w. 3 METZGER File Number 1401-22
Form C24-3171-0

Systems Reference Library

Basic Autocoder 4K for IBM 1401: Specifications

This publication contains language specifications for
the Basic Autocoder 4K for isM 1401 programming sys-
tem. Also included are machine requirements; explana-
tions of the source program, processor program, and
the coding sheet; and information requirements neces-
sary to write a Basic Autocoder 4K statement. The cod-
ing sheet used with this Basic Autocoder is the Auto-
coder Coding Sheet (X24-1350).

Descriptions of Basic Autocoder statements are pre-
sented in a special format that describes the operation
which the statement performs, shows how the state-
ment is written by the programmer, states the action of
the processor program during processing of the sym-
bolic program, describes the effect (if any) of the state-
ment on the object program, and shows an example that
uses the statement.

e e

g ——

Preface

The BMm 1401 is a stored-program data processing sys-
tem. It processes card records according to instructions
developed by a programmer, then punched in cards,
and stored in the computer. To execute the program,
the instructions must be presented to the computer in
a language it can understand. This language is known
as actual machine language.

Instructions written in actual machine language can
vary from one to eight characters in length. The first
character is always an operation code identified with
a word mark. Other parts of the variable-word-length
instruction may consist of one or two operands known
as A and B, and in some cases, a modifier known as a
d-character. In most cases, operand-A designates the
location (the address) of the data to be operated on,
and operand-B designates the address of where the
operation is to be performed. Addresses of A- and B-
operands are always specified in three-character form
regardless of the size of the storage unit.

Writing a program in actual machine language not
only creates problems in assigning data and instructions
to storage locations, but it also makes it difficult to
write cross references within a program. Furthermore,
difficulties can arise when the program is written by a
team of programmers, resulting in programs that are
difficult to correct and modify.

For these reasons, a symbolic programming system

This publication, C24-3171-0, includes the replacement
pages issued with Technical Newsletter(s)

Form Pages Date
N24-0184 1,2,17,18 2/25/64

called Basic Autocoder 4K for 18M 1401 has been de-
veloped. This system relieves the programmer of the
necessity for using actual operation codes and actual-
machine-language addresses. Instead, he uses mne-
monic operation codes that are easier to remember, and
labels (symbols) of his own choice to designate ad-
dress locations. For example, a machine-language in-
instruction to add an amount in location 1205 to an ac-
cumulator in location 1323 would be written A S05 T23.
In symbolic language, this same instruction can be
written A 1205 1323, thus eliminating reference to the
core-storage address code chart. If the addresses of the
A- and B-operands are unknown to the programmer, he
can designate the operands by using labels. The in-
struction could then be written A AMOUNT ACCUM,
or A COST TOTAL.

Because the 1401 cannot execute the program in sym-
bolic language, the program is first translated to actual
machine language. A processor program, available
from 1M, quickly and efficiently translates the source
program, which is in symbolic language, to an object
program, which is in actual machine language. It not
only translates, but also determines how much storage
is required and takes over the entire task of allocating
storage locations to data and instructions. In other
words, coding in actual machine language and punch-
ing the object program is done automatically. Hence,
the name Autocoder.

Copies of this and other 1M publications can be obtained through M Branch Offices.
Address comments regarding the content of this publication to 1M Product Publications, Endicott, New York

© 1963 by International Business Machines Corporation

Contents

Preface 2
Basic Autocoder 4K for IBM 1401. 5
Machine Requirements 5
Programming with Basic Autocoder 5
Symbolic Language 5
Coding Sheet 7
Information Requirements 9
Labels 9
Operation Codes 9
Operands 9
Statement Descriptions 13
Declarative Operations 13
Imperative Operations. 16
Processor Control Operations = . == 17
Programming Considerations 18
Programmer Control over Placement of Table of
Addresses 18

——

Basic Autocoder 4K for IBM 1401: Specifications

The Basic Autocoder 4K for M 1401 simplifies pro-
gramming for the 18M 1401 Data Processing System.
The programming language permits the use of sym-
bolic representations and mnemonic operation codes
instead of actual core-storage addresses and operation
codes. Provision is also made for defining and allocat-
ing areas, and controlling the assembly of a machine-
language (object) program.

Note: In this publication, Basic Autocoder refers to the pro-
gramming system Basic Autocoder 4K for IBM 1401.

Machine Requirements

The Basic Autocoder language and processor program
can be used to produce an object program for any M
1401 Data Processing System. However, the machine
used to process the source (symbolic) program must
have at least:

4,000 positions of core storage

One 18M 1402 Card Read-Punch, Model 1, 2, or 4

One 18M 1403 Printer, Model 1,2, 4, or 5

The source program written by the user is the input
to the processor program which is supplied by 1BM. The
output from the processor is the object program that is
in machine-language form ready for execution.

This publication contains language specifications for
the 18M 1401 Basic Autocoder.

Programming with Basic Autocoder
A programmer’s job is divided into two phases:

* Defining the problem to be solved.

¢ Coding the source program for assembly by the Basic Auto-

coder processor.

Start by outlining the requirements of the program.
An example of such an outline is a block diagram. From
this, decide what data, constants, work areas, and in-
structions are needed to execute the program.

Constants are fixed data whose values do not vary in
a program.

Work areas are locations within core storage where
data can be manipulated (such as input and output
areas, accumulator fields, etc.). Once this has been
done, symbols, instead of actual addresses, can be used
to refer to areas, data, and instructions.

The M 1401 Basic Autocoder is divided into two
major categories: the symbolic language used by the

programmer to write the source program, and the proc-
essor program that translates this symbolic language
and assembles a machine-language object program.

Symbolic Language

The symbolic language of the Basic Autocoder includes
a set of mnemonic operation codes. They are easier to
remember than the machine-language codes because
they are usually abbreviations for actual instruction
descriptions. For example:

Machine Language
Description Mnemonic Code
Multiply M @
Clear Word Mark CwW o

Figure 1 shows a list of mnemonic operation codes
for the 18m 1401 Basic Autocoder. Also included in the
language are mnemonics for statements that define and
allocate areas, enter constants, control the area in core
storage where the object program will be assigned, etc.
These mnemonics have no machine-language equiva-
lent.

The names (symbols) given to data, instructions, and
constants are also part of the source program and are
usually abbreviations for card fields, record names, and
similar items that require frequent reference in the
source program.

The Source Program

The source program consists of statements written in
symbolic language. These statements contain the in-
formation that the processor must have to assemble the
object program. This information is divided into three
major categories:

¢ Area definitions (Declarative Operations)
e Instructions (Imperative Operations)
¢ Processor controls (Processor Control Operations)

Area-Definition Statements

Area-definition statements are used to reserve an area
in core storage to store a constant, or to work with data
before it is punched or printed. Aréa-definition state-
ments, in most cases, do not produce instructions to be
executed as part of the object program. For these state-
ments the processor program produces cards containing
constants and their assigned machine addresses. These
cards are a part of the object program and are loaded
each time the program is used.

DECLARATIVE OPERATIONS
Mnemonic Descriptior. Mnemonic Description
DS Define Symbol
DC Define Constant
bCw Define Constant with Word Mark EQU Equate
PROCESSOR CONTROL OPERATIONS
Mnemonic Description Mnemonic Description
END End ORG Origin
XFR Transfer
INPUT/OUTPUT OPERATIONS
Mnemonic
Op Op
Code Description Code A/I-Address B-Address d-Character
R Read Card 1 (XXX)
RP Read and Punch 5 {XXX)
P Punch 4 (XXX)
SPF Start Punch Feed 9
SRF Start Read Feed 8
w Write a Line 2 {(XXX)
WM Write Word Marks 2 {XXX)]
wpP Write and Punch 6 (XXX)
WR Write and Read 3 (XXX)
WRP Write, Read, and Punch 7 (XXX)
LU Load Unit L A-Address and/or B-Address and
MU Move Unit M d-character supplied by programmer
cu Control Unit U for]/O device? that do not have
special mnemonics
ARITHMETIC OPERATIONS
A Add A (XXX) (XXX)
S Subtract S (XXX) (XXX)
ZA Zero and Add {(XXX) (XXX)
s Zero and Subtract ! (XXX) {(XXX)
*D Divide % XXX XXX
*M Multiply @ XXX XXX
DATA CONTROL OPERATIONS
MCE Move Characters and Edit E XXX XXX
MCS Move Characters and Suppress Zeros z XXX XXX
MLC Move Characters to A- or B-Word Mark M (XXX) (XXX)
MLCWA |Move Characters and Word Mark from A-Field L (XXX) (XXX)
MLNS Move Numerical Portion of Single Character D (XXX) {XXX)
MLZS Move Zone Portion of Single Character Y (XXX) (XXX)
*MRCM Move Characters to Record Mark or Group Mark — Word Mark P XXX XXX
LOGIC OPERATIONS
B Branch Unconditional B XXX
BAV Branch on Arithmetic Overflow B XXX z
*BBE Branch if Bit Equal w (XXX) (XXX) df
BCE Branch if Character Equal B (XXX) (XXX) df
BCV Branch on Carriage Channel 12 B XXX @
BC9 Branch on Carriage Channel 9 B XXX 9
BE Branch on Equal Compare (B = A) B XXX S
BH Branch on High Compare (B > A) B XXX u
BIN Branch if Indicator On B XXX dt
BL Branch on Low Compare (B < A) B XXX T
BM Branch on Minus v (XXX) {XXX) K
*BSS Branch if Sense Switch On B XXX A-GT
BU Branch on Unequal Compare (B =4 A) B XXX /
BW Branch on Word Mark v (XXX) (XXX) 1
BWZ Branch on Word Mark or Zone v (XXX) (XXX) df
C Compare C XXX XXX
MISCELLANEOUS OPERATIONS
Mnemonic
Op Op
Code Description Code A/1-Address B-Address d-character
CcC Control Carriage F dt
cs Clear Storage / (XXX) (XXX)
cw Clear Word Mark et (XXX) (XXX)
H Halt . (XXX) (XXX)
*MA Modify Address # XXX {(XXX)
NOP No Operation N (XXX) (XXX)
*SAR Store A-Address Register Q XXX
*SBR Store B-Address Register H XXX {XXX)
SS Select Stacker K df
Sw Set Word Mark {XXX) (XXX)

*$pecial Feature

‘d-character must be coded in operand portion of instruction
(XXX) Address not required for some formats of instruction

Figure 1. 18M 1401 Basic Autocoder Mnemonic Operation Codes

6

For example, a constant card containing the date to
be printed on the heading line of each invoice is loaded
into core storage. A word mark is placed over the high-
order position of the date. The date can then be moved,
during object program execution, to a place in the print
area in preparation for printing a heading line. To
change the date, duplicate all columns in the constant
card except the columns that contain the date itself.
Then punch the new date into the card and insert it
into the program deck in place of the outdated con-
stant card.

Instruction Statements

Most of the statements in the source program are in-
structions that are used to read in data, process it, and
write it out. The processor program translates the state-
ments to machine-language instructions and causes the
object program to be punched in cards. The processor
automatically generates an additional sequence of in-
structions (called a loader) that loads the object pro-
gram into the core storage.

Processor-Control Statements

The Basic Autocoder permits a limited amount of pro-
grammer control over the assembly process. For exam-
ple, to locate a program in a particular area of core
storage, direct the processor program to start assigning
core storage at a specific address by writing an orc
(see Origin) processor-control statement. These state-
ments are used by the processor during assembly.

All Basic Autocoder statements must be presented to
the processor program according to a specific format.
There are also rules and restrictions for writing the in-
formation in these statements. These requirements are
necessary because the processor needs and can handle
only certain kinds of information from each type of
Basic Autocoder statement, and it must know where in
the statement that information can be found.

The Processor Program

The 1401 processor program analyzes the information
it receives when the source program statements are fed
into the machine. As each statement is analyzed, the
processor program assembles the machine-language in-
struction, or constant, and punches it into an output
card. The punched output cards also contain the
loader. Thus, the object program is called self-loading.

Coding Sheet

Basic Autocoder statements are written on a coding
sheet designed to organize them into the format re-
quired by the processor program.

Enter all statements and comments to be included in
the source program on this coding sheet. Column num-
bers on the sheet indicate the card-punching format for

all cards in the source deck. Each line of the coding
sheet is punched into a separate card.

Figure 2 shows the Autocoder Coding Sheet, Form
X24-1350.

Page Number (Columns 1 and 2)

In this field, write the sequence number of the coding
sheet. It may contain any valid 1401 characters. These
should be used in the low-to-high-order of the 1401
collating sequence. Blank is the lowest character; 9 is

the highest.

Line Number (Columns 3-5)

Use this field to indicate the sequence of entries on the
page of each coding sheet. The units position of this
field may be left blank. It can be used later to indicate
the sequence of inserts on a page. The five unnumbered
lines at the bottom of the page can contain these inserts.

For example, to make an insert between lines 02 and
03, use number 021. Line numbers on the coding sheet
do not have to be consecutive, but the source deck
should be in 1401 collating sequence when it is used as
input to the processor. Line numbers may contain any
valid 1401 characters.

Note that inserts can affect address adjustment. An
insert may make it necessary to change the adjustment
factor in one or more entries; see Address Adjustment.

Label (Columns 6-15)

This field may contain a symbolic label or it may be
left blank, but it may not contain an actual or machine
address.

A symbolic label may have as many as six alphameric
characters, but the first character must be alphabetic.
Special characters and blanks must not be used within
a label. The label always starts in column 6. In the 1401
Basic Autocoder, columns 12 through 15 are always
blanks.

Operation (Columns 16-20)

A mnemonic operation code is written in the operation
field starting in column 16.

Operand (Columns 21-72)

The operand field contains the addresses of the data to
be operated upon and the d-character if one is required.
The A/I-operand, B-operand, and the d-character must
be separated by commas because the coding sheet
format is free-form (the operand and d-character fields
are not divided into fixed fields). To address-adjust or
index an operand, place these codes immediately fol-
lowing the address being modified. Figures 3, 4, and 5
show typical Basic Autocoder statement formats.

Note: Leave columns 61-72 blank.

IBM

Program

Programmed by

FORM X24-1350
PRINTED IN U.S.A.

INTERNATIONAL BUSINESS MACHINES CORPORATION
AUTOCODER CODING SHEET
IBM 1401-1410-1440-1460

Identification Lwuis
76

80
Page No.L,_J?I of

Date

Line Label perati OPERAND

sle | [T ol21 25 30 _35 490 45 50 1] 60 65 70

LI DTN BT ST E S SR P S S S S S S W S S S U U S T S S T S U S G S U
1

02 | ey e b e e e s FINRYUUN WU 00 U VOO (0 U S S U N S S SO TS WA TR R ST S T S NS S0 SN0 WS ST S S N SO
i

L% i EDUE VU B S S S S P S S S S S S S T W SV SO S S S S S W S S S S U S S
i

04, . vl b b ey Y T S T S S R W S S S S S SO S S VU S S E VA S W S S S S S S S
{

0,5, PSS N W S T SO (S T S N S U S YO S S S S S S S PRI VY T WS ST U SN A A A T SO0 S SN WS VAN WS S SO S N S S0 ST 00 VU S SO S
I

06, |, ol e PP S S S T U T S VNS U WO G S0 S S WA S S WA SO WA NN NS S WP R S N S S
|

(740 N RPN R R N S S S S P S S S S S S S R U VT T S S S S S S
|

9,8, P S SN S N UUAS WU S DV SN ST S NS S TS U VP S ST ST S SR S SR 1 PO S ST TR S TUNY T VAN WD S S WA S S A WS T N W ST U WU VT SN WY SN0 S S S S S S
|

°A9| lIlAIlllA VI N T | A4 A .2 & & 1 i & 1 i 4 3 & U S W WA U RN N SN U W [N S (S S S N W S SIS SN SN SN N SR S S SN SN S S G
i

VO b Nt D U U U S TS W W S NS SN G | YT WS YT T TR SR A0 U WU TS S U S G S S S S WO WY WS VU WS N S W W U S S S
|

LU B AR S S S A S S S S S R S S S
|

el e PIRTSS S S VS U T VT S SN U WO SO ST S SO SO I | P S T U T YA AN TN T S U U S S S S S TN UOU U S WA 0K AN N U WO O Y S S
]

1,3, PO TR WA WU UND VU S WU AN SO ST SR SN SN WA YT ST U TN U SO SN NS WA WS SO S N IS WU U N U T S SN0 N0 NV N0 VAU S SO SHD U0 A N S S SN0 NS S VU S S W S S S W
1

Ve v v b s b e b e s P S VS VA N Y U WEOU VS WS U U YA S S SN SN YU U WU SO T S G S WY S N0 G0 G S S S
|

'lsl |lllLllJl Il 1 | Y TR N R (VD WA TN I GRS (NN N NS N S 1 § U W W U S N NN (N S N T T N S U U N T Y SN SR SN SN W SU VR SR SN SN SN N GH ST

1,6 '

P I W S SN Y W I VO ' FU S U S I TN Y G T T S S WS TS U SR N R S U U TV0 NS A U NS TN S WA TN U T WA WA U N IV SO WS WU WU UOUT T S S SN S S G R A
|

(PR O NP PR AT ST S S S P U S SR Y IS TS WO N OO0 CAN WU U VD Y S U U0 U D A T W SN ST SO SN WOUNT SN NS S S T TS SN N Y WY
|

1.8 PR ST U R URUNS ST W S U S U S S S S S S U ST U TS W S 1 PRI U YA G G U W U VA U0 TN V0 U0 GO S U S ST S N S Y U ST SHT S S V0 N Y G
|

L9, P S G S N T NS P N S S P S T SEPU S S T P E T U W S0 S WA U U R S WA T S WA S T SO S WPV VAT SN ST S S W S S RS 00 St
1

20 | v by by v oy g U US WU YU W TN TN S T SN0 U T SR TS W0 SN0 YUY GRS ST WS TN W GRS SN SN T SU W S S S
1

20, 1 e by e e v b e PR TS WY S T S U U TS TN SHIUS U WS U YA A ST YA OO WP WD W0 WO S SN S0 ST ST SHS S S NG WY
i

22 | oo e b e b b ey g TR NN RN TS WA N ST N TS Y N U S S S S T T D WY U0 WU S0 T S0 Y WA Y Y ST WY S
1

zlslnllllllAAllAllllllnlllllblll F D U T S NS U U WA WS VU T U TN U U WS W WA U SO NN U S S S SR WA S S U S S |
|

[7L N N S P SR S S S S ST S SR SRS S U U R U S U U S S0 SO VOO VAN SN ST S SN NS ST TN S0 A SN S WY SN AN ST S S
|

&S5, | i gy FUUUTOR TN AN S ST S S S U TN S Y TS A VAT WO S0 OO0 S S S O T S S A S S W
|

ORI TS N T W T I VU SNE WU NS U W N WA U Y S T S S S O T | F I T TR W U N WA SN U W WA N W W YA W W T Y U U OO N TN S Y SO W N I I W
|

PRV (S SN N N T VA S U NV SN VY R S NN TR W WY N VAL S W A0 WU N R W U0 | PR TN U U0 N TN S T T U T WO WA S T U T S TS A WO VR0 SO0 U S0 TS S S0 WY U WY S W
1

PPE T S U S N N S SRS VRN T PSR WO S0 WU UHD A WA U U S S G N | UFUEN S TR YA T ST A S0 TS A MU TS U N AN DO U0 DU SN WA NS Y TN USSP T WS SN HAD N G W
t

i U W W S W W U S U ST U U WA S S S S N VA S S S SR ISR N N WA NS R H U S VAN S N TR0 WY T Y S U T T U T T S S S U S S A S
1

L RTINS W ST e B S WU TS S SRR W TR S W S | PO S [TV U SN WA WS WY SN N W T W S S T S U0 S G S N T SO U5 WY ST S S S G

Figure 2. Autocoder Coding Sheet

Comments

OPERAND

Label perati
15 93 £0

1] 30 3 40

Figure 3. Basic Autocoder Instruction with Two Operands
and a d-Character

OPERAND

OPERAND
! 25 30 28 4Q 45 80

Figure 5. Basic Autocoder Instruction with Address Adjustment
and Indexing

The programmer can include a remark anywhere in
the operand field of a Basic Autocoder statement if he
leaves at least two non-significant blanks between it
and the operands.

Write a comments line to include a whole line of ex-
planatory information anywhere in the source program.
This line can contain comments only and must have an
identifying asterisk in column 6. Use columns 7-60 for
the comment. The information contained in a comments
card appears in the symbolic-program listing produced
by the processor during assembly, but it does not affect
the object program in any way.

Blank (Columns 73-75)
Leave columns 73-75 blank.

Identification (Columns 76-80)

To identify a program or program overlay, assign it an
identification number or description. Punch this identi-

fication into each card in the source deck. The proc-
essor does not use this field.

Other Coding Sheet Areas

The areas labeled Program, Programmed by, and Date
are for the user’s convenience only. Their contents are
never punched into the source deck cards.

Information Requirements

Three general kinds of information can be written in a
1401 Basic Autocoder statement: labels, operation
codes, and operands.

Labels

Labels are descriptive terms selected to identify a spe-
cific area or instruction in a source program statement.
A label that suggests the meaning of the area or in-
struction makes coding easier. It also makes the pro-
gram more easily understood by others. For example:

Type of Statement Meaning Label
Area Definition Withholding Tax WHTAX
Instruction Update UPDATE

The processor allocates storage and assigns addresses
for all instructions and most area definitions. If the
statement has a label, the processor equates the sym-
bolic label to the assigned address referred to in this
publication as the equivalent address. The equivalent
address of the label for an instruction is the leftmost
(high-order) core-storage position of the area the proc-
essor has allocated for it. The equivalent address of the
label of an area-definition statement is the rightmost
(low-order) core-storage position of the area the proc-
essor has allocated for the constant or work area. Dur-
ing assembly the processor maintains a table of labels
and their equivalent addresses.

If a label appears in any Basic Autocoder statement,
it may be written as a symbol in the operand portion of
another Basic Autocoder statement. Thus, the pro-
grammer refers symbolically to the equivalent address
of the constant, work area, or instruction. The proc-
essor substitutes the equivalent addresses of labels for
their corresponding symbols in the symbolic program
when it assembles the object program. No two labels
used in a source program can be identical.

Operation Codes

All Basic Autocoder statements have operation codes.
In imperative instruction statements they are machine-
operation codes such as A (Add), s (Subtract), and p
(Punch).

In area-definition statements they are commands to
the processor to allocate storage such as pcw (Define a
Constant with a Word Mark).

In processor control statements they are signals to
the processor such as orG (begin or originate the pro-
gram) and END (end the program).

Operands

Use the operand portion of a Basic Autocoder state-
ment to specify:

1. For instruction statements: The address of the data
to be operated upon or the input/output units to be
operated, and the d-character modifier to the opera-
tion code.

2. For area-definition statements: The constant or area
to be defined, or the address that is to be the equiva-
lent of the label.

3. For processor-control operations: The address to be
used with the particular part of the processor pro-
gram to be affected.

Thus, an operand can designate a core-storage ad-
dress, an input-output unit, a particular operation to be
performed (d-character), or a constant to be defined.

Core-Storage Address Operands

There are five types of core-storage address operands:
symbolic, actual, asterisk, blank, and literals.

Symbolic Addresses

A symbolic address can have as many as six letters or
digits but no special characters. Special characters have
particular meanings when used in the operands of
Basic Autocoder statements (Figure 6). If they are used
as symbols, processing difficulties and errors can occur.
Blanks must not be used within a symbolic address.
The first (high-order) character of a symbolic address
must be a letter. It refers to an area-definition or in-
struction statement in the source program whose label
is identical to it. (This is the symbol previously de-
scribed under Labels).

For example, if ENTRYA is used as a label for an in-
struction in the source program, ENTRYA can then be
used as the symbolic operand of another instruction
that references it, such as B ENTRYA (branch to the in-
struction whose label is ENTRYA).

Writing a symbolic operand in a statement that pre-
cedes the labeled statement in the source program is
permitted. See ORG and EQU for exceptions.

OPERAND
I 25 30 35 40 a5 Y
L . TAx’ DEDNUCT , s

Figure 6. Symbolic Addresses

Label perati
i)y

Actual Addresses

The programmer may use an actual address as an
operand in any Basic Autocoder statement. This ad-
dress is a one- to five-digit number within the range 0 to
15999, representing a 1401 core-storage position. The
programmer may use an actual address to assign a
particular storage area instead of letting the processor
assign it.

For example, to cause a word mark to be set in loca-
tion 001 during execution of the object program, write
in the symbolic program the instruction shown in Fig-
ure 7. Note that it is not necessary to write high-order
zeros in an actual address written in Basic Autocoder.

Label peroti OPERAND
(3 s I 23 30 33 40 L1 50

Figure 7. Actual Addresses

Asterisk Addresses

Writing an asterisk address operand in a Basic Auto-
coder statement directs the processor to assign an ad-
dress. The processor will assign an address equivalent
to the rightmost position the instruction (or last position
assigned) is to occupy in core storage after the object
program is loaded. See EQU and ORG.

Figure 8 shows a Basic Autocoder statement with an
asterisk operand. Assume that during assembly the
processor assigned the address 906 to the high-order
position of this instruction. Because the instruction has
seven characters, its low-order position will occupy
core-storage location 912 in the object machine. The
processor substitutes this address in the A-operand of
the statement shown in Figure 8 and assembles it
M 912 285. Thus, the machine-language instruction ap-
pears in core storage as shown in Figure 9 after the
object program is loaded.

Blank Addresses

Blank addresses are valid in statements where no
operand is needed or when useful addresses are sup-
plied by the chaining method.

Label iEpemnmi OPERAND
. 151 2021 25 30 35 40 45 50
o LC . M,285

Figure 8. Asterisk Operand

Character M 9 1 2 2 8 5

Core-Storage
Location

906 | 907 | 908 | 909 | 910 | 911 | 912

Figure 9. Instruction in Object-Core Storage

10

Literals
The 1401 Basic Autocoder can process three kinds of
literals:

e Numeric Literals
¢ Alphameric Literals
¢ Address-Constant Literals

A literal refers to actual data to be operated upon by
a particular instruction in the object program. It is pos-
sible to refer to this data by writing a literal operand in
the instruction that uses it. For all literal operands the
processor produces a constant that is loaded (with a
word mark in the high-order position) as part of the
object program.

The processor assigns a storage area for the constant
and inserts the equivalent address of the constant wher-
ever the literal operand appears in the symbolic pro-
gram. Thus, the literal operand is the symbol that refers
to the low-order position of the stored constant. The
programmer may address-adjust and/or index a literal.
See Indexing and Address Adjustment.

Figure 10 shows literal operands and the constants
produced for them.

Type of Literal Stored
Literal Operand Constant
Numeric +10 12
[Alphameric @ TODAY@ | JODAY
JAddress Constant| +CASH XXX (Equivalent Address of Cash

Figure 10. Literals

Numeric Literals. The specifications for writing a nu-
meric literal (a number or digit) are:
1. Put a plus or minus sign ahead of the literal to tell
the processor which sign is to be placed over the lit-
eral when it is loaded into the object machine prior
to program execution. The maximum length of a
numeric literal is five characters and a plus or minus
sign. Note: To store an unsigned number, use an al-
phameric literal because an unsigned number would
be confused with an actual address.

2. The processor assigns a storage area for a literal
only once per program no matter how many times
the same literal appears in the symbolic program.

Figure 11 shows how a numeric literal can be
coded in a Basic Autocoder imperative instruction.
Assume that the literal (+10) is assigned storage lo-
cations 584 and 585 and INDEX is assigned an equiv-
alent address of 682. The symbolic instruction causes
the processor to produce a machine-language instruc-
tion (A 585 682) that adds +10 to the contents of
INDEX when the instruction is executed in the ob-
ject program.

Label perati OPERAND
1518 021 28 30 3% 40 43 50

Ll +.1.0, INDEX. | R . .

Figure 11. Numeric Literal

Alphameric Literals. The specifications for writing an
alphameric literal are:
1. Write an @ symbol preceding and following the
literal. The literal may contain any alphabetic, nu-
meric, or special character in the 1401 character set,
including the @ symbol itself. However, the maxi-
mum number of characters between @ signs is five.
All characters appearing between the @ symbols are
assumed by the processor to be part of the literal.
One alphameric literal may appear in a symbolic pro-
gram line,
2. The processor will assign to the literal an area
only once per program.

Figure 12 shows how to use an alphameric literal
in an imperative instruction. Assume that during as-
sembly the literal Topay is assigned a storage area
whose equivalent address is 906 and DATE is assigned
230. For the statement shown in Figure 12 the
processor produces a machine-language instruction
(M 906 230) which moves the literal TopaY to DATE.

Label perati OPERAND
15} | LER

35 L") 30

30
. LC DATE

7
Figure 12. Alphameric Literal

Address-Constant Literals. With Basic Autocoder it is
possible to define the 3-character machine address
(the equivalent address) assigned to a label. The
loading routine will load the 3-character address con-
stant into core storage at program-load time. The
programmer may refer to the area where the address
is located by writing an address-constant literal in
his source program.

To code an address-constant literal, write in the
operand field the symbol whose equivalent address
is needed. Precede the symbol with a plus sign. This
symbol may have a maximum number of six charac-
ters. It must also appear elsewhere in the program
and must have a corresponding label.

When the processor encounters an address-con-
stant literal, it:

1. Assigns a 3-position area in the object machine
that will contain the equivalent address of the sym-
bol at execution time.

2. Makes the address of the 3-position area equiva-
lent to the symbol preceded by a plus sign. For ex-
ample, if casu is the symbol whose address is needed
as the address-constant literal, +casn is the symbol
that refers to the address of the equivalent address
of casH.

Figure 13 shows two address-constant literals
(+casu and +cHECks) used in a source program. It
also shows the entries the processor makes in the ob-
ject program and the results when the instructions
are executed in the object program, The programmer
did not know which addresses would be assigned to
casH and cHECks when he wrote the source program
statements. He did, however, write two instructions
(A and C) that move these addresses into instruc-
tion B (ENTRY1). The address-constant literals (+casu
and +cHECKs) cause the processor to substitute the
equivalent addresses of these constants in instruc-
tions A and C during assembly. They also cause the
loader to store the machine addresses of casn and
CHECKS into the object machine.

Indexing

If an object machine has the indexing and store ad-
dress register special feature, the programmer specifies
that an operand is to be indexed by following it with
a plus sign and X1, X2, or X3, which represent index
locations 1, 2, and 3, respectively.

X1, X2, and X3 are handled as actual locations and
do not need definition. When the processor encounters
an indexed operand, it puts tag bits over the tens posi-
tion of the 3-character machine address assigned to the
operand as shown in Figure 14.

In the example shown in Figure 15, assume that at
object-program execution time the contents of an area
labeled ToTAL are to be moved to a location whose ad-
dress is equal to the sum of the equivalent address of
accuM plus the contents of index location 2. Thus, if
the actual instruction for the statement shown in Fig-
ure 15 is M A0, IMO, the contents of the TOTAL area,
whose address is A01, are moved to the area whose ad-
dress is equal to the sum of the equivalent address of
accuM (140) and the contents of index location 2 at
program-execution time. The M in the tens position of
the B-address is a 4-punch with an 11-zone punch. The
zone punch specifies index location 2.

Note: Because X1, X2, and X3 are reserved by the Basic
Autocoder program for index register reference, these names
must not appear as labels in source-program statements even
when the object machine does not contain the indexing and
store address register special feature.

Address Adjustment

If address adjustment is specified in the operand fields
of Basic Autocoder statements, it is not necessary to
devise so many labels for a source program.

To do this, write a number preceded by a plus or
minus sign immediately following the address in the
operand field. The processor then develops an address
equal to the address (actual, asterisk, literal, or sym-
bolic) in the operand field, plus or minus the adjust-
ment factor, and inserts it into the object-program

11

SOURCE PROGRAM STATEMENTS TYPE Object program in core storage after it has been loaded
into the object machine.
,Line Label \ rati . . OPER/
. |
BN T . N ENTRY1
. Ll HOASH, ENTRZLD s A S M|7|9|7|4I°|4 ﬁ[0]0!0[611I2
NTR YL Ll 0 W R . NN B, T 39(4 43‘ 434
hd e P 1 A U T Y R
rCHECKS ENTRY L3 C . c
L ENTRY.D N RPN A T
1y .
I
L2 fe - - | %[s]o|o|4|o|4 %|4l011
1,4, ASH .« 1 PR ST A A U U S S e E. . N 501 508
L3, KHELKS . L s
Le IWORK 0oy Lo N R <
nLr " IR R A S A e P .
. i o : CASH CHECKS (G work
. B mmwsssssssssssvessssveesdl BRI I Y DD B DDBBNARNNOT
a2, ; A 600 606 612
7% 7 I S ST TS ST U S S SN U0 U ST YUY SV S S S S S S IO S T S A T S S S B s
2.4 PR
28, 1 ey s Py
""""""""" ADD. +CASH |+CHECKS
CON.
LIT- $|°l? 9I°Ig
ERALS 797 800
EQUIVALENT
SYMBOLS ADDRESSES NOTE: Assume that before step A is executed, data will be moved into the
CASH, CHECKS and WORK fields.
ENTRY1 401
CASH 600
CHECKS 606
WORK 612
+CASH 797
+ CHECKS 800
PROGRAM STEP CORE STORAGE CORE STORAGE
EXECUTED OPERATION BEFORE OPERATION AFTER OPERATION
A The odd f CASH i d
toefhe ::’d;ess of Bls (:I:;;Y ENTRY1 ENTRY?
1+3). B is thus modified. M|0[0|9[6|1l2 L{_la[o|9[6|1|2
401 404 401 404
8 The contents of CASH are moved
o WORK. () casH WORK CASH WORK
2]e]s[s[7]s]ofo]4]oo o]|[s]e[o s 7 s]2 s+ o] 7]
600 612 600 612
C The add f CHECKS i d
foef:e ::-s:d:ress of B“(::;;Y ENTRY1 ENTRY
143). B is again modified. M‘|6[0|916l1|2 -.M-|6|°l?|6|‘|2
401 404 401 404
D Program branches back to e NO CHANGE NO CHANGE
B.
B The contents of CHECKS are CHECKS @ WORK CHECKS WORK
d to WORK.
o s[ol 7 s[#]z[2[e s e 7 [s]|[e[e [-[s o]z e e 7 [s [o[
606 812 606 612

Figure 13. Address Constant Literals

12

Tag bits in tens
Core- 3-character position of
Index Storage Machine Zone 3-character
Location | Locations Address Punch machine address
1 087-089 089 ZERO A-bit, No B-bit
2 092-094 094 ELEVEN B-bit, No A-bit
3 097-099 099 TWELVE A-bit, B-bit

Figure 14. Index Locations and Associated Tag Bits

Label perati OPERAND
1s) a3

28 30
F
Figure 15. Basic Autocoder Instruction with Symbolic
Addresses and Indexing

35 40

statement in place of the address adjusted operand. In
the example shown in Figure 16 the first statement has
an address adjusted operand.

Label perati OPERAND
6 154 ! 30 35 40 43 — 50
M| SBR . LAST#3, ., P N

......

e P " A

AST, . | ., ‘*F
|

" - i P L
Figure 16. Address Adjustment

N P T S U S S A S

‘‘‘‘‘‘‘

Assume that the statement whose label is rasT is
assigned storage locations 404 through 407. The equiv-
alent address of the label LasT is then 404, which is the
position that the B operation code of the branch in-
struction will occupy in core storage when the object
program is loaded.

The processor substitutes the address of vLast +3
(407) in place of the symbolic address-adjusted operand
(LasT +3) when the object program is assembled:

H407 . B 000.

When the object program is executed, the contents of
the B-address register are transferred to positions 405-
407, so that I-address of the branch instruction con-
tains whatever was in the B-address register before the
SBR instruction was encountered (Bxxx).

The first statement in Figure 17 is an instruction that
adds a literal (+100) to sum. The processor allocates
a 3-position area in core storage to store this literal.
Assume that the equivalent address of this literal is 698
and suM has an equivalent address of 805. Later in the
source program the same literal appears with address
adjustment. Because the literal has been previously
assigned an area whose address is 698, the address-
adjusted literal +100-2 refers to 698-2 or 696. Thus, the
assembled instruction, A 696 805, will add 1 into sum
when it is executed in the object program, because
storage location 696 contains the 1 portion of the literal
+100.

Lobel perati
1s)s 1

OPERAND
26 45
4100, SUM

30 1] 490

.
. P U S P S T S R S S S S S S S S

A Trf0b-2,50M

llllll

- - -

Figure 17. Address-Adjusted Literal

The adjustment factor can be any number within the
limits of its effect on the core storage available in the
object machine.

Constant Operands

Constant operands are defined by area-definition state-
ments. See DCW and DC. The processor assigns an
area in core storage in which the constant is stored at
object-program load time.

Statement Descriptions

In this publication the Basic Autocoder statement de-

scriptions are presented in a format that:

1. Describes the operation which the statement per-
forms.

2. Shows how the statement is written by the pro-
grammer.

3. States the actions of the processor program during
processing of the symbolic program.

4. Describes the effect, if any, of the statement on the
object program.

5. Shows an example that uses the statement.

Declarative Operations

As discussed previously, the 1401 Basic Autocoder per-
mits writing literals to store constants. In addition,
special declarative operations may be used to reserve
work areas and store constants. The four declarative
operations are:

Op Code Purpose

DCW Define Constant with Word Mark
DC Define Constant (no Word Mark)
DS Define Symbol

EQU Equate

DCW — Define Constant with Word Mark

General Description. Use a pcw statement to enter a
numeric, alphameric, blank, or address constant into
core storage at object-program load time.

The programmer.
1. Writes pcw in the operation field.
2. May write a symbolic label in the label field. He
can refer to the constant by writing this symbol in

13

the operand portion of instructions elsewhere in the
program. The equivalent address of the label is the
address of the low-order position of the constant in
the object machine.

3. Writes the constant in the operand field beginning
in column 21.

The processor.
1. Allocates a field in core storage that will be used
at object-program load time to store the actual con-
stant.
2. Inserts the equivalent address of the label in place
of the symbol, whenever it appears in the operand
field of another source-program entry.

Result. The constant with a high-order word mark is
loaded with the object program.

Numeric Constants
A plus or minus sign may be written preceding a num-
ber. A plus sign causes the processor to store the con-
stant with A- and B-bits over the units position; a minus
sign causes the processor to store a B-bit over the units
position. If a numeric constant is unsigned, it will be
stored as an unsigned field.

The first blank column in the operand field indicates
that the preceding position contains the last digit in the
constant.

A constant may be as large as 39 digits with a sign,
or 40 digits with no sign.

Examples. Figures 18, 19, and 20 show the three types
of numeric constants that can be defined in pcw
statements. The labels TeN1, TENZ, and TEN3 identify
the constants. Thus, they can be used as symbols to
cause the equivalent addresses of +10, —10, and 10
to be inserted into the object program whenever
TEN], TEN2, and TEN3 appear in the operand fields of
entries in the source program.

Alphameric Constants

Place an @ symbol before and after the constant. As
with alphameric literals, blanks and the @ symbol may
appear between these @ symbols, but the @ symbol
must not appear in a comment in the same line as the
constant.

Label perati OPERAND
3 i 26 30 35 40 45 50
10, . . s P T

Figure 18. Numeric Constant with a Plus Value

Label rati OPERAND
[0 1 30 % L] 43

Figure 19. Numeric Constant with a Minus Value

14

OPERAND
7 28 30 38 40 43 50

Figure 20. Unsigned Numeric Constant

An alphameric constant may contain as many as 38
valid 1401 characters.

Example. Figure 21 shows how to define the alpha-
meric constant aAucusT 16, 1962 in a pcw statement.
The processor will insert the equivalent address of
the constant into the object-program instruction
wherever DATE appears in the operand of another
symbolic-program entry.

OPERAND
L 30 33 49 45 50
UST

Figure 21. Alphameric Constant

Address Constants
Write a symbol that may be preceded by a plus sign in
the operand field.

The address constant is the three-character machine-
language address of the field whose associated label
appears in the operand.

Address constants may be address-adjusted and in-
dexed. The address adjustment and indexing refer to
the address constant itself rather than to the address
of the location of the address constant. For example, if
casH is the symbolic address of a field, the equivalent
address of casn is indexed or address-adjusted rather
than the equivalent address of +casn.

Example. Figure 22 shows how an address constant
(the equivalent address of MaNNO) may be defined
by a pcw statement. The address of the address con-
stant (the address of the equivalent address of
MANNO) will be inserted into an object-program in-
struction wherever sErIAL appears as the operand of
another symbolic-program entry. Thus +manNo is
the symbolic address of the field that contains the
equivalent address of ManNo.

Label perati OPERAND
! 45

30 3% 40 50

ND R
Figure 22. Address Constant Defined by a pcw Statement

DC — Define Constant (No Word Mark)

General Description. To load a constant without a
word mark, write a pc statement like a pcw state-

ment. The pc operation code is used in the operation
field.

Example. Figure 23 shows TEN] defined as a constant
without a word mark.

OPERAND
43

Figure 23. Constant Defined in a pc Statement
DS — Define Symbol

General Description. Use a ps statement to label and
skip over an area of core storage. The bypassed area
is undisturbed during the loading process. Thus, any
information that was in storage before loading begins

will still be there after the object program has been
loaded.

The programmer.
1. Writes ps in the operation field.
2. May write a symbolic address in the label field.
3. Writes a number in the operand field that tells the
processor how many positions of storage to bypass.

The processor.
1. Assigns an equivalent address to the label. This
address is the 3-character machine address of the
low-order position of the bypassed area.
2. Inserts this address wherever the symbol in the
label field appears in the operand field of another

program entry.
Result. The positions included in the bypassed area
remain undisturbed during object-program loading.

Example. Figure 24 shows how to direct the processor
to bypass a 10-position core-storage area. Assume
that the last core-storage position the processor allo-
cated before it encountered the ps statement was
940. The equivalent address of accum is 950, the ad-
dress of low-order position of the core-storage area
bypassed by the ps statement. Wherever accum is
written in the operand field of another source-pro-
gram entry, 950 will be inserted into its place.

OPERAND
28 30 33 40 45 _%

Figure 24. ps Statement

EQU — Equate

General Description. Use an EQU statement to assign
a symbolic label to an actual, asterisk, or symbolic
address. More than one symbol may be assigned to
represent the same storage location.

The programmer.
1. Writes QU in the operation field.
2. Writes a symbolic address of an operand in the
label field.
3. Writes an actual, asterisk, or symbolic address in
the operand field, which may be address-adjusted
but not indexed.

The processor.
1. Assigns to the label of an EQU statement the same
3-character machine address that is assigned to the
symbol in the operand field (with the appropriate
alteration if address adjustment is indicated).
2. Inserts this equivalent address wherever the sym-
bol in the label field of the EQu statement appears as
the operand of another source-program entry.

Result. Either the symbol in the label field or the sym-
bol in the operand field of the EQu statement can be
used to refer to the same core-storage location.

Examples. Figure 25 shows how to assign another label
(xp1v) to a location that was previously labeled
MaNNo. The EQU statement causes the processor to
assign the same equivalent address (1976) to iNpIv
that it previously assigned to manno. Now, when-
ever either MANNO or INDIV appears in the operand
of another source-program entry, the processor will
replace the symbol with 1976.

Labet perati OPERAND
e 13 1 25 30 35 40 45 50
Vo . . . N R

Figure 25. Equating Two Symbolic Addresses

Note: If a symbolic address is used in the operand field of
an EQU statement, its corresponding label must be defined
ahead of the EQu statement in the source program.

Figure 26 shows a statement equating the equiva-
lent address of Fica-10 to wrrax. Assume that the
processor assigned Fica an equivalent address of 890.
warax will be assigned an equivalent address of
880, which is also equal to Fica-10. wHTAX now re-
fers to a field whose units position is 880.

Label perati OPERAND
s 43

L 25 30
LCA-10. .

Figure 26. Equating a Symbolic Address to an Address-Adjusted
Symbolic Address

Figure 27 shows how to equate a label to an actual
address. Assume that a certain field will be in a stor-
age location whose units position is known to be at
actual address 319. The programmer wishes to refer
to this field as appa, but it has not been labeled else-
where in the program. To equate the symbolic ad-
dress Appa to 319, write the statement shown in Fig-
ure 27. Thus 319 becomes the equivalent address of
ADDA.

OPERAND
28 39 38 49 43 20

Figure 27. Equating a Symbolic Address to an Actual Address

15

Figure 28 shows how to assign a label to an asterisk
address operand in an EQU statement. The * refers to
the low-order position of the instruction with which
it is associated. Assume that this address is 698.
FIELDA has an equivalent address of 698.

OPERAND
25 3 35 49 43 20

S,

Figure 28. EQU Statement with an * Operand

Imperative Operations

General Description. These imperative operations in-
clude all the machine instructions in the 1401 in-
struction set. They are the symbolic instructions for
the commands to be executed by the object com-
puter. A source program will probably contain more
of these imperative instructions than any other type
of Basic Autocoder statement.

Although the 1401 Basic Autocoder processor can
assemble instructions with all the imperative mne-
monic operation codes listed in Figure 1, the pro-
grammer must remember the particular features and
devices that will be included in the object machine
for which he is writing the program.

The programmer.
1. Writes the mnemonic operation code for the in-
struction in the operation field.

2. If the instruction is to be referred to, the pro-
grammer can label such an instruction by writing a
symbol in the label field. The label will have an
equivalent address which is the storage location that
will hold the operation code of the associated in-
struction when the object program is loaded.

Thus, the symbol in the label field can be used as
the I-address of a branch instruction elsewhere in
the program (see Figure 31).

3. Writes the A/I- or B-operand (see Operands) for
the data, devices, constants, or instructions in the
operand field. Literals may also be written in the
operand field (see Literals). The first operand will
be used as the A- or I-address of the imperative in-
structions.

If the instruction also requires a B-address, a
comma must follow the first operand and its address
adjustment and/or indexing codes (if any). Then the
operand for the B-address is written. If the instruc-
tion requires that the programmer specify the d-
character, a comma must precede the machine-lan-
guage d-character. The d-character is always at the
immediate right of the operands.

16

Note: Several mnemonic operation codes have been devel-
oped that cause the d-character to be supplied automatically
by the processor. However, some operation codes (for exam-
ple, Bin) have so many valid d-characters that it is impractical
to provide a separate mnemonic for each. For these operation
codes, the programmer must supply the d-character, as men-
tioned previously. In the listing of mnemonic operation codes
for imperative instructions (Figure 1), all mnemonics that re-
quire a d-character in the operand field are indicated by a

dagger (1).

The processor.

1. Substitutes the machine-language operation code
for the mnemonic in the operation field.

2. Substitutes the 3-character equivalent address of
the symbols written in the operand field to indicate
the A/I- or B-address of the instructions.

If address-adjustment or indexing codes are writ-
ten with these operands, the appropriate alteration
will be made for these addresses. Tag bits will be
inserted into the tens position of indexed operands.
Address-adjusted operands will be modified by add-
ing or subtracting the adjustment factor. The proc-
essor will supply the d-character for unique mne-
monics, or place in the instruction the d-character
from the operand field of the Basic Autocoder state-
ment if the programmer has supplied it.

3. Assigns the machine-language instruction in an
area of core storage in the object machine. The ad-
dress of this area is the storage location which the
operation code will occupy when it is loaded into the
object machine. This is the equivalent address of the
label in the source program statement.

Result. The instruction is placed in the object-program
deck. The load routine causes a word mark to appear
in the operation-code position of the instruction in
the object machine.

Examples. Figure 29 shows an imperative instruction
with an I-operand. When the instruction is executed,
a branch to the instruction whose label is sTaART will
occur. Assume that sTart has an equivalent address
of 360. The instruction will be assembled B 360.

OPERAND

Label ti
P riaibel 38 Y 4y 50

1
Ll TART

Figure 29. Unconditional Branch

Figure 30 shows an imperative instruction with
A- and B-operands. This instruction, when executed,
causes the contents of accum to be added to the con-
tents of ToTAL. Assume that the equivalent addresses
of accum and ToTAL are 495 and 520, respectively.
The processor will assemble the machine-language
instruction A 495 520.

OPERAND

Label perati
(113 40 435 50

28 30
A;TOTAL

Figure 30. app Instruction

Figure 31 shows an imperative instruction with I-
and B-operands and a mnemonic (Bce) which re-
quires that the programmer supply the d-character
(5) in the operand. When this instruction is executed
in the object program, a branch to the instruction
whose label is REaD will occur if the location labeled
TEST contains a 5. Assume that the equivalent ad-
dress of rEAD is 596 and TEST is 782. The assembled
instruction will be B 596 782 5.

OPERAND
35 49 45 50

Label perati
1543 25 — 30

EAD,TESY., 5 " s
r 4

i E

t]

Figure 31. Branch If Character Equal

Figure 32 shows an imperative instruction with a
unique mnemonic (Bav). The processor supplies the
d-character (Z) for this instruction when it is assem-
bled. Assume that ovrLO is assigned an equivalent
address of 896. When the program is executed, the
first instruction will cause a branch to ovrLo if an
arithmetic overflow occurs. The assembled instruc-

tion is B 896 Z.
Label perati OPERAND
; 15 ! 25 30 35 40 43 S0
. BAY. . QVFLa . N A
At W N N U S T ST R
! . s s
| KN RN A
DVELD, | . . . JFLELPA,FIELDE . N
1
L - . NN

Figure 32. Branch If Arithmetic Overflow
Processor Control Operations

These are the Basic Autocoder statements that permit
the programmer to exercise some control over the as-
sembly process:

Operation Code Purpose

ORG Origin Assembly
XFR Transfer

END End Assembly
ORG — Origin

General Description. Use an origin card to tell the
processor the address at which to begin allocating
storage for the program or a particular part of the
program. An ORG statement may be included any-
where in the source program.

The programmer.
1. Writes org in the operation field.
2. Writes a symbolic, actual, or asterisk address in
the operand field. This address indicates the next
storage location to be assigned by the processor.

Form C24-3171-0
Page revised 2/25/64
by TNL N24-0184

Symbolic or asterisk addresses may have address ad-
justment. An operand in an orG statement may not
be indexed.

3. If a symbolic address is used in the operand field
of an orc statement, its corresponding label must
have been defined previously.

The processor.
1. Assigns addresses to instructions, constants, and
work areas beginning at the address specified in the
operand field of an orc statement.
2. If no org statement precedes the first entry in the
symbolic program, the processor automatically be-
gins allocating storage locations starting at address
334,
3. If the processor encounters an ORG statement any-
where in the symbolic program, it begins allocating
storage for subsequent entries beginning at the ad-
dress specified in the operand field of the new orc
statement.

Result. The programmer can choose the area(s) of core
storage where the object program will be located.

Examples. Figure 33 shows an orc statement with an
actual address. The processor will assign storage to
the first symbolic-program entry following this ore
statement with storage location 500 as a reference
point. This means that if the first entry following the
ORG statement is an instruction; the Op-code position
of that instruction will be 500. If the first entry is a
5-character pcw, it will be assigned address 504.

Label Eperaﬁ% OPERAND
3 is)ie 1 23 30 1] 49 43 50

Figure 33. orc Statement with an Actual Address

Figure 34 shows an orc statement with a symbolic
address. The processor will begin assigning addresses
with the actual address assigned to Appr.

OPERAND

Label rati
7 134 pe 30 38 40 43 30

DR I

Figure 34. orc Statement with a Symbolic Address

When the processor encounters the statement
shown in Figure 35, it will begin assigning addresses
to subsequent entries in the source program at the
next available storage location whose address is a
multiple of 100. For example, if the last address as-
signed was 525, the next instruction (if the entry is an
instruction) will have an address of 600.

Note: +X00 is permitted as a character-adjustment factor

only when it is used with an *, and it may be used only in an
ORG statement.

Label iEpemﬁ OPERAND
. [H1 20021 35 39 _35 40 45 50
PRI RG. +X00 N .
Figure 35. Adjustment to the Next Available Century Block
of Storage

XFR — Transfer

General Description. An xFR statement interrupts the
object-program loading process temporarily so that
the part of the program that has already been loaded

can be executed.

The programmer.
1. Writes xFR in the operation field.
2. Writes an actual or symbolic address in the oper-
and field. This must be the same symbol as the label
used for the first instruction to be executed after the
loading process has been halted.

The processor. Assembles an unconditional branch in-
struction. The I-address of this instruction is the
equivalent address of the first instruction to be exe-
cuted after the loading process has been halted. This
instruction does not become part of the object pro-
gram. However, it is used for the loading routine to
signify the halt and to transfer machine-instruction
execution to the object program.

Note: To continue the loading process after the desired part
of the object program has been executed, the programmer
must provide re-entry to the load routine.

Example. Figure 36 shows how an XxFR statement can
be coded. When the loader encounters the branch
instruction produced from this statement, the load-
ing process stops and a branch occurs to the instruc-
tion whose label is ENTRYA.

Label pmquZ OPERAND
T 154 2 [25 30 35 40 445 50
L FR [ENTRYA . . R . e

Figure 36. xFr Statement

END — End

General Description. The END statement signals the
processor that all of the symbolic-program entries
have been read. This card, which is always the last
card in the source program deck, provides the proc-
essor with the information necessary to produce a
branch instruction that causes a transfer to the first

instruction to be executed after the object program
has been loaded.

The programmer.
1. Writes ExD in the operation field.
2. Writes an actual or symbolic address in the oper-
and field. This must be the same symbol as the label

18

used for the first instruction to be executed after the
loading process has been completed.

The processor.

1. Assembles an unconditional branch instruction.
The I-address of this instruction is the equivalent
address of the first instruction to be executed after
the loading process has been completed. This in-
struction does not become part of the object pro-
gram. However, it is used by the loading routine to
transfer machine-instruction execution to the object
program.

2. Causes literals that have previously been encoun-
tered to be included at this point in the object pro-
gram.,

Result. Object-program execution begins automati-
cally after loading.

Example. Figure 37 shows an END statement.

Lobel perati OPERAND
6 : isj ol21 25 30 35 490 45 50
. il TART, N

Figure 37. END Statement

Programming Considerations

Reducing the number of generated symbols required

to complete an assembly reduces the size of the ad-

dress table that must be in storage at load time. It also
minimizes the number of generated symbols that ap-
pear in the printed listing.

The following suggestions for reducing the size of
the address table are offered:

1. Place constants and work areas at the beginning of
the program whenever it is possible. If a constant is
defined before its symbol is encountered in the
operand of a source program statement, the address
of that constant is available. Thus, the processor
does not have to generate a & nn symbol.

2. Minimize the use of literals. The processor must
generate a I nn symbol for each literal encountered.

3. Use an * symbol with address adjustment (instead
of a unique label) wherever a few characters sepa-
rate instructions involving a forward reference.

4. Place subroutines near the beginning of the pro-
gram whenever possible. If this is done, the proc-
essor will have the addresses of the subroutines
available when it encounters instructions that refer
to them.

Programmer Control over Placement
of Table of Addresses

As described previously, the processor allocates storage
for a table of addresses for generated symbols. If lit-

631007TMTC

erals are used in the source program, this table imme-
diately follows the last literal. If literals were not used,
the table immediately follows the last instruction or
constant encountered before the Exp statement. Lit-
erals and the table of addresses, if present, are loaded
before any of the source program statement cards.

If literals are not used in the source program, the
programmer 1nay instruct the processor to put the table
of addresses in an area he chooses. This is accom-
plished by putting an or¢ card containing the address
of this area ahead of the ExD card in the source pro-
gram. With this facility, the programmer may overlay
the table in the object program area. Thus, no addi-
tional core storage is needed for the table. Note that
the table of addresses must be shorter than the area
into which it is being loaded.

For example, assume that the programmer has used
a ps statement to reserve an input/output area. Be-
cause nothing is loaded in an object program for a ps
statement, this space can be used to store the table
during the loading of the object program. Figure 38
shows an example in which prTFLD is the area the pro-
grammer has selected to store the table. The table of
addresses will begin at the address the processor as-
signed to PRTFLD.

Figure 39 shows another technique for overlaying
the table of addresses. In this example the 133 charac-
ter PRTFLD area (defined by pc and pcw statements)
must be placed at the end of the source program deck
immediately followed by the orc PRrFLD and END
statements. References to it will require a generated
symbol, because the label appears after the symbolic
operands in the instructions ahead of the EQuU state-
ment that uses it.

Label perati OPE

6 13)6 ! 25 30 3 4
Pn*rrm: QU M1 {
} e . e .\
R N 'Y e 2, ’
o “F‘M‘ YART. e \l
doa 4 Pl 'Y n e a4

Figure 39. Table Overlay Using pcw and pc

Note: 1f the programmer wishes to put PRTFLD into a specific
area of core storage, he may do this by placing an orc statement
immediately before PRTFLD.

Figure 40 is an example in which the table is over-
laid by the last instructions in the program. When this
method is used, the instructions that overlay the table
must not contain any generated symbols.

Label perati OPERAND
s 15y ! 30 38 40 LH 20 Label perati OPERAND
PRT.FLD EQU. o R s e 15)ie ol21 25 30 % 49 a5 50
e .. . DS, 130 e LASY.LN NY 0P . e
| . s el . e
[T A B S . | L) R R
L LI . ! o e .
| P . el OREG L LASTUM .
: QRG . | . END ISTART
. TARY, . . N N . .

Figure 38. Table Overlay Using ps

Figure 40. Table Overlay Using Instructions

19

C24-3171-0

Index

Actual Addresses 10
Address Adjustment. 11
Address Constants 14
Address-Constant Literals. 11
Alphameric Constants 14
Alphameric Literals. 11
Area-Definition Statements., 5
Asterisk Addresses. 10
Blank Addresses. 10
Coding Sheet 7
Comments (Coding Sheet). 8
Constant, Alphameric 14
Constant, Numeric 14
Constant Operands 13
Core-Storage Address Operands. 9
DC—Define Constant (No Word Mark). 14
DCW—Define Constant with Word Mark. 13
Declarative Operations 13
DS—Define Symbol 15
END—End 18
EQU—Equate 15
Identification (Coding Sheet), 8
Imperative Operations. 16
Indexing 11
Information Requirements 9
Instruction Statements 7
Label (Coding Sheet) 7
Labels 9
Line Number (Coding Sheet). 7
Literal, Address-Constant. 11
Literal, Alphameric 11
Literal, Numeric 10
Literals 10
Machine Requirements 5
Numeric Constants. 14
Numeric Literals. 10
Operand (Coding Sheet) 7
Operands 9
Operation (Coding Sheet). 7
Operation Codes, 9
ORG—Origin 17
Page number (Coding Sheet) 7
Processor Control Operations. 17
Processor Program. 7
Processor-Control Statements. 7
Programming Considerations 18
Programming with Basic Autocoder. 5
Source Program 5
Statements Descriptions. 13
Symbolic Addresses. 9
Symbolic Language 5

Table of Addresses (Programmer Control over Placement) 18
XFR—Transfer

B

International Business Machines Carporation

Nata Processing Divicinn

Loyl wdl

V'S’ Ul pajulg

0-LLLE¥TD

