loaded when it
is named in the source program.

Incorporating the User’s Function into 1401 Fortran

To incorporate the new function into the 1401 Fortran
system, the user must:

L

add the name of the function to the table of valid
library functions, and

insert the relocatable condensed deck into the sys-
tem deck.

To add the function name:

1.

consult the 1401 Fortran listing, Phase 33 (Arith
Phase One), under the comment card TABLE OF
FORTRAN FUNCTIONS.

. commencing at the statement bearing the remark

“USER FUNCTIONS”, note the column of codes,
H, D, M, L, K, etc.

. choose an unassigned code and note its condensed

card number along with the value of n in its com-
ment USER FUNCTION n.

. pull the indicated card from the system deck and

find the first unassigned code punch. It will be pre-
ceded by 8 blanks.

. in this blank field, if the name has 7 characters, a

left parenthesis must be punched, followed by the
characters of the name, IN REVERSE ORDER,
commencing with F.

For a six-character function name, the left paren-
thesis is preceded by one blank. A five-character
function name has its left parenthesis preceded by
two blanks. A four-character function name, the
minimum, has three blanks preceding the left paren-
thesis.

. restore the card to the same position in the system

deck.

To insert the condensed, relocatable deck in the sys-

tem deck:

1.

List phase 53 of the condensed compiler deck to
find the series of cards with the comment USER
FUNCTION n GOES HERE in columns 1-25.

Note the condensed card number of the comment
containing the value of n selected in phase 33.

Pull that card and the one following from the sys-
tem condensed deck and replace them by the con-
densed relocatable deck.

. Generate a new system tape, if desired.

Compiling Procedure

Note: Program segments are assembled as though each were
a separate program.

As a card system:

1.

o

Place source program deck, preceded by an appro-
priate control card, between phase 02 and phase 03
of the Fortran compiler deck in the 1402 read
hopper.

Set sense switch A up. Set all other sense switches
down.

. Set sense switch B up, if the condensed deck is to

be listed on printer.

Reset the machine.

Press Load on the 1402.

Press Start when the reader stops at the last card.
When the end-of-compilation message prints (see
Compiler Output) the compiler deck (with inserted
source deck) and the condensed object deck (if any)
will be in the 1402 stackers.

As a tape system to generate the compiler tape:

Place phase 99, the compiler tape generator at the
front of the compiler condensed deck in the 1402
read hopper.

. Ready an unprotected tape on Tape Unit 1.
. Set sense switch A up. Set all other sense switches

down.

. Reset the machine.

Press Load on the 1402,

Press Start when the reader stops at the last card.
The following message will be printed:

1401 FORTRAN COMPILER GENERATED

ON TU1

File-protect the compiler tape.

Once the compiler tape is generated, the compiler

deck may be filed.

To run the tape system:

Ready the compiler tape on Tape Unit 1.

. Set sense switch A up. Set all other sense switches

down.

. Set sense switch B up, if the condensed deck is to

be listed on the printer.

. Reset the machine.
. Press Tape Load.
. Place the source program in the 1402 read hopper,

preceded by appropriate control card.

Press Start. Press Start again when reader stops
at the last card. When the end-of-compilation mes-
sage prints (see Compiler Output), the compiler
tape will rewind, and the source deck and con-
densed object deck (if any) will be in the 1402
stackers.

39

Compiler Output

The following information is obtained, during com-
pilation, at the 1403 printer unless otherwise indicated:

1. Machine core-storage size, specified and actual.

2. The source program listing including an internal
sequence (SEQ) number for each statement. SEQ
will be referenced by any error diagnosis at either
compile or execute time. Each page listed will be
identified by the punches in columns 76-80 of the
source program cards and by a page number.

3. The number of input characters.

4. The specified modulus (k), equal to the word size,
for fixed point (integer) variables.

5. The specified mantissa length (f) for floating point
variables. Two extra positions will be reserved for
the characteristic. Word size thus equals f - 2.

6. Array storage assignment, naming each array with
its decimal and machine language boundaries.

7. Simple variable storage assignment, naming each
variable with its decimal and machine language
(right-hand) address.

8. Constant storage assignment boundaries.

9. Diagnostic messages. See Compiler Diagnostics.

10. For each executable statement: the seQ number,
the object time starting address (machine language
and decimal) of the generated procedure, and a
display code (related to the starting address) which
may be used during diagnosis of execution of the
object program (see next section).

11. If requested on the control card, and if there have
been no errors that would prevent successful exe-
cution of the object program, a core storage snap-
shot will be printed and a condensed deck in con-
densed Autocoder format, will be punched. The
condensed deck listing will be printed if sense
switch B is up.

12. The system will halt after printing the message:

END OF COMPILATION
PRESS START TO GO

At this time data tapes and cards may be loaded
and the system tape unloaded. Initial object-time
sense-switch settings may be made.

Compilation Checking Aid

The core storage snapshot can be forced at various
times during compilation by the use of sense switches.
Switches C, D, and E all up will cause the snapshot to
print after every compiler phase. Because this is usu-
ally undesirable, fewer phases can be printed by the
use of switches D and E up. These are: DIMEN2,
VARBLS5, CONSTS, LIST3, STNUMS, ARITHS6, DO,
RESORT 4.

40 Fortran: 1401 Specs. and Op. Proc.

Sense Switch E up will cause printout DIMEN2,
STNUMS, DO.

G on will cause a halt after any snapshot. F on will
bypass the printout of any snapshot.

Compiler Diagnostics

The following messages will be printed, during com-
pilation, when appropriate:

MACHINE SIZE SPECIFIED IS GREATER THAN ACTUAL
MACHINE

SYSTEM DOES NOT FOLLOW END CARD
OBJECT PROGRAM TOO LARGE
NO PARAMETER CARD (Control Card)

ERROR 1 UNDETERMINABLE STATEMENT (SEQ
number)

ERROR 2 DOUBLY DEFINED ARRAY (NAME)

ERROR 3 DIMENSION SYNTAX, STATEMENT (SEQ
number)

ERROR 4 EQUIVALENCE SYNTAX, STATEMENT (SEQ
number)

ERROR 5 ILLEGAL MIXING IN EQUIVALENCE,
STATEMENT (SEQ number)

ERROR 6 UNDETFINED ARRAY, STATEMENT (SEQ
number) (NAME)

ERROR 7 ILLEGAL EQUIVALENCE, STATEMENT
(SEQ number)

ERROR 8 REDUNDANT EQUIVALENCE, STATEMENT
(SEQ number)

ERROR 9 VARIABLE SYNTAX, STATEMENT (SEQ
number)

ERROR 10 UNDEFINED VARIABLE, STATEMENT (SEQ
number)

ERROR 11 UNREFERENCED VARIABLE, STATEMENT
(SEQ number)

ERROR 12 FLOATING POINT SUBSCRIPT, STATEMENT
(SEQ number)

ERROR 13 STATEMENT NUMBER SYNTAX,
STATEMENT (SEQ number)

ERROR 14 UNREFERENCED FORMAT, STATEMENT
(SEQ number)

ERROR 15 FORMAT SYNTAX, STATEMENT (SEQ

number)

ERROR 16 PARENTHESIS ERROR, STATEMENT
(SEQ number)

DOUBLY DEFINED FORMAT, STATEMENT
(SEQ number)

LIST SYNTAX, STATEMENT (SEQ number)

UNREFERENCED STATEMENT NUMBER,
STATEMENT (SEQ number)

DOUBLY DEFINED STATEMENT NUMBER,
STATEMENT (SEQ number)

nnn UNDEFINED STATEMENT NUMBER(S),
STATEMENT (SEQ number)

UNDEFINED FORMAT, STATEMENT
(SEQ number)

CODING UNINTELLIGIBLE, STATEMENT
(SEQ number)

SYSTEM ERROR, STATEMENT (SEQ number)

LEFT SIDE INVALID, STATEMENT
(SEQ number)

ERROR 17

ERROR 18
ERROR 19

ERROR 20

ERROR 21

ERROR 22

ERROR 23

ERROR 24
ERROR 25

ERROR 26 EXCESS OF — SIGNS, STATEMENT

(SEQ number)

ARITHMETIC SYNTAX ERROR, STATEMENT
(SEQ number)

INCORRECT MODE OF FUNCTION
ARGUMENT, STATEMENT (SEQ number)

UNDEFINED FUNCTION NAME,
STATEMENT (SEQ number)

FIX TO FLOAT POWER, STATEMENT
(SEQ number)

DOUBLE OPERATORS, STATEMENT
(SEQ number)

MULTIPLE EXPONENT, STATEMENT
(SEQ number)

NO TAPE UNIT NUMBER, STATEMENT
(SEQ number)

COMPUTED GO TO SYNTAX, STATEMENT
(SEQ number)

HALT NUMBER NNNNN TO BE DISPLAYED
AS NNN, STATEMENT (SEQ number)

ILLEGAL SENSE LIGHT, STATEMENT
(SEQ number)

ILLEGAL SENSE SWITCH, STATEMENT
(SEQ number)

ILLEGAL RANGE OF DO, STATEMENT
(SEQ number)

ILLEGAL NESTING, STATEMENT
(SEQ number)

DO SYNTAX ERROR, STATEMENT (SEQ
number)

CONSTANT LEFT SIDE OF EQUAL SIGN,
STATEMENT (SEQ number)

MODULUS

MANTISSA

CONSTANT SYNTAX, STATEMENT (SEQ
number)

HOLLERITH COUNT, STATEMENT (SEQ
number)

MIXING IN ARITH, STATEMENT (SEQ
number)

BAD LIST, STATEMENT (SEQ number)

ERROR 27
ERROR 28
ERROR 29
ERROR 30
ERROR 31
ERROR 32
ERROR 33
ERROR 34
ERROR 35
ERROR 36
ERROR 37
ERROR 38
ERROR 39
ERROR 40
ERROR 41

ERROR 42
ERROR 43
ERROR 44

ERROR 45
ERROR 46

ERROR 47

Compilation Time Halt

When running as a tape system, a halt will occur with
3333 displayed in the B-address register if a permanent
redundancy is detected on the systems tape. Press
Start to reread the record.

Object-Program Storage Allocation

The storage allocation of compiled programs is dia-
grammed in Figure 7.
The following information will be helpful in the
estimation of the size of an object program:
Floating Fixed

Variable storage word-size,
including array members

Temporary storage word-size

f+2 k
f+4 k

The relocatable library

and processing subroutines

appear in the object program only if needed.

Name Approx. Size
1. SINF/COSF 437
2. LOGF (or A**B) 320
3. EXPF (or A**B) 297
4., COMMON (if 1 or 2 or 3 above) 263
5. ATANF 471
6. SQRTF 216
7. XFIXF (or I = A) 133
8. FLOATF (or A = 1) 59
9. NEGATE (—B*C, ctc.) 8
10. ABSF/XABSF (also requires NEGATE) 7
11. DO 92
12. LIST 404
13. DO/LIST COMMON (if 11 or 12 above) 50
14. SUBSCRIPTS (if variable) 220
2077
Sense Lights and Index
| |«— Locations
| . Input/Output and Arithmetic
Work Area
333
Snapshot Program or Linkage
Program (object time starts
at position 337)
700
Fixed= and Floating=Point
Arithmetic
[1697

END

‘Input/Output and Format
Routine

Simple-Variable and Temporary
Storage

l«— Generated In-Line Procedure

Library Functions and
Processing Subroutines

~<—— Unused Storage, if any

«— List and Format Sirings

Constants and Generated
[Subscripting Parameters

l«— Array Storage

Figure 7. Object Program Storage Allocations

41

The generated in-line procedure, the generated list
and format strings, the constants and generated sub-
scripting parameters, all together generate less than
twice as many object program characters as are in the
source program.

For examples of typical storage allocation, see the
sample programs, Figures 8 and 9.

Object Program Operation Procedures

The compiled program may be executed immediately
after compilation, while still in core storage, by ready-
ing any card or tape problem-data and pressing Start,

Execution of the Condensed Card Deck

To execute the object program at a later time:

1. Ready data tapes, if any.

2. Place the condensed deck in the read hopper.

3. Reset the machine.

4. Set any sense switches required by the source pro-
gram.

. Press 1402 Load.

. Press Start when the reader stops at the last card.

. Place card data, if any, in the read hopper when
required.

913

b W=

Note: Alternatively, card data may be placed in the hopper
behind the condensed deck at step 2.

When the compiler is used on tape, data cards, preceded
by a card containing a 5 and 8 multipunch in column 1, may
follow the source program.

Program Checking Aid

At any point during execution of the object program,
a snapshot of core storage can be obtained by execut-
ing the snapshot program at position 337. Position
333 of the snapshot routine during compilation is not
available at object time. Sense switch F must be off
or printing will be suppressed. Programs containing
a linkage (XLINK) statement do not have this facil-
ity; a transfer of control to 337 causes execution of
the linkage program.

When the snapshot program is executed, positions
84-86 will contain one of the display codes printed
during compilation. The seQ number corresponding
to this display code identifies the current or most re-
cently executed statement in which an arithmetic ex-
pression appeared.

Object Time Halts or Error Conditions

In addition to the halts generated by sTtop and rausE
statements, the object program will contain halts that
are invoked by badly coded or positioned data, or by
unanticipated values, tape errors, or end of file. When
the system halts at object time and the stop light is lit,
display the B-address by pressing the B-address regis-
ter key-light.

42 Fortran: 1401 Specs. and Op. Proc.

One of the following three-digit halt codes may
appear:

Code Meaning

581 A permanent rcad error was encountered on
the LIB tape during execution of the linkage
routine.

603 (during
execution of
linkage routine)
342 (during
execution of
monitor on the

The necessary program segment is not on the
LIB tape. Press Start to get the segment from
the card reader.

LIB tape)

777 A tape error was encountered in the limited
input/output format routine.

888 End-of-file was encountered in the limited
input/output format routine.

999 Read error on the LIB tape during execution

of the monitor program on the LIB tape. Re-
wind the LIB tape and press TAPE LOAD to
try executing the monitor program again.
Check to see if the call card is still available
in the reader.

One of the following four-digit halt codes may ap-
pear on the register:

Code

1001 The value of the index in a computed co TO state-
ment exceeds the number of exits.

1111 Parity errors when attempting to read tape, or having
skipped and blanked tape 50 times while attempting
to write tape. Press Start to continue the attempt.

1121 Data and rorMAT specifications disagree in mode or
acceptable characters. Not all disparity is detectable.

2002 The value of a computed subscript is greater than
15,999.

3700 Output record too long because of incorrect FORMAT
specifications. Snapshot routine has been destroyed.
Press Start to continue execution.

4002 End of file detected while reading tape. Press Start to
read next rccord (or first rewind and unload old
tape; load new tape).

4003 End of file while writing tape. A tape mark will be
written, and the tape rewound and unloaded. After
new tape is mounted, press Start to proceed.

Note: 1. An X will replace an output data field whenever,
a. a fixed-point value has E or F format, or
b. insufficient integer space has been allocated to an
F format value.
2. If an F format value is ncgative and the numeric
digits exactly fill the output data field, the sign is lost.

Meaning

A coded message and the display address will be
printed in the leftmost positions of the 1403, in case
of the following errors. There will be no halt. The pro-
gram will continue with the indicated result.

Message
NOF

Meaning
Exponent overflow during normalization 9
DZE Attempted to divide by zero 9..
LNZ Attempted to find reciprocal of zero 9...999
EOF Exponential 1099 9
9

LNZ Logarithm of zero .. 999
SCL Sine or Cosine argument too large zero
LNN Logarithm of negative number In |arg|
7ZTZ Zero to zero power one

SQN Square root of negative argument V Targ |

Running Programs Containing

Linkage Routine

The following are the procedures for executing a pro-
gram that consists of more than one section or segment.
See Program Linkage.

Preparing the Condensed Decks for Execution

The condensed decks of the compiled segments are
read into storage (for execution) from cards, tape, or
both cards and tape. In the first two cases a single
combined deck is required. In the last case the con-
densed decks to be read from cards are combined into
a single deck, and those to be read from tape are com-
bined into a single deck that is loaded on tape.

Reading from Cards

In reading the compiled segments from cards, the con-
densed decks of the segments are combined into a
single deck as follows:

1. Remove the clear-storage cards (first two cards)
from all the segments, except the first segment of the
program, and any others that require all of core
storage to be cleared before being read for exe-
cution.

2. Place data cards behind each condensed deck that
requires data.

3. Combine the decks (with data cards) into a single
deck, in the order they are to be read.

Reading from Tape

In reading the compiled segments from tape for exe-
cution, the condensed decks must be combined into a
single deck and loaded on tape (LIB tape). The pro-
cedures are as follows:

1. Remove the clear-storage cards (first two cards)
from each segment.

2. Place the associated title card before the condensed
deck of each segment.

3. Combine the condensed decks into a single deck.
They need not be in the order they are to be read
from tape; however, they should be in that order
for efficiency in execution.

4, Load the combined condensed deck on tape using
the following procedure:

a. Place the LIB tape generator (phase 95) in the
reader followed by the combined condensed
deck (with title cards).

b. Ready tape unit 1.
c. Press the load key on the 1402. The LIB tape

generator performs the necessary loading opera-
tion.

Note: Two halts may occur while writing the LIB tape.
When a halt occurs, display the contents of the B-address regis-
ter. A 195 in the B-address register indicates that a title card
was searched for in the reader and not found. Put the necessary
title card in the reader and press START to rcad more cards.
A 666 in the B-address register indicates that the job is
completed.

Executing the Segmented Program
To run the segmented object program:

1. If all segments are to be read from cards:
a. load the 1402 card read-punch with the com-
bined condensed card-decks.
b. press the load key on the 1402. The program is
loaded, and execution begins.

2. If all segments are to be read from tape:

a. ready the LIB tape on tape unit 1.

b. clear core storage to blanks unless previously
executed routines or data are to remain. This is
a precaution against errors resulting from extra
group-mark word-marks in core storage.

c. place the initial call card in the card reader. It
should be followed by any card data or call cards
required by the entire program, in the order
they are to be read.

d. Press Tape Load.

e. Turn on sense switch G if a core-storage dump is
desired.

f. Press Start to read the initial call card. The first
segment is then read in and execution begins.

3. If segments are to be read from both cards and
tape, follow the procedure in item 2, also loading
the segments to be read from cards along with the
card data (for segments on tape) and call cards, in
the order they are to be read.

Sample Programs

Figure 8 illustrates a matrix calculation. Figure 9 illus-
trates the use of library functions. In each case a
core-storage snapshot is specified for the printout. The
printout for the second program, however, also in-
cludes a listing of the condensed deck.

43

44

004g dQ puv 's0adS [OFT UDIFOH

'Q aIn3r g

1 Med uone[moE) XMIeN

START OF FORTRAN COMPILATION

MACHINE SIZE SPECIFIED IS 08000
ACTUAL MACHINE SIZE IS 16000

Fm———————=
SEQ STMNT
c
C
1
2
3
4
5
6 1
7
8 13
9
10 2
11
12 15
13 10
14
15
16 3
17
18 4
19
20 5
21
22
23
24 6
25
26
27 11
28 16
29
30
31
32
33 8
34 9
35 18
36
37 17
38
39 12
40 7
41
42

0250973 PAGE 1
FORTRAN STATEMENT

APPENDIX E SAMPLE PROBLEM 1
MATRIX ARITHMETIC

DIMENSION A(7,7),VECTOR(7),B(7,7)
SENSE LIGHT 1

DO 1 I=1,7

DO 1 J=1,7
B(I,J)=1./FLOATF(I+4-1)
A{I,J)=B(I,J)

PRINT 13

FORMAT{15HIHILBERT MATRIX//)
PRINT 2,4

FORMAT(1X,7E14.T)

PRINT 15

FORMAT{ BHOINVERSE//)

DD 6 K=1,7

VECTOR=1.

b0 3 1=2,7

VECTOR(I)=0.

D0 4 J=2,8

All,Jd)=A(1,J)/A

D0 5 I=1,55

AlLL) =A(1+1)

DO 6 I=146

A(56) =A(I,1)

DO 6 J=1,7
AlL,J)=A(1,J+1)-A(56)%A1(7,])
PRINT 2,A

IF{SENSE LIGHT 1)11,12
PRINT 16

FORMAT(15HOMATRIX PRODUCT//)
DO 9 K=1,7

DO 8 I=1,7

VECTOR({I)=0.

DO 8 J=1,7
VECTOR(I)=VECYOR(I)+A(I,J)*B(J,K)
PRINT 18,VECTOR

FORMAT(1X+7F14.8)

PRINT 17

FORMAT({15HOTWICE INVERTED//)
GO 10 10

PRINT 7

FORMAT(1H1)

STOP 111

END

T~ T~ —— T

14

‘g 23 g

g MEJ uonumoe) XMW

789 INPUT CHARACTERS

MODULUS IS 5
MANTISSA IS 15

STORAGE ASSIGNMENT-ARRAYS + EQUATED VARIABLES

B 7165-07997 A6V 19X
VECTOR T7046-07164 +4W A6U
A 6213-07045 KIT +4V

STORAGE ASSIGNMENT ~ SIMPLE VARIABLES

J 4284 28U
1 4289 281
K 4294 29U

CONSTANTS LOCATED FROM 06167 TO 06212 J6X-K1S

/—\—/\/\/\—/\/—\’/’\

9%

904g ‘dQ puv °s0adg TOPT UL

€ yeJ uone[d[e) XMEW g QI3

002
003
004
005
006
006
007
009
011
013
0l4
015
016
016
017
018
o118
019
020
020
021
022
023
024
024
025
026
027
029
030
031
032
033

034
034
036
038
039
041
043

033 -

STARTING ADDRESS OF STATEMENTS

STARTING ADDRESS

31V
31Y
34/
36U
41/
45/
45Y
46N
47X
48Y
51/
521
S4nW
S6W
57+
597
62V
622
658
68%
68U
70X
72X
15%
80X
81/
82s
83u
84V
86Y
89/
31/
93U
99Y
*#0S
#17
#¥1X
£2Y
#3S
*47
#58

4314
4318
4341
4364
4411
4451
4455
4466
44717
4488
4511
4523
4546
4566
4570
4593
4625
4629
4652
4680
4684
4707
4727
4750
4807
4811
4822
4834
4845
4868
4891
4911
4934
4998
5002
5013
5017
5028
5032
5043
5052

DISPLAY

31Y
32s
34V
35Y
41V
45V
452
4T%
48/
49S
51v
52X
55%
5T+
57U
59X
621
637
65W
68U
68Y
T/
137
75U
81/
81V
82w
A3Y
842
87s
89v
91V
33y
$#0S
+0W
*1X
£2/
EEN
$3W
¥4 X
*5u

/\/\/—\/\/—\/—_/\

Ly

§ Med uonemo[e) XMIEWN ‘g oImdig

SNAPSHOT OF OBJECT PROGRAM
{NPUT/0OUTPUT AREAS LOCATED FROM 001-332

FIXED DBJECT TIME ROUTINES LOCATED FROM 333-4279

veesecee00acosscselTescnccae2Tececceee3dTecascacsbIeccccceeTTencescesbTevensaealTnusceeneBIensceeesd9-AREA-D420D
9,26XBH610%4)26XBH61 5 0.0 X RW4AZB1 10%1BA38B10 -AREA-04200
1 1 21 1 ¥ 1 1 1 11 1 111 1 1 1 1 111 1 1111 1 12

eeeveee0TcevsnssalTeciencas2Tecscscee3TecncsscetTuccaceseTeoscscesbTancecceeTIearocseasBlensnsasa99-AREA-0430D
YOB1B+6/B+8+J7TJTSIBY28245VB46/B48+JTTITSIBY28U325B7003IT=2QZ+2QU-IXTF+$+DV28UJIBS28ZJ8-AREA-D04300
1 1 1 it 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1

weeeceee09cscconealTeneanene?9eecseese39eroasscabtToneccseedTenncceneblennsereellecsccneceBIuceneeseadI-AEA-04400
U$=JTW/31T#B7008-1T28UJBS282J8U$=$+DV28UJBS2BZJBUSHB/2¢BWIT*24SZ4/BWIT*IB+Z2VBWIT#~1524/B+6/B+8+JTTJ-AREA-D4400
11 11 1 1 1 1 1 1 1 1 1 11 1 11 1 1 11 1 1 11 1 1 1 11

teveeeee00cceseacalPuciecceeZPeccscesedVececesssbTacecaces5TucenvecsbFevscacealTrcccceecaBlenecaeass I9-AREA-D4500
7SJ8Y29UB1/BTO0+FS=JTW+B+6/B+8+J6YITSIBY28Z5T+BT008+DV28ZJ8US=J72Z+B/2+B+6/B+8+I6YI6XIBY28U622BT00$JA-AREA-04500
1 1 1 1 1 11 1 11 1 1 1 1 11 1 1 11 1 1 1 1 1 1 1 1 11

teveeses09canasaselTecceseee?Tecscacee30evccccesdTuscaccesiPecccccecbTeracasaslTeueeseseBIeranasss99-AREA-04600
$28UJBS$=JA28UJ8SS/KBI4B/24B$6/B+8+JTTIT+J8Y28Z68UBT00$KAS282 J8US$=$KBZ282 JBUS+B/2#B+6/B+8+JTTIT/IB-AREA-04600
1 1 1 1 1 11 1 1 1 1 1 1 11 11 1 1 1 1 1 11 1 1 1 1 1

veceevee0T0unnscseelTucsoeese29usecscee3TescnssestTessoseeedTeccncecebTecsscssalFencecoceBIecennsssdII-AREA-D04700
Y28749SBTO0AFU=$KAS28Z JBUS+B+6/B+8+JTTITSIBY28U68YBT00$-1T28UJ8S282JBUS=AFU=$KAS2BUIBSEN+$KAS28UJIBS2-AREA-04700
1 1 1 1 1 1 1 11 1 11 1 1 1 1 11 1 1 1 1 1 1 1 i 1 1 1

eeeeesse09ccsecscalPevscccee?Tecsccese3FercceseabTaconsessdTeaneceeabTonscncaallenccccesBIeracesssII-AEA-048DD
8ZJBUSHR/2+BWIT*#ZB8+22VV$350811,081BWOT*~4TZ4/B+6/B#8+JTTITSIBY29U+LXB+6/B+B+JTTITSIBY28Z+0SBT00$+DV2-AREA~04800
1 11 1 11 1 1 1 1 11 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 11 1

veesesee00cccscseelPesveecce20eecscnse39ecasansetTacesnsse5TecnnceeabIeesenseelPacscacesBIencnesss39-ARZA-04900
82J8US=J724B+6/B+84JTTJTSI8Y28UBTSBT00$+DV282J8U$=$-1T28UJBS2BZI8US*$+DV29UJ8S28UJIBUS+$+DV2BZIBUS#B/ -AREA-04900
1 11 1 11 1 1 1 1 11 1 1 11 1 1 1 111 1 1 1 1 1 11

vevecsee00cscansealOnrceccee2Tesccvece3VavanccsebTroesennse5cncecanabIasaccenclPucncsscsBIeneceeasI9-AREA-D5000
24BWOT#~B/Z3TBB4ZBWOT#J1TZ4/B48YBWOT*#J5/24/N111.B+4TNOOO.B+5SHSOSHO94H0940~4B/5SXHO94MOJ1/2WMMO-5/3%1~ARE A-05000
1 i1 1 1 1 11 1 1 1 11 1 1 11 1 11 1 1 1 1 1 1 11 1

vevecces09ccnssseelTuccesnes2Feacnccss3TecavscesbToacsesnsdToccccecebIecacscealTevnncseeBIecncnsesII-AREA-05100
0J1/3XM0J4/4UH/550J5A000000+000J9TS000J9TVOC0JITKBOOOHSOSMO=-2/6X+000J9TM0~8/8/500049TM0J1/3YLIITO00B-AREA-D5100
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

teveeeee0T0cescacelTussecane?Tucavaese3PicnccscebTenccsesadTencesccsbPavscsesslTansanceeBIecsnesssI9-AREA-DI5200
000H094HS9WO~ 2HTO$0-3M0-2VIXMVIX094VTOX0~01BT2V0~0,BUSWO-0$BUTYO-0(BV3X0-0)BV0/0~0=MNO+0BIMVIXOO0BO0-AREA-05200
1 1 1 1 1 1 1 1 1 1 1 1 1 1

veoasesea0ccoscceclTuscecese?Teccnesae3PecncseesbTececessciTaecenceeabPevceccoeTTersnanoeBlenvenseasII-AREA-05300
OXXXXXXMO—2089HV9IX0-3BS94YJ36T3ZBU3/HOS2BVTB8XTOS2MO—6TOWD6I0U0+DV T8+ TOSKD6I2U0#DY T8STOSMTOTO89HOBI0+~AREA-D5300
1 1 1 1 1 1 11 1 1 11 1 11 1 1

V__,,——_/_/_/—\/—\//\

74

ooid dQ pup ‘s0adg TOPT uUDIIIO,]

G 3ed uonemoe) XIME ‘g 2In3rg

ceveccee0%cecaceelPecececna2% cecceee3TucnncccetTececseesSFeccnceesb8ccccccealFecersese8%u0acnaaaI9-AREA-05400
OMOBITOTCTOWTOTBS9+/YU24TOSBU4VMO-6TOWMWOTO89HVIX0-TBS94BWOXYU6SO88MO94VIXBS9+H0940-1B/5TDD-0H094BY0O-AREA-0540)

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ceeseceelFcecceseelFecenncee?29ennncae3TecccnceatTennccene5TencsececbIecnncceaTFeecenceeB8FensanessII-AREA-05500
YMO-3094M0J2V5+MMO-6V5SUMOJ2V6/HWOWO-OMWOW094A000000+4000J9TSO000J9TVVBUJIITKHVIXOJI6BS2YMOISVIXBS2Y -AREA-05500

1 1 11 1 1 1 1 1 1 1 1 1 1 1 11

ceesesee09cecccceclfeiennsae2Teecnceea3FettneceebFececteeea59eencacecbTencccnceTIeecneceeaBTancneees99-AREA-D5500
2S. HX8VMO-3Y0/SYOWBW2XZMO-9W5/MO-6KH4U+000Y1 /LOOOY1W* Y1/ Y2SAY2SYONCYOTY2UBXSWTBX0O#0J0$H0940-6BW2X-AREA-05600
111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

cessnseceel0% coceecelTesceseeel2Fennnecee3FennnncaeatFecanecse5TeccncceebVecccccealT0cccnceeBIeucnescss I9-AREA-D5700
AY2WYOTBXO0#ZYYOSYOW+YOUOGOYWZZYOUMYOWOBIMOBIXEXYXIWXEWMYD/089HO89040YY04088H0940J 1BOOON-02.BXBW2SK3 —-AREA-05700
1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1

evecceeal%uccecenalFucnneena?Fecccceee3dFicncneeetPececceee5FenncsenebVececcncalIenecneaeBIuennacaa99-AREA-D5830
159F-2G9Y2G9+87B/34)WBTVY5SY0-41BY6VDZGIWB4H0I4250L 2G9M692YB2ZH099000+099WB2B+1-AREA-D5800

1 1 1 111 1 1 1 1 1 1 1 1 1 1 1 1
eeessvee0FcccncceclFeicenceee?9uaseee0e3FcnncncendFennccnsetFeccnecsebVecnnnonsTTeueneeeaBTennaasesII-AREA-05900
OBY2X0-4NBY4S0-4F #yKAS+4V, 4 +DVASU. . BJ5200ABL28IHILBERT MATRIXBKO8BK0O8BK23BJ5200AH0990+1BLBSED-AREA-D5900

1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 11

ecesccee09cecccecclFerecnnne2cnncnese39unccreeabFeaccceeeTTencescesb8PecoccseaTlTucnceceeBIaceaaesaII-AAEA-06000
0G003011B8K23BJ5200ABL 280 INVER SEBKO8BKOBBK23BJ5200ABL280MATRIX PRODUCTBKOBBKOBBK238J5200AH0990+1BLB5F-AREA- 06000

1 1
ecoecessl0%ccnccaeelFececress2TcececeselVeceeeerestTeeannase5TeccecaesbVececesea?F0uennceeeBPencnanaa99-AREA-06100
00G006008BK23BJ5200ABL280TWICE INVERTEDBKOSBKOBBK23BJ5200ABL281BK238255671A0A+0+1191740+1 -AREA-06100
11 1 1 1 1 1 1 1 1 1 1 11 11 111 1111 1 1 11 11 1

secees0e0%cnnceceelFaccaneaes29cnencnee3FeccceaeatFecncceaciTecnncceebhFVeveccoeaTleevnceoeBIececeasaI9-AREA-06200
-AREA-06200

ceeeseeel9cccccceclFerncecce290ecneeee3ucnneccetTennncsea59cnnccncebVecccncesTTecrccaeeBlucecaeseII-AREA-07500
~AREA-0T7600

eecscseeeD% cccccaclTecenccee2Tcecncesea3TucnceneebTeeeceene5Tucenesesb8FcnnccaeelP0ercnseseB8FecanseesdII-AREA-DTTOO0
-AREA-07700

escecceel%ceccccelFecencece290c0eene39uncceeatTeneecnse5Tennecese6FccnrsnnelTuuncvseaeBTeccccses99-AREA-ITBO0
. -AREA-07800

eecseccel% csecceelFeeccrnce2Tencncnea39unciecnstTecneneceTTetenesse6cnnanccalP% 220020089 ceeeeeeaIFI-AREA-0790D
-AREA-DT900

/\/’W/_

6¥

9 MBJ UOPE[MO[ED) XIPN g omdrg

m

ND OF COMPILATIDN

PRESS START TO GO

HILBERT MATRIX

0.1000000E 01 0.5000000E 00 0.3333333F 00 0.2500000E 00 0.2000000E 00 0.1666667E 00 0.1428571E 00
0.5000000€ 00 0.3333333€ 00 0.2500000€ 00 0.2000000E 00 0.1666667E 00 0.1428571E 00 0.1250000E 00
0.3333333F 00 0.2500000E 00 0.2000000E 00 0.1666667F 00 0.1428571E 00 0.1250000E 00 0.1111111£ 00
0. 2500000 GO 0.2000000F 00 0.1666667E 00 0.1%428S71E 0C C.125000CE 00 C,1111111F 00 0,1000000E 0O
0.2000000€ 00 0.1666667E 00 0.1428571E 00 0.1250000E 00 0.1111111€ 00 0.1000000E 00 0.90%0909E-01
0.166666TE 00 0.1428571€ 00 0.1250000€ 00 0.1111111€ 00 0.10000C0FE 00 0.9090909E€-01 0.8333333E-01
0.1428571F 00 0.1250000E 00 0.1111111€ 00 0.1000000E 00 0.9090909E-01 0.8333333E-01 0.7692308E-01

INVERSE

0.4900000F 02-0.1176000E 04 0.8820000F 04-0.2940000F 05 0.4851000F 05-0.3880800€ 05 0.1201200E 05
-0.1176000E 04 0.3763200€ 05-0.3175200€ 06 0.1128960F 07-0.1940400E 07 0.1596672E 07-0.5045040E 06
0.8820000E 04-0.3175200E 06 0.2857680FE 07-0.1058400EF 08 0.1871100E 08-0.1571724E 08 0.5045040E 07
~0.2940000E 05 0.1128960€ 07-0.1058400F 08 0.4032000E 08-0.7276500F 08 0.62092B0E 08-0.2018016E 08
0.4851000E 05-0.1940400€ 07 0.1871100E 08-0.7276500F 08 0.1334025E 09-0.1152598E 09 0.3783780E 08
-0.3880800E 05 0.1596672E 07-0.1571724E 08 0.6209280F 08-0.1152598E 09 0.1005903E 09-0.3329726E 08
0.1201200E 05-0.5045040F 06 0.5045040FE 07-0.2018016E 08 0.3783780F 08-0.3329726E 08 0.1109909E 08

MATRIX PRODUCT

1.00000000 0.00000000 -0.00000003 0.00000011 -0.00000023 0.00000027 -0.00000005
0.00000000 1.00000000 -0.00000002 0. 00000007 -0.00000024 0.00000013 -0.00000004
0.00000000 0. 00000000 0.99999998 0.00000004 -0.00000011 0.00000010 -0.00000003
0.00000000 0. 00000000 -0.00000001 1.00000004 -0.00000010 0.00000008 -0.00000003

0.00000000 0.00000000 -0.00000001 0.00000002 0.99999991 0.00000008 -0.00000001
0.00000000 0.00000000 -0.00000001 0.00000004 -0.00000009 1.00000007 -0.00000002
0.00000000 0.00000000 -0.00000001 0.00000003 -0.00000009 0.00000006 0.99999998

TWICE INVERTED

0.1000000E Ol 0.5000000E 00 0.3333333E 00 0.2500000E 00 0.2000000f 00 0.1666667E 00 0.1428571E 00
0.5000000€ 00 0.3333333E 00 0.2500000F 00 0.2000000E 00 0.1666667€ 00 0.1428571FE 00 0.1250000E 00
0.3333333€ 00 0.2500000FE 00 0.2000000FE 00 0.1666667€E 00 0.1428571E 00 0.1250000€ 00 0.1111111€ 00
0.2500000E 00 0.2000000E 00 0.1666667E 00 0.1428571E 00 0.1250000E 00 0.1111111F 00 0.1000000E 00
0.2000000E 00 0.1666667E 00 0.1428571E 00 0,1250000E 00 0.1111111F 00 0.1000000E 00 0.9090309E-01
0.1666667€ 00 0.14285T1E 00 0.1250000E 00 0.1111111FE 00 0.1000000E 00 0.9090909€E-01 0.8333333E-01
0.1428571F 00 0.1250000€ 00 0.1111111F 00 0.1000000€ 00 0.9090909E-01 0.8333333£-01 D.7692308E-01

W

08

004d "dO pup ‘s2adg TOFT uDILO0.]

suonpoun,f Areiqry jo asp) ‘G dInSig

1 3eg

START OF FORTRAN COMPILATION

MACHINE SIZE SPECIFIED IS 08000
ACTUAL MACHINE SIZE IS 16000

O

W

0250983 PAGE 1
FORTRAN STATEMENT

APPENDIX E SAMPLE PROBLEM 2

EXERCISE LIBRARY FUNCTIONS AND PUNCH DBJECT DECK

PRINT 8
FORMAT(48H1A=2[(SQRT(l-CDS(X)**Z)CUS(X)SIN(X)/ABS(S]V(X)))’
PRINT 1

FORMAT(97HO 1 DEGREES A EXPONENTIAL (A)=B
LOGARITHMI(B) =C I SIN(2X)=D C-D/7)
FI=1.0

DEGREE=7.5

DELTA=1.57079632679489661923/12.0

ARG=DELTA
A=(FI+FI)#SQRTF{1.0-COSF({ARG)#%2)=COSF({ARG)
IF(FI~-24.)Ty T4 6

A=-A

B=EXPF(A)

C=L0OGF(B)

D=FI*SINF{ARG+ARG)

DIFF=C-D

PRINT 2,FI,DEGREE,A,B,C,D,DIFF
FORMAT(1X4F3.0,F9.1,F19,10,E19.10,2F19.10,€12.1)
FI=FI+l.0

DEGREE=DEGREE+7.5

ARG=ARG+DELTA

IF(FI~-49.0)3;4,5

PRINT 9

FORMAT(1H1)

STOP 111

sTOoP 777

Is

suorpoun,] Areiqry jo s ‘6 oIngr
I q qrT § n '6 2

< Med

645 INPUT CHARACTERS

MODULUS IS 5
MANTISSA IS 20

STORAGE ASS IGNMENT-ARRAYS + EQUATED VARIABLES

NO ARRAYS

STORAGE ASSIGNMENT — SIMPLE VARIABLES

ARG 4301 30/
DEGREE 4323 327
FI 4345 34V
DIFF 4367 36X
D 4389 381
C 4411 41/
B 4433 437
A 4455 45V
DELTA 4477 47X

CONSTANTS LOCATED FROM 07924 YO 07999 12u-192Z

o e e Y\

SEQ

001
003
005
006
007
008
009
010
c11
012
013
014
015
o016
018
019
020
021
022
024
025
026

STARTING ADDRESS OF STATEMENTS

STARTING ADDRESS

52W
53X
54Y
S6#
57S
58Y
60+
66%
68Y
70/
710
72X
T4Y
T6U
77V
19/
80X
827
8527
87+
872
88Y

4526
4537
4548
4560
4572
4588
4600
4660
4688
4701
4714
4727
4748
4764
4775
4791
4807
4823
4859
4870
4879
4888

DISPLAY

53%
54/
558
56U
STW
595
60U
65U
69S
70V
T1Y
13/
758
76Y
172
79v
817
82X
85T
87U
88T
89S

[4Y

04g dQ puv "$0adS [OFT UDIO]

suonpoun,] AIeIqry jJo a8 ‘G S|

€ e g

SNAPSHOT OF OBJECT PROGRAM
INPUT/OUTPUT AREAS LOCATED FROM 001-332

FIXED OBJECT TIME ROUTINES LOCATED FROM 333-4279

sceeesee0% e cnnceselFeenceeae22FesnceceedFennneceatTenenseeeDTecncneseb6TenncsencslFecnscaeeBluceneaeasIF-AREA-D4200
9926XBH610%4) 26XBH61 5 0.0 X RW4A281 J0+1BA3810 -AREA-04200
1 1 21 1 1 ¢t 1 1 111 1 111 1t 1 1 1 111 1 1111 1 12

sceeenaalFicnccseelTeceecnee?29cnncceea3Vecceceeeb4Pececenae’FuccncasebdTeaccnccelPencuaneaBIenannassI9-AREA-04300
-AREA-04300

esssesse00cencesealFucececee2FeacerensdTecccecastTecenccee’TuccenseebPecesnanalFecencanaBIucanaaeaII-ARIA-04400
~AREA-044D0

eesesseel9c0tcscnelfueccaeea?2FernncecealTanccaneettFTennnesseSFcennecaabPaccccenal’FccncceaeBlencaasaaaII-AREA-D4500
BWOT#F2TF2SBWIT#F8WF2SBT003DV=[65+BT003BT=16WtBT004GX=15Y/I3V#BT7003+/=45X%-AREA-04500
1 11 1 1 11 1 1 1 11 1 11 1 11 1 1

eeseceee0FcccenselTecneceee?2Tuecnerees3%nccnssetFecnncees TanenneeebTsneeancselTencaceseBIecaneesaI9I-AREA-D4600
BT005+/=3+/C#52V=50/%50/N+165Q#%5+/=3+/C+4EV=3DV+3DV452V*50/%¥BT70050/=3DV-12X¥V68Y2G7BBT70/BT004EV=4EVN-AREA-D04600
1 1 11 1 11 1 1 1

eseseeee09caceccacslFeneesean29ucnncnenlTencenceebPennsccee’9cnccnceebecnncnselFeaceceeeBlevnnnseaII-AREA-04700
$BTO004CT=4EVE+*BT004A/=4CTG#BT003HZ=3+/+3+/S#3DV+BT003FX=4A/-3HI$BWOT*HOWFO+BTOD3DV=3DV+I165+B7003BT=3-AREA-04T0D
11 1 11 1 11 1 11 1 11 11 1 1 1 11 1

eececcesDFcccnccealTececeenaZPeencecee3TennccceebTennceene’PececncaebdTacacceeeTPenceeaeaB8lennnnas?9-4EA-045800
BY+16W$RT7003+/=3+/+44GX¥BT70050/=3DV-13/+B8522800VB7Z2G7RB6O*BWI7+I0YF2SN111.BB7+#NTT7.BBTZNOOC.BB8YHI4~AREA-04800
11 1 11 1 11 1 1 1 11 1 1 11 1 11 1 11 1

eeesese209cecsescalTecccesee?Tesaseeee3TeceraceetTeceseeaa’FenncnceabIuccenceselTeenesseeaBFenenaeaesaF39-AREA-04300
WM0-291/+40001 7VYMO-892VS000I7VMOJ194SLITVOO0OBOOOHO94H#440-2H$4U0-3M0-2T4/MT4/094V+5/0-01B%620-0,BS0#0-AREA-D430D
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

eesneese0F cecceeealTerceecne2Fencncsee3TencecnacetbTenesnees5FenneacesebHTunnceacss?PercoceeaB8IuucnneesI9-AREA-05000
-0$BS250-0{(BS8/0-0)BS4v0-0=MT4U089IMT4/000B000XXXXXXMO~2089HT4/0-3B+3UYJI36+8TB/ TVI4W2BV/3/$4W2M0-6+5%-AREA-05000
1 1 1 1 1 1 1 1 1 1 1 1 11 1

esssseees0FcnccrnealTeccenesa2Fuceecosee3%ecnncacetTecenneesDTencecsnsebTusncccsealTencncsseBlanccnsasI9-AREA-D5100
D690/ 4UDV/2U%4WKD692/4UDY/2W+4WM$4X089H0890#0M089+4XC+5++4XB#3U/Y/6U+4WB/B82ZM0~-6+5¥MT4X089HT4/0-TB+3U-AREA-D5100
1 11 1 11 1 1 1 1 1 1 1 1 1 1 1

resseese00cecnccaclTecceecea2eceseeee3F0eccnneetDannseeee5TecancecebTenncsceelVenceccoaBIaseeeeesaII-AREA-D5200
8 YSOW088M094T4/B+3UH0940-1R89XD0~-0H094BS5SM0-3094M0J2SFUMMO-6SIYMOJ2TOVHTS+0-0MT54094AD00000+0001~AREA-D5200
1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1

eeesseesUFscesccnelPececcace?2TuccncsesdTecececesPtTanencensedFTecacoeeebVececconselTuccnnsesBFunneneaadI3-AREA-05300
TVSO00ITVVT2YITVKHT4/0J6B97SM0J5T4/BITS 2S. HT9XM2G9250DLW1SSWIS2MI{ 040250D2M92G9MDQD8IROD0OHV-AREA-05300
1 1 1 1 1 1 1 1 111 1 1 11 1 1 1 111 1 1

£€g

‘G InBL

pueg suoppunyg Areiqry Jo asn

1 1 1 111 1 1 1 1 1 1 1 1 1 1 1 1

11 1 1 11 1 1 1 1 1 i 1 1 1 1

11 1 1 1111 1 1 1 1 1 1 1 1 1 1 1 i

1 1 1 1 1 1 1 1 i 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1111 11111 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 i i 1111

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

/VL2X0-41BUTILNZYLT+#2G9B/15) WB4BV4S+BA+

1 1 1 1 1 1 1 11111 111 111 1 1 11111

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 111 1

1 1 1 1 1 1 1 1 1 11t 11 11 1 1 1 1

111 1 1 1 1 1 1 11 1 1 1 1 1 1 1 11

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 111

‘......,09.......-l9........29.-......39........49........59........69........79........89........99-A§EA-
4/3V0¥V2552+2)280),S096H0942502250,0408V3U0~0 Y¥2510-1A0-12+2AW 1$095C094089BV3UUANO/ WOUAWOUWOXNDOD251-AREA~

........09........19...-....29........39........#9........59........69........79........89........99-BRE§-
*'2092E4Y2E4255N255000+(HOX0#4BU3#.ZBOBOOOSZG9DH1T280YH1/269YTQYHl/OHlTH79B755230258509299#045684017-AREA-

........09........19........29........39........49........59........69........79........89........99—AREA-

9 A+ABH3Y924CB/425Y269Y3XBW5#8V4SSY-4$Y3Xﬁ-#T-#X+N79H82$—4SH?9VZ12#79(h-%U%795099H79V-OUH79-AREA-

........09........19........29....-...39........49........59........69........79........89........99-AREA-
B+H82H79H089—AZ+H80095BT5/+0#10953-4“095VX3T095BBX6T924CH0940-1Y-JU#87D—JU-#XSHI*SH79BY5S-4X2+ZG92+2-AREA~

........09........19........29........39........49........59....-...69........79........B9........99-AREA°
BYTY*2*2249+251——4UHOU+~4YNO/SHOXBT9Y##87H0942+1B#Z4BY7YD°450#O-—QZHOUSN79BYZSHZIYM269250H089L-5#’ZS’AREA-

........09...‘....19........29........39........49........59........69........79........89........99—AREA-
92E1-2522693251BOOOA099H79VZ8VN79K+H82W79YZG9268*ZGBZG9AN82-H83Nl#Y-#St87BY5592#63X9TBV4$926C*H82H79-AREA—

........09........19...-....29........39........49......-.59........69........79........89........99-AREA-
B/34BUT1SCLB/42AKJBAL5T0796326794896619231A B4+ HFOY2G9W84BLO/ SVKTV2GIKL 248259Q089,0#0DL6W0+2C281L 6Y-AREA-

........09-.......19........29......-.39........49........59........69........79........89........99-AREA-
BJlZU+ZGBZG9AL6HNTQS269249-249L6VSL6WH79AL6H2BOSLblZEO(269249L249L6U'L6U2E1+249269*L6U251+L3Yw1##++,-A(EA-

........09........19........29........39........49........59........69........79........89........99-AREA—
VO*VZSHU?NLbUHVZ/HVé/K2YBUOZA2+2YL6V2+1+VGY248'N79252A2*1252H094252$H828#lOVK9#0'418U71LNNYL3YZG9B-7-AREA-

........09........19........29........39........49........59......-.69........79........89........99-AREA-
A31+-Y0D6/48T7DWB4L9SBM1/37+0BBBBYWB-AREA-

..-.....09........19........29........39........49........59........69........79........89........99*A2EA-
4#87007/N84VM5*N841,w84—2698M95/BU71ZTZY#87H1/BV4SBMBZS+NT9N8ZSDG/NBZVOIHHBZKSJ6VH82VN1/H82KV/42289K-AREA—

........09........19........29........39........49........59........69........79........89........99-AQEA-
BU71EOFB/15H089VGX+H8009SBT5/C0#006UBM9ST*O#OH79Y269H79SH1$C250259Q089,0#05251006/0*D+363NOX+OBT9YV2—AQEA-

........09.......-19......0.29.....a..39=....=,,493eegee.-59........69..'.....79........89..-.....99-AREA—
*22+1H0942+18*24A099H82VM3ZH82K—N80H1#SH79Y259ZGB+ZGBZGQBNSZOA09lC024688‘269Y2G9¢87B/34VQ?U259KDZG§2-&!EA-

.....--.09........19........29........39........49........59........69........79........89........99-AREA-
BZM,HOBQLQQHZO1H094+N80283AQ9H282'09Y2850283N7908P6X2840H0890#1BPBSVPBSH?QBAQQNH79SZGQSRO#O-Z'OKl)HO-AREA~

........09........19.......‘29........39........49........59-.......69........79........89........99-AREA-
940—1-Q9NRO/AQ9NRO/AROSO—150-10$2VQISO#ZBAO—10#20R0/0P9H0890#2VPBHOP9ZB/348U71SONYQ9HZG9/278839VA5+1-AREA—

05400
05400

05500

05600
05500

05700
05700

05800
05800

05300
05900

05000
06000

06100
056100

06200
06200

06300
06300

06400
06400

06500
06500

06500
06600

26700
06700

06800
06820

149

001d "dQ pup ‘$22dg TOFT UDILIO]

suonjoun,y Arexqry jo 9s ‘6 2Ingt
Aq qr ¥ n e A

q Heg

.....-..09........19........29........39........49........59........69........79........89........99-AREA-06900
A BBW1UO-4SBW1UO—-4CB~-5/0-4GBL7/0-4EBO7SO~4NBO8X0-40Q ~-AREA-06900
111 1 1 1 1 1 11

........09........19........29.......-39........69.-......59........69........79.....-..89........99-&REA-07000
~AREA-D7000

........09........19........29...-....39........49........59........69........79..--....89........99-AREA-07100
-AREA-07100

........09........19.......-29........39...-....49........59........69........79........89........99-AREA-07200
-AREA-07200

........09........19........29........39........49.......-59........69........79........39........99-AREA-O73DO
-AREA-07300

........09........19........29........39........49........59........69........79........89........99-A!EA-07400
~AREA-DT400

........09........19........29........39........49........59......-.69........79........89........99-AREA—07533
#-AREA-07500

........09........19........29........39..-.....49........59........69........79........89........99-AREA—07600
3DV38T4EV4CT4A/3H13FX..BJ5200A5L281A=21(SQRT(1~COS(X)'lZ)COS(X)SIN(X)/ABS(SIN(X)l)BKZBBJSZDOABLZBO I-AREA-07600
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

........09........19.......,29........39........49........59..-.....69........79........69........99—AREA-07700
DEGREES A EXPONENTIAL(A)=B LOGARITHM(B)=C I SIN{2X)=D C-DBKOBBK-AREA-07700
1 1

........09........19........29........39........49........59........69-.......79........89........99-AREA-07800
OBBKZ33J5200AH0990*IBL85FO0A0030008L85FO0A0080018L85FO0A00901OBLBSEDOAODSDI4BLBSFOOBOOQOlOBL85EOOA00—AREA—D7800
1 1 1 1 1 i 1 1 1 11 1 1 1 11 1 1 1 11 1 1 1 11 1 1 1 11 1

........09-.......19........29........39........49........59........69........79........89........99-A§EA-07900
7005BK23BJ5200ABL281BK232D0B4I0B1BOBL5707963267948966192C0A2A0ATEOAAD+] -AREA-07900
1 1 1 1 1 11 1 1 1 1 11 1 1 1 1 3

/\/—\/\/\/—\f_//—\

<g

"6 Byl

suopoun,] AreIqu jo asn)

9 Med

CONDENSED DECK

»008015,022026,030037,044,049,053034, 035036N00001026 000150983
L068116,105106,1101178101/19ZHO029NNNCD29056B026/8001/0991,001/00111710+000250983
+008015,022025,036040,047054,0061068,072/061035 »G010011040000350583
00000000000000 L014100,092097,081082,0830841040000450983
1920522 L008693,689591,593042,0400401040000550983
H56TH408M661656M099415M089422H089001 L036368,+337341,348355,3620401040000650983
H099202/332/N110210B621FF1M094250 L033401,376380,381388,3933951040000750983
H216000H256000H2440002FK+662664/332 L035436.409416,423424,4264331040000850983
/FJIM658306MH465M665668M668000 L029465,438440,44T7448,4524591040000950983
M651H465A66T669V4596682A6T06562,0+0 L035500,470474+481489,4964971040001050983
MO$#00+0V5200%01)0+0C089688B568/22) L034534,508516,520527,5325331040001150983
M422089M415099/332/B5636B564. L029563,+542549,553554,5595631040001250983

»000H0890%1B6320972H09920122)A6T0664 L036599,568575,583590,5915931040001350983
C664672R433/5664F4331M6802202535A6700991.039638,607512,616621,628632104D001450983

B4979cueesessa93-000000008 L026664,643652,654659,6626631040001550983
910 AlEEXECUTED L016680,666668,670671,6730401040001650983
00000000000000 L014100,092097,040040,0400401040001750983
HO94HO86HVO6M0-2089QT65HS278S060-0% L035734,704708,712719,7237271040001850983
HT750+0/303//LW852805091H094000 LO31765,742746,747748,7557591040001950983

CO-4W8B6M0-4924,201BT05THBT40-4B/990-5% 1L 038803,773780,784789,7960401040002050983
MO-7089Q765VV3008_8KVV30088SH099000) W87 L038841,811815,823831,8380401040002150983
MO*0OW82Q089M0+0250H094L W85v¥8830001 L034875,849853,860864,8680401040002250933
Y250+#87SWB52E2C0-1W85A099094B533924/ L036911,883890,897904,0400401040002350983
BS62924%5924++878+172800B/34SSW82WT9 L036947,920924,928936,9410401040002450983

+WB0090CDI9089V/65WTIKB/8BUAWTINE2 1L 034981,955962,970975,0400401040002550983
+2502V0+100090Y#870-0A2X90-0Y0-0%87 L035416,989996,%034%10,0400401040002650983
+WB2WTOMWT50~-1YYADHO89 L022%38,424%31,+32%33,%34%351040002750983
S2H1B/4204¥2+H089B+4304#10P0%12805S099094)L039%77,%43+51,%55+63,%¥704771040002850983
1SSO89HT 942G, B/ 34WTTOV/42WTIK L030/07,%79480,%¥87491,%92/001040002950983
BUTINOF+WBIWTIDWEI2GIMM25G8/278 L030/37,/12/15,/22/29,+/30/341040003050983
BYI55SW79S2G9B/34BUTIDZEB /15 L027/644+/42/464/53/544/58/611040003150983
B#17US100090Y2G92X9BIILAWB2WTIB /34 1034/98,/70/77,/84/88,/950401040003250983
H0940-58000D0~-0DDDQT65 L022520,506510,514515,5165171040003350983
B723000$8815B/545D2G90-1MD(0%0251 L033553,529533,53854545465471040003450983

~WB2BS83*'2G92E1H0940~-3SHIOWT7IAWB2WT 9 L036589,558562,569576,5830401040003550983
Y2G9597+#87B+24BT310-4+HT7650-1C280W85 L037726,5977T01,T05T13,T200401040003650983
BOOOBT692800VT69WBTIVTI20-41H0990+2 1L035T61,731739,T47755,0400401040003750983
PW782G8L2G9000V0-50-41Q094B712AW912G8 L0O37T98,T69776,T84T788,T7920401040003850983
VU18280SY2G92GTBT62AW92WTIBU4BWTT1S52G9 LO38U36,U07TU14,U18U25,4330401040003950983

LW93280BUOTDOW892GIMM2GBSWI2WTIBUOT L034U70,U44U4B,U55U56,U60U671040004050983
HUS2/2+2HV250 +0HO99000M0+2212H2170002 LO37Vv07,U75U79,U86U93,V00Vv071040004150983
+ 201HV290+3H0990008000H099000,W87 LO33v40,V12V19,V¥26V30,V370401040004250983
20%0250BW23924/BVI8924%VVB8T924KA0%¥02G9 LO38BVTB,V4BV56,V64VT72,0400401040004350983
+2698/34S0%02G9BVT9L0+0250*2G92€E1 LO33W11,V83V87,V94V98,W050401040004450983
M2E12G9B/34B/54250 MO+02EODHW64L2G9 LO35W46,W19W23,W31KW38,W39W431040004550983
+2G92E0(0+0251M2492G9B/ 3400040 LO3OW76 4 W54WEL s HEBWT2,WTSHTE1040004650983
000%00080= 91 LO13W89,W81WB4,WB5WB6,WBTWARB1040004750983
BEAL L004KW93 ,W91WI2,WI304D0,0400401040004850983
0 L002W96,040040,040040,0400401040004950983
05 M002v36,040040,040042,0400401040005050983
22 M002837,040040,040040,0400401040005150983
ROT M003730,040040,040040,0400401040005250983

M003509,040040,040040,0400401040005350983
BWOT#F2TF2SBWI7*F8W L01954U,53%53/,53U53X,54/5451040005450983

99

UDILLO]

oid dO puv ‘soadg TOFT

suonoun,y Areigry jo asn ‘g aindi

L Hed

F2SB7C03DV=16S+BT003BT=16W%¢
B7004GX=1SY/13V+B7003+/=4GX¥B700

LO2757/+54Y555,55256%,56U57/1040005550983
L03260T,57W58X,58Y595,59260¢1040005650983

5+/=3+/C+52V=50/*50/N+16SQ45+/=3+/C#4EVL03964S,040040,040040,0400401040005750983

=3DV+3DV%52v=50/%¥B70050/=3DV-12X%
V68Y2G7BB70/B7004EV=4EVN+BT004C T=4EVE
#BTO004A/=4CTG#BT003HZ=3+/43+/5%3DV#
BT003FX=4A/-3HZ#BHIT*HOWFO#%
B70030V=3DV+16S+B7003BT=3BT+I16W+B700
3+/=3+4/+4GX¥B70050/=3DV-13/4R88522800
VB7Z2GTBB60¥BWI7#I0YF2SN111
<BBTNT?7.R87INOOO.
B88YH94WM0-291/+00017VM0-892VS00017V
M0J194SLITVOO0BOO0OHO94H+4+0~-2H$4U0-3
MO-2T4/MT4/094V#$5/0-01B846Z0-0,BS0+0-0%
BS2S0-0(BS8/0-0)BS4V0-0=MT4UO89MT4/ 000
BOOOXXXXXXM0O-2089HT4/0-3B+3UYJ3648T
B/TVT4W2BV/3/+¥4W2M0-6454%D690/4UD
V/2U$4WKD692/4UDY/2W+4WM$4X089H0890%0
MOB9+4XC+#5+%+4XB+3U/Y/6U+4WR/BIMO-645%
MT4X089HT4/0-7B+3UB YSOW0B88M094T4/
B+3UH0940-1R89XD0~-0H094BS55M0~3094
M0J2S9UMMD-6S9YMOJ2TOVHTS+0-0MT5+094
A00O0000+00017VSOO00ITVVT2YITVKHT4/0J6
B97SMOJ5T4/BOTS 2S.
HT9XM2G9250DLW1SSW1S2M3(040250
D2M92GIMDQOBIBOOOHV 4/ I VO+V2S
$2+2)280),5096H0942502250
» 0#¥0BV3UO-0 Y2510-1A0-12+2AW1%095
C094089BV3UUAWO/WOUAWOUWOXNOOD251 +
*2G92E4Y2E4255N255000+ (WOX04#4BU34,280
BOO0S2G90W1T280YWL/2G9YTOYWL/+WITHWT9
B75523025850929940456840179 A
+ABW3Y9324CB/425Y2G9Y3XBW5#BV 4SS
Y=4SY3XM=4T~4X+WTIWB2S—4SWTIVZ1ZWTIK
A-4UWT9S099W79V-0UWTIB+WB2WTIHOB9-AZ
+WB0095BT5/+0%10955-4W095VX3T0958
BX6T924CH0940-1Y-JU#87D~JU-4XSW1#SWT9
BYS5S5~4X2+42G92+2BYTY+242249+251--4UW0U
+=4YWO/SWOXBTIY+387THO942+1B+24RYTY
D-4S0%#0--4ZWOUSWT9BY2SHZ1YM2G9250H089
L-5%'26G92€E1-252269S251B000CA099W 79
VIBVWTIK+WB2WTIY2G92G8+2GB2GIAWE 2
—W83W1#Y-4S5+87BY55924CRX9TBV4S924C
+WB2WT9B/34BUT1SCLB/42AKJBA
1570796326794896619231A B4+ H
FOY2G9WB4BLO/SVKTV2G9KL2482G9Q089
» O#0DL6WO#2C281L6YBIL1ZU+2GB2GIALO6WNTY
$2G9249-249L6VSLOWNTIALEW280SL6Z 2ED
(269249L 249L6U'L6U2E142492G9+L6U251
+L3YW1++4, VOFV2SHUIWLOUHV 2/
HV&4/K2YBUOZA2+42YL6V2+1+VGY248%WT9252
A2+1252H0942525W82B#10VK9+0~41BUTLLNN
YL3Y2G9B-T/VL2X0-41BUTILNZYLT+2G98B/15
IWB4BV4S+BA+
A31+-YD6/#87DWB4LIS
BM1/07+0BBBBYWB4¥87D07/W8B4

L03367V)64T64T,65166%,66U67V1040005850983
L03771S,68U68Y,695704%,70/70V1040005950983
LO3574X,T1UT1Y,T2WT2X,73/74X1040006050983
LO2777U,75576T,T6UT6Y,T627751040006150983
LO3681+%,77279+%,79/79V,80WB80X1040006250983
LO3684W,825327,82X83Y,8320401040006350983
LO27877,85V852,86T86U,86X87%¥1040006450983
L01L989S5,87v87Z,88788U,88Y8951040006550983
L03692Y,89X90/,90Y91V,9250401040006650983
L03696Uy93W94T+>.X95/,95Y0401040006750983
L038%0S5,975972,98X99V,$0T0401040006850983
LO3846%,#1/%12,4%2X430U,%4/0401040006950983
LO35+7V,#4V$5/,+¥5Y+#6V,4670401040007050983
L032/0X,+8U%8V,#¥9T/0%,/0X0401040007150983
LO37/4U,/1W/2Y,/2U/3/,+/3Y0401040007250983
LO37/8/,/5S5/52,/6U/7/,/7V0401040007350983
LO36S1X,/8Z/9W,S2#50U,51/0401040007450983
L03455/,525522,S3TS53X,54/54V1040007550983
LO3658X,55256%,56XSTU,S8/0401040007650983
L036T27,S9VT0S,TOZT1X,T2U0401040007750983
L024T4X,T2YT3V,T3ZT4S,T4VI4X1040007850983
LO33T78%,T5/T5V,T6ST6T,T6XTT7U1040007950983
L028U0Y,T8YT8Z,T9+T9U,TI9YU0S1040008050983
LO25U3T,U1TULX,ULYULZ,U2TU341040008150983
LO33UbW, U3YU4W,USTUS,J6X0401040008250983
LO34V0#,UTUUTZ,UBWUIT,V0$0401040008350983
LO37V3X,V0YV1V,V25V2T,V3#V3Ul040008450983
LO36VTT,V4SV4W,V5TVE+,V6X0401040008550983
LO38W1/,VTYWD/,WOSWOV,WOYAN1/1040008650983
LO31W4S,WITWIULW2SW2X, W3UW3Y1040008750983
LO36WTY s WS+W5X s WOUWT/ oW TZ0401040008850983
LO36X1U WBWWIT,X0/X0Y,X1V0401040008950983
LO33X4XyX2SX2WX3TX4#,X4Y0401040009050983
LO37X8BUsXSWX6T, XT#XTX X8/0401040009150983
LO37Y2/7,X9TYO%,YOUYL/,¥1V0401040009250983
LO34Y5V,Y2ZY3T,Y3XY4/+Y4YY551040009350983
LO37Y9S,Y6TYT+,YTUYTY,YBSYB8Z1040009450983
L03372V,Y9XZI0U,2Z1/21V,2120401040009550983
L03325Y,23U24/,24Y25V,2520401040009650983
L03429S,26W277,28/28v,29T0401040009750983
L027-12,-0%-0U,-0Y-1/,-1V0401040009850983
L029-4Y4-4S-4T,-4U-4V,~4X-4Y1040009950983
L033-8/4-5%-5/,-5Y-6T,~-7/-7Y1040010050983
LO37J1Y,-8W-9T,J0%J0V,J150401040010150983
LO35J5T,J2WJ3T,J4+J4X,J500401040010250983
L035J8Y,J6/J6Y,47VJI8S,J820401040010350983
LO2BKIW+JIWIIX,JIYIIZ,,KOWKIT1040010450983
LO36K5S,K2UK2Y,K3SK3Z,K4W0401040010550983
LO37K8Z,K6E$+KEX KT/ KTV,K8TK8X1040010650983
LO3TL2W,KIXLO/,L0ZL1T,L1WL2T 1040010750983
L038L6U,L3/13V,L3WL3X,L3YL371040010850983
LO20L8BU,LO6WLEX 4 L6ZLT#,L7/L7Y1040010950983
LO26M1#,L9TL3U,LI9VLIN,L9XMOUL1040011050983

LS

‘6 omIr

suooun,] Arerqry jo asp

g ueg

VMS5$W841,WB4~2GIBMIS/BUTLIZTZY+8THL/ LO35M4V,M1ZM2T,M2XM35,M3WM371040011150983
BV4SBM3Z S+WT9W82S06/W82VO1WWB2KS06VW82 L038MBT ,M5¢M5V, M6SM6Z,MTX0401040011250983

VN1/W82KV/422G9KBUTLEOFR/15H089VGX L034N1X,MISND+,NOUNOX,N1/0401040011350983
+W800958T5/C0+006UBMOST+OF0WTIY2COUWTY LOZTINSU;N2VYN2Z ;N3WN4/ ;N4Y0401040011450983
SW1¥C250269Q089,0%¥05251D06/0%0+06SW0OX LO37NY/ ¢NSINSW,N7#NTU,NT7YN8BV1040011550983
++BTOYY2422+1H0942+1B¥24A099W82 L03102S,N9TN9U,NI9YOOV,01S01W1040011650983
VM3ZWB2K-WBOW1*SWT79Y2G92G8+2GB82G9BN520 L03806%,03/03Y,045042,05W064#1040011750983
A091IC024688-2G9Y2G9+87 L022085,056506V,06W07/,07S0TW1040011850983
B/34VQTU2G9KD2G92B2M,HO8IL QIW201 L032P1U,08X09V,POSPOT,POUPOY1040011950983
HO94+WB0283AQ9W282'Q5Y285D283W79D LO33P4X4P1ZP2W,P3TP4%,P4X0401040012050983
BP6X2840H0890%1BP8SVPBSWTIBAQIWWTIS2G9 LO38P8BV,PSWPHT,PEXPTV,P850401040012150983
SRO#*0-2, OK1)YH0940-1-Q9WRO/AQIWRO/ L033QLlY,PSTPIX,P9YQ0V,Q150401040012250983

AROSO-150-1042VQ1S0+2BA0~104#2DR0O/0PY L036Q5U,Q2WQ3T,Q4/Q4Y,Q5V0401040012350983
HOB9U+2VPB8WOP92B/34BUT1ISQNYQIW2G9/278 1L 037Q9/,Q65Q7#+,Q7UQTY,Q8/Q8Y1040012450983

BO9VAS5+1A BBW1UO-4S LO19R1#,Q9WQ3X,Q9ZR0/,ROSROT1040012550983
BW1UO~4CB-5/0-4GBL7/0-4EBOTS0-4N LO32R4S,R1ZR2X4R3VR4T,0400401040012650983
B08X0-4Q LO10R5S,R5/R5S5,040040,0400401040012750983

3DV3BT4EV4CT4A/3HI3FX.. L023F2S,FOTFOW,FO2ZF1S,F1VF1Y1040012850983
BJ5200ABL281A=21(SQRT(1-COS{X)#22)COS(XLO39F6/,F2XF3%,F3U040,0400401040012950983
JSIN{X)/ABS(SIN(X)})BK23BJS5200ABL28 LO35F9W)F6SF6S5,FBSFBW,F3+F9T1040013050983

o1 DEGREES A EXPOLO39G3v,040040,040040,0400401040013150983
NENTIAL(A}=8B LDGARITHM(B)=C LO39GTU)G3WG3W,040040,0400401040023250983
I SIN({2X)=D . C-DBKO8BKO8BK23BJS52 LO35H0Z)IGTVGTV,GIUGIY ,HOSHOW1040013350983
00AHD990+18L85F00A003000 L 024H3T,H1 TH2#,H2UH2V,H2YH3/1040013450983
BL8SFO0AO08001BL8BSF LO19H5S,H3YH3Z ,H4SH4V ,H4YH551040013550983
00AQ09010BLB5E0DACOS LO20H7S yHSWHSZ yH6SH6W, HEXHT$1040013650983
014B1L85F0CB0O0OI010RLES LO21H9T,H7TWHB+,HB /HBU,HBXHI+1040013750983
EOOAOD7005BK23BJ52004A LOZ1T1U,HI9VHIY,I10/10U,10Y1151040013850983
BL2818K232D0B410B81B0B 1L02113V,117124,12U12Y,1350401040013950983

15707963267948966192C0A2A0ATEQAAQ+] LO3517+,15216%,167T16X, 1740401040014050983

LO28I9Y,I7WI9Y,040040,0400401040014150983
HOBIMO*0J36MX08BD34HI350¥TMO#6268+4X29L27L039X35,X01X08,X15X22,X290401040014250983
123V, 272M0%3094H099200H23Y334BES60%0¢ LO3TX72, X40X44,X51X58,X650401040014350983
BE250%0-BD7104#0#VC120+#0KVC7504#0BH094Z2161L039Y11,X81%X89,X37Y05,0400401040014450983
/332//H099100M-79D34,0+08B743 L028Y39,Y16Y17,Y18Y25,Y32Y361040014550983
VC12J362H24/100M0+00+0Q094BJI37VY820-11 LO38Y77,Y48Y55,Y62Y66,Y700401040014650983

BYS5BQO8HK22C848Y32BQ08L0+00%08243 L034211,Y82Y86,Y93Y97,2012081040014750983
BJ37VY9T7T0+11BZ12HK22M09924/B0-0H~-06 L0352464216224,228132,2392431040014850983
M094-02V-3123U1B94X H094YB62088 L033279,2154262,166269,2730401040014950983

B8-46089.8-07089 H094000B000VJ3223V1 L035-14,288296,-03-07,-150401040015050983
C24/099B8K08/8J32123UM24Z0898BZT3M0-2099 L038-52,-22-27,-31-35,-42-461040015150983
MO-5089M0+%124SV-790%11)24TL2720+#1BJ37 1037-89,-50-67,-75-79,-860401040015250983
HO094J09V(C12J362BCB4M24S0+1VI3224T1)0%1 L038J27,-97J05,J09J16,J240401040015350983
+24TB0O00 HJ51H0990+18000H094 L028U55,J32J36,J37441,J48J521040015450983
DO-0DCDQLOIMO-224WHKOTO-3 L025J80,J60J061,J62J63,4673741040015550983
BJBIHOI4SET424WV0-024WKBOOOH094M24/099 LO38K18,J85J89,J96K04,K08K121040015650983
BOOOVK4323V1C24/099BK08/MZ68K56BK98000,L039K57,K23K31,K38K43,K500401040015750983
MZ68K71B94X BJ32089 MKT1268M089242 L036K93,K65K69, KT2K80,K870401040015850983
» 23UVKO0823V1IBOOOHO94+0-2L2780-300+ L034127,K98L06,L10L14,L21L.251040015950983
HO94VL4723VIMO-00+0M0O+00-0BJ37H0940-1 LO37L64,132L40,L4T7L54,1L580401040016050983
VL770-01BL32BQ0O8B0O-0H094M0-32555€E7425S L 038M02,L73L77,L81L85,L891L961040016150983
VM3125S8B0-70-0IB0-T0-0ABOJOBZ43SITV 1L036M38 ,M11M19,M27M31,M350401040016250983

s I9WVF5123V1/024, 0+0DHO99HQS70+2 L032M70,4M43M51 ,M55M59,M60M641040016350983
HA49, 001BQ330-0184120-0AMO$+019XMHO89 LO36N06y MT5MT79,M8TM95,NO2NO31040016450983
+0¥0A0-6099HA450+2M25V, 0+2BN490#10 L034N40,N11N18,N25N29,N330401040016550983
VO7419V2BN680-0EAL2TIOXBNT75SL2719X LO34NT4,N49NS57,N64N68B,NT750401040016650983

8¢S

00td "dO puv ‘s0adg TOPI UDLIO,]

suorpoun,| Areiqry jo asn ‘g 2anJg

6 g

DIIXF50DMI9XBP0O40-OFCF50B64B015S
VO22F48KYB62F48+L2T719XDI19X043DH0890+0

+83723SSE0523SC23S19XBP28UBPITM25Y0+2M

H0990+2HAS3A0-9099BA38VP 66F48KCO-6F50
B0O29TB074S023PITWO01MB6OYMFS0089
MB63M2TZ0+#3BP97YB620+¥0C0-9F508P92/

L032006,NB2NB3,N87N95,0020401040016750983
L037043,015022,029036,0370401040016850983
L038081,051058,065070,0740811040016950983
L037P18,089093,P00P04,P120401040017050983
L032P50,P24P28,P32P39,P43P441040017150983
LO34P844P55P62,P66PT3,P800401040017250983

CITW23TBQ65UYI9VO+#0BQ65HQ32C23Y0998Q29TL0390Q23,P92P97,Q04Q08,Q120191040017350983

NGOO.BOOOMO*0ITVAO-6099M0-6089+17V0+0
BJ37Z04#00+0HR58D0#00+0HA900+0HA53,000
VR100#0KBR52BR340+0 HO99VRS520+11BR10
YG810+0, O+ 1HAS530+1H099111BA460-01
A0-9099BR930-0FDO+0DDDHO99

L037Q60,Q28Q29,Q33Q40,Q047Q541040017450983
L037Q97,Q65Q72,Q76Q83,Q90Q941040017550983
LO36R33,R06R10,R18R22,R300401040017650983
LO33R66,R41R45,R52R59,R5T70401040017750983
LO26R924R7T4RE2,RB6RBT 4RBBRBIL040017850983

H+880+150+1DQ099B+440-0EV+44F48BC0O-9F50L039+31,+00+04,+C7+09,+17+251040017950983

B+82UAF50099B+820+3 DO+10+2H0890%1
V4+820+2BH099B+44H099000B+94ZAF4T0+0
MB620+0BA330-0FHO990+4D0+0MFS0YM
BA66Z)1ITV)I000)000) 000,17WBQO8
BL96MA45089YB620#0MABA9SZZ000
BA38D0+*0CDHOBICA49089RB4OT
»0#0MO+10+0)L27Y0%2B26ZM0+10+0M
MM25Y0%#3BA381. 0000
M089099Y06SB88DO+0ITW+M14WOBILITVO+0
B15VN00S.,23V/332/BC84

BCOTKBCB40A2 BBBBR

B8BBBABA
BZ2288C16DJ36C68UIUOMNODT. /332
/B228DJ36D3TM257D41+425223SVvD2T723V1
M26+D41A26S23SL2T2333M(UOO+O0RLWIT333
BE91LBC25D41RBC58KBCT5/333/B228
BE0S5200 BE202000D200E04F02BELS'BD71
FDT11FEOSUM26V23Y/128285,200L2791804
KE254/080M26V23Y,00123V1L080279KZ281
BE56DJ36F08DJI36F21U(UOBBF23D41RU(UDE
SE7423SVD2723SBN/11.BC84E

00, 0+0M08914WM099089A0-6089BF990~01

LO34+465,+37+44,+52+59, +660401040018050983
LO35A00,+74+78,+82+89,+940401040018150983
L032A32,A08A16,A23A27,A31A321040018250983
LO29A61,A3BA42,A46A50,A54A581040018350983
LO29A90+A66AT3,AB0A81,A82A871040018450983
L026B16,A95A99,800801,B05B121040018550983
L031B47,B21B28,B29B36,4B40B471040018650983
L019B66,B49356,B60B61,R62B631040018750983
L036C02,B74B81,888B89,B960401040018850983
L022C€24,€07C11,C12C16,£20C211040018950983
L018C42,C30038,C39C40,L410421040019050983
LO07C49,C44C45,046C47,C48C491040019150983
L029C78,C54C58,065C70,C74C751040019250983
LO34D12,C80C84,C91C98,D050401040019350983
L036D48,D20D27,D34D42,D490401040019450983
L031D79,D54D62,D6TD71,D750761040019550983
L035€14,D88D96,E03ED05,E06E111040019650983
L036€E50,E20E25,E32E39,E£43E501040019750983
LO36EB6ES56E60,E6TET4,ETSEB821040019850983
LDO36F22,E91E98,F05F10,F180401040019950983
LO26F48,F30F38,F42F43,F47F481040020050983
LO35F83,F51F55,F62F69,F760401040020150983

B839+0-0AA0~9089, 0#0H15Y0*0SI9XSYB62I9V L038G21,F92F99,603G10,614G151040020250983
YGB8906SBG650+0 BG810+0-BGB1040*BG850+40+L039660,529537,645G53,0400401040020350983

BGI3v1350+118BJ37BG22-06S,0+18BJ37

BB6TO-OIHOBIITU)26W26X)26Y5S22TB28+0-0A
BHB81H23S0+0926YVH6126W1H23S041V04X0+11

BO4X0+1 BJ37BH350+0.C0+0B63B16TTBI18Y
V16T26W1BH61BIT10-0FH22WO+4Y17603W
BIBOO+0EYO+003WB01S0+0+B0O1S0+0-N/21.
BI71VI960+12BJ378148B00Y0+1 BO1SBJ37
+»0+1VO3W0+21B03W0+2 HO099+0+122TBOSGS

1032692,665G73,G77681,6856891040020450983
L038H30,HO1HO8,H15H19,H230401040020550983
LO38H68,H35H42,H46H54,H610401040020650983
LO37105,H77H81,HBIHI6, 1010401040020750983
L034139,114118,126133,1400401040020850983
LO36175,148155,163171,1750401040020950983
L03601/,180188,192196,00U00Y1040021050983
L03504W,01W02U,03S03W,0470401040021150983

BIT10-0EH22WO+1+19VVOT7Y26W1B14%V10426Y1L03908V,05V06S,06W0TU,07Y0401040021250983
S0-922W+22W23SS23522ZAL2722T-222A2222271.03912U,09T10%,10X11U,11Y0401040021350983
+22T19XBB670-0IMI9X000LML5Y099)000BAS4 L03816S,13S14%,14X14Y,15V1521040021450983
V18S26W1H2220+0,26WVH6126X1D0+00+2H089 L038204,17/17Y,185194,19X0401040021550983

+26XBH610%4) 26XBH61
5
0.0 X RW
4A281 JO%1BA38

10

L029222,20V21T,21X22/,22U22X1040021650983
L014247,23723V,23W232,24524T71040021750983
LO1726%,24X%X254,25T25W,25726+1040021850983
LOL62TH ,26T26W,26X26Y,2622771040021950983
L00327Z,040040,040040,0400401040022050983
/52W080 022150983

/\—W/\./’-_,/”\

01 MeJ suonoun,] AeIqi] JOo 9s() ‘G UNTIJ

69

___ -
END OF COMPILATION
PRESS START TO GO
A=21{SQRT{1-COS{X}==2 C0S{XISIN{X}/ABS{SINIX}}}
1 DEGREES A EXPONENTIAL(A)=8 LOGARITHM(B)=C I SIN(2X)=D c-D
1. 7.5 0.2588190451 0.1295399375E 01 0.2588190451 0.2588190451 D.4E-19
2. 15.0 1.0000000000 0.2718281828E 01 1.0000000000 1.0000000000 0.0E 00
3. 22.5 2.121320343%6 0.8342144716E O1 2.1213203436 +1213203436 0.0E 00
4. 30.0 3.4641016151 0.3194774551E 02 3.4641016151 3.4641016151 0.0E 00
5. 37.5 4.8296291314 0.1251645325€ 03 4.8296291314 4.8296291314 0.0E 00
6o 45,0 6.0000000000 0.4034287935E 03 6.0000000000 6.0000000000 0.0E 00
7. 52.5 6.7614807840 0.863%205288E 03 6.7614807840 6.7614807840 0.0E 00
8. 60,0 6.9282032303 0.1020658443E 04 6.9282032303 6.9282032303 0.0E 00
9. 67.5 6.3639610307 0.5805413502E 03 6.3639610307 6.3639610307 0.0E 00
10. 75.0 5. 0000000000 0.1484131591E 03 5.0000000000 5.0000000000 0.0E 00
11. 82.5 2.8470094961 0.1723615989E 02 2.8470094961 2.8470094961 0.0E 00
12, 90.0 0.0000000000 1.0000000000E 0O 0.0000000000 0.0000000000 -0.4E-20
13. 97.5 -3.3646475863 0.3457419839E-01 -3.3646475863 -3.3646475863 0.0E 00
14. 105.0 -7.0000000000 0.9118819656€E-03 -7.0000000000 -7.0000000000 0.0E 00
15. 112.5 -10.6066017178 0.2475206303E-04 -10.6066017178 -10.6066017178 0.0E 00
16. 120.0 -13.8564064606 0.9599290509E-06 -13.8564064606 -13.8564064606 0.0E 00
| 17. 127.5 -16.4207390469 0.7388625308E-07 -16.4207390469 -16.4207390469 0.0 00
is. 135.0 -18.0000000000 0.15229979T4E-07 -18.00000000C0 -18.0006000000 0.0E 00
19. 142.5 -18.3525906995 0.1070461693E-07 ~18.3525906995 -18.3525906995 0.0E 00
20. 150.0 -17.3205080757 0.3004684793E-07 -17.3205080757 -17.3205080757 0.0E 00
21. 157.5 -14.8492424049 0.3556771481E-06 -14.8492424049 -14.86492424049 0.0E 0O
22. 165.0 -11.0000000000 0.1670170079E-D4 -11.06000000000 -11.0000000000 0.0E 00
23. 172.5 ~5.9528380374 0.2598455530E-02 -5.9528380374 -5.9528380374 0.0E 00
24, 180.0 0.0000000000 0.1000000000E 01 0.0000000000 0.0000000000 -0.3E-16
25. 187.5 6.4704761276 0.6457911327E 03 6.4704761276 6.4704761276 0.1E-18
26. 195.0 13.0000000000 0.4424133920E 06 13.0000000000 13.0000000000 0.0E 00
27. 202.5 19.0918830%20 0.1956588407€ 09 19.0918830920 19.0918830920 0.0E 00
28. 210.0 24.2487113060 0.3396890234F 11 264.2487113060 24.2487113060 0.0E 00
29. 217.5 28.0118489624 0.1463495638E 13 28.0118489624 28.0118489624 0. 0E 00
30. 225.0 30.0000000000 0.106864T458€ 14 30. 0000000000 30.0000000000 0.0E 00
31. 232.5 29.9437006150 0.1010145526E 14 29.9437006150 29.9437006150 0.0E 00
32. 240.0 27.7128129211 0.1085229847E 13 27.7128129211 27.7128129211 0.0E 00
33. 247.5 23. 3345237792 0.1361616844E 11 23.3345237792 23.3345237792 0.0E 00
34, 255.0 17.0000000000 0.2415495275€ 08 17.0000000000 17.0000000000 0.0E 00
35. 262.5 9.0586665786 0.8592685341E 04 9.0586665786 9.0586665786 0.0€ 00
36. 270.0 0.0000000000 1.0000000000E 00 0.0000000000 0.0000000000 0.4E-20
37. 277.5 ~9.5763046688 0.6935275619E-04 ~-9,5763046688 ~9.5763046688 0.0E 00
38. 285.0 -19.0000000000 0.5602796438E-08 -19.0000000000 -19.0000000000 0.0E 00
39. 292.5 —2T7.5771644663 0.1055333309E-11 -27.5771644663 -27.5771644663 0.0E 00
40. 300.0 -34.6410161514 0.9028130704E-15 ~-34.,6410161514 -34.56410161514 0.0E 00
41. 307.5 -39.6029588779 0.6319074743E-17 -39.6029588779 -39.6029588779 0.0E 00
42. 315.0 -42.0000000000 0.5749522264E~18 -42.0000000000 -42.0000000000 0.0 00
43. 322.5 -41.5348105304 0.9155055464E-18 -41.5348105304 -41.5348105304 0.0E 00
44, 330.0 -38.1051177665 0.2825905416E-16 -38.1051177665 -3B8.1051177665 0.0E 020
45. 337.5 -31.8198051534 0.1516471339E-13 -31.8198051534 -31.8198051534 0.0E 00
4b6. 345.0 -23.0000000000 0.1026187963E-09 -23.,0000000000 -23.0000000000 0.0€ 00
47. 352.5 -12.1644951198 0.5212269879E-05 -12.1644951198 ~-12.1644951198 0.0E 00
48. 360.0 0.0000000000 0.1000000000E 01 0.0000000000 0.0000000000 -0.1E-15

RO16512MPM

Accuracy (Arithmetic Routing)ccciinimorcninininnnens 32
Accuracy (Fortran Functions) ..., 34
A-CONnversionc.ccoeveenieinneinnen

Alphameric Conversion

Arithmetic Expressions .
Arithmetic Operation Symbolscccvvvveiinvivcnnicninninenn
Arithmetic Operations
Arithmetic Precision
Arithmetic Routine
Arithmetic Statementccocveviveieiniiniienininreeieneesneeinennne
Array StOrage ...
Array Storage Preservation (Linkage Statement) ..
ATrays in SEOTAZE .vviiivviviriiiiivioniieneeninecerieniannsressesoeesressones

BACKSPACE Statementc.ccccceeeeiriievcniiinnneeeensnnnsenennees

Call Card ..coovvevevrinnns
Carriage Control
Characters, Source Program ...
Condensed Card Deck
Constants
Constants, Fixed-Point ...
Constants, Floating-Point
Continuation Lines
CONTINUE Statement ..

Control Card
Control Statements
Comments Linc
Compilation Halt
Compilation Time
Compiler Description
Compiler Outputccccovveeiivennennnnn
Compiling Operation Procedures
Compiling Procedure

Data Input ...ccocvveeiinne
DIMENSION Statement .
DO StatemMEntovvviiiviieiinininnmi i s

E-Conversion
END Statement
END FILE Statement

EQUIVALENCE Statement
Exccuting the Segmented Program

F-Conversion
Field Format (Repetition of)
Fixed-Point Constants
Fixed-Point Variables
Floating-Point Constants
Floating-Point Variables

Format Routinec.....

Format Specificationcccceervvenrenieniorieninnnes
Format Specification List (Repetition of) .
FORMAT Statementcccvcneenineerironionenss
Fortran Functions
Fortran Statements
Functionscc.c....
Functions, Fortran .
Functions, User

co To Statement (Computed)
co 1O Statement (Unconditional)

Halts or Error Conditions (Object Program)ccccvnernene 42
H-CONVErSION ..cvcvevieciiieeieiieirieestisiestesresisesssessssveseesssseesensens 17

I-Conversion 16
1F Statement .
IF (SENSE LIGHT) StatemMentccovieererimneinsieenorssiessonns 12

Index

Ir (SENSE SWITCH) Statementcccoocermiviiiiniinninn 13
Index (po Statement) 13
Initialization (Monitor Program)ceeoememmroen. 25
Input/Output Operations

Input/Output Option

Input/Output Statements

Last Card TESt ...cvvvvvvieiersiirrnuinreneserresroessesissessessesisisniinens
Library (LIB) Tape . 23, 24, 25, 38, 43
Line, COMIMENES ..covvecverirereerrarireerenenrmmseesisseessssnseosssisenioens 7
Line, ContinUAationc.ccorcreeimniieiioninimsmmmiens i, 6
Linkage Statementccecvvreneeormsieriosernnsenseennmneninssninin 23
LLSES torviieiieiiiiie et ettt cere s s sre s rr e s a e s sbaes 15
Machine ReQuUirementsc.cccveveeciiminnnennnenensinecnesinssinnine 5
MALTICES vrvevirrierrrererireeresiiisressnieiesntsnsnesessressatssnossesnassuinseens 15
Monitor Program 23, 25
Multiple-Record FOrmatsccoccceverivcvecrinnnresvernscorenerisnnens 18
Naming Variablescccceeviviiirenniinienneeniniireenennnones 8
Numeric CONVErSiOnc.ccceeverviienieeenenneiisiiinie e, 16
Objcct Program Operation Procedurescocovvnvverenniieennns 42
PAUSE Statementccoiiiinnniinrinine i
Performance Dataccccivecerveerieiiveereisinienerecreseesesnsesessesss
Precision, Arithmetic ..

PRINT Statement

Processor Phases ..cccvieveeeveeivenieninnnenenne

Processor Program

Program Linkage

PUNCH Statement

Punching a Source Program ...

Range (po Statement)
READ Statement
READ INPUT TAPE Statement
READ TAPE Statement
REWIND Statement

Sample Programsccoeeeneninsssnies oo
Scale Factors ..o,

Segment Location (Linkage Statement)c.cvviiiiinnn
SENSE-LIGHT Statementcc.coieiniiiinimiiiieinenneanin,
Source Program Characters ..o, 6
Source Program, Punching ..., 7
Source Program, Writing .
Specification Statements
Statement Number
STOP Statementc.ccoccveriiiiiniinniieenn e, 14
Storage Allocation ...
Subscript Forms
Subscripted Variable
SUDSCIIPES cueevvreiercerineerenre ettt ae 8

Title Cards ..oovverveiiiieierenniienieenree s sessssesens 23, 24

Use of Monitor Between Segmentscco.covvvinnininennisninnee 25
User Functions ...,

Variables ..o sesiessses
Variables, Fixed-Point
Variables, Floating-Point

Variables, Naming of
Variables, Subscriptedcccoivenniininecenninieeinienennn,
WRITE OUTPUT TAPE Statement
WRITE TAPE Statement
Writing Expressions
Writing the Source Program

X-Conversion (Blank Fields)

14, 20

READER'S COMMENT FORM

Fortran Specifications and Operating Procedures IBM 1401, Form C24-1455-2

e Your comments, accompanied by answers to the following questions, help us produce better
publications for your use. If your answer to a question is “No” or requires qualification,
please explain in the space provided below. All comments will be handled on a non-confidential
basis.

No

U

w2

@ Does this publication meet your needs?
o Did you find the material:
Easy to read and understand?
Organized for convenient use?
Complete?
Well illustrated?
Written for your technical level?

OOoO0o0 OF
Ooogd

® What is your occupation?
® How do you use this publication?
As an introduction to the subject?] As an instructor in a class? []
For advanced knowledge of the subject?] As a student in a class?]
For information about operating procedures? [] As a reference manual?]

Other
@ Please give specific page and line references with your comments when appropriate.
If you wish a reply, be sure to include your name and address.

COMMENTS:

@ Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

C24-1455-2

FIRST CLASS
PERMIT NO. 387
ROCHESTER, MINN.

]
BUSINESS REPLY MAIL I
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES EE—
]
POSTAGE WILL BE PAID BY

]
IBM Corporation I—

Systems Development Division
Development Laboratory —
Rochester, Minnesota 55901 I -. _—
]
]
|
Attention: Product Publications, Dept. 245 —
]

fold fold

HEN

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y. 10601

T-SSPL-¥TO "V STN Ul PRAUld 0¥ WEI

C24-1455-2

EN

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y. 10601

TSSYL—FZ3+"V"S" N Ul pawiiid |0yt Wal

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22.0
	22.1
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	61
	replyA
	replyB
	xBack

