CPEHAY UNVYA PUW SCMLnS W
SPRING 1978!) U VAL | vy © ol AF
l =

S R W ' i
o &olru
- FAGE

b

USE-UUA/E CONFENZINT

R

et ey

UNIVAC 1100 RELOCATING LOADZR

4.2. UNIVAC 1100 RELOCATING LOADER

4.2.1. introduction

The Univac 1100 Series Coliector is a very povzerfut ton! for program develppment. MAP includes
facilities for segmentation of large programs, including automatically loadable segments, dynamic
segments, relocatable segments and special segments for use in the Operating System itself. MAP
also provides facilities for producing programs consisting of one or more pamed program banks, with
complete flexibility in the assignment of addresses to banks and in the ordering of elements and paris
of elements within a bank or segment. In audition MAP provides facilities for combining relocatable
elements into a siagle reiocatable slement, cotrecting reiocaiable elements, inserting SNAF dumps
and controling the results of library searches.

Unfortunately, this wzalth of capability is not without its nrice. For very simple programs which use
only the most basic Collector functions, the overhead introduced to supporn the sophisticated
funcilions makes collection an expensive process. The extent to which MAP can be made to operate
efficiertly for small programs is limited by the need to provide for ali the special cases which give
AP iis power.

The purpose of the relocating toader, LOAD, is to provide an improved performance collection ard
execution facility for those programs which do rot require some of the more exnensive features of
the OS 1100 collector. The loader was originally developed to satisfy the need for a gquick execution
{load-and-qo) facility for the PL1 compiier. It has since been genetalized and is now equaily
applicable to any program which meets the restrictions detailed in a later section. The basic function
of the loader is to combine the reiccatable elements in the run Temporary Program File, TPFS, with
those of up to three libraries 1o produce an exacutable program, which is then executed. The
restrictions of the loader resuit from its purpose:

[The program consists of a single D-bank: it can reference common banks, but may not itself
be banked.

B The program is not segmented.

B The maximum size of the program is reduced by the size of the loader and its tables; the
reduction is on the order of 168K words {32 core btocks).

B The collector's element selection and placement commands are not available.

SPERRY UNIVAC 1100 SERIES SYSTEMS
SPRING 1978 USE-UUA/E CONFERENCE NOTES = 4-25

PAGE

Advantages

The advantages of the loader result from the same design considerations as the restrictions just noted.
Because the program is loaded directly to memory, no scratch files are assigned or freed. Because
the program is neither banked nor segmented, there is no output file to assign or free and no output
need be performed prior to execution of the program. Because the loader has no source language,
the overhead of acquiring and parsing the source input is absent, and decisions on element selection
and placement are simplified.

The following comparison of collection and loading times is for a medium-sized PL/1 program {1300
statements, 1900 lines). The comparison is between MAP level 29R1Q1 and LOAD level 3R1. The
times given are SUP totals, scaled to hours, minutes and seconds, and core block SUPs, scaled to
hours, minutes and seconds at a block size of 32768 words {64 core blocks). The last column gives
the times for a 3R1 loader with the PL/l GET DATA, PUT EDIT and program initialization routines
loaded as a nucleus, and, of course, do not include the time needed to build the nucleus.

MAFP LOAD LOAD

{Nucleus)

TOTAL SUPS 2:17.092 0:27.545 0:10.334
CAU SUPS 0:04.272 0:01.530 0:00.957
170 SUPS 1:57.568 0:16.234 0:05.272
CC/ER SUPS 0:16.251 0:09.784 0:04.559
32K BLOCK SUPS 1:189.317 0:48.098 0:24.829

4.2.2. LOAD Functional Charactaristics

This section describes the functions of LOAD and the options available when it is used. The following
subsections describe the input and output of the loader and the way in which loader options are
specified.

4.2.2.1.1. Input Sources
The loader has four sources for refocatable elements:

B TPFS

M RUNLIBS

B SYSSxtttLIBS (See TYPE option)

b SYSE#RLIBS
The loader reads all relocatable slemeants from TPFS; if there are none, the load iz aborted. MNaxt the
library files are searched; natura’ly, tha library files must be prepped. If a file with the intzrpal name
RUNLIBS is assigned to the run, it is searched 10 rosclve extzinal referenceos in the slamaeants frem
TPFS. After RUNLIBS, the appropriate language librory is serrched. If no languags is suecified (see
TYPE option), the SYSS*HLIBS file is not searchad. The loader will search only cne language library;

if a second is needad, it must be assigned as RUNLIES, After ihe tanguage libruary, the loadar searches
SYS3-ALIBS to satisly any remaining exiemal Jiirenden

SPLERY UMIVAC 1100 SERIES SYSTEVS
SPRING 19?8| USE-UUA/E CONFERENCE NOTES P‘i;fs
4.2.2.1.2. Program Formet

The program is loaded in 2 fermat different from that produced by the 0S 1100 Collector. The I-bark
contains the loader; on single PSR systems {1106, 1108, 1106/10, 1 100/20), the loader is followed
by its tables in the sagie i-baik. The main PSR D-bank contains the program. On duai PSR systems
{1110, 1100/40, 11C0/&7), ihe tables are kept in'a D-bank based on the utility PSR which starts
at 0740000. Thus on single PSR systems, the loadur and its tables reduce the address space
available to the program; addresses lzss than 040000 are not available to the program. On dual PSR
systems only the loader itse!f occupies program address space; the tables can be overlapped if the
program expands via MCORES.

The loading sequence also differs from that of the 0S 1100 Collector. The order of location counters
is:

B Odd location counters
Common blocks
B Even location counters

Within these groups, elements occur in the order in which they are encountered by the loader, If
the loader contains a preloaded library nucleus, the sequence is:

Nucleus odd location counters
Nucleus common blocks

Nucieus even location counters
Program/library odd location counters

Program/library common blocks

" g B m =

Program/library even location counters

e B o e o e i — . —

SF:’FHNG 1978 SPERRY UNIVAC 1100 SERIES SYSTEMS

USE-UUA/E CONFERENCE NOTES o

4.2.2.1.3. LOADER Options

In order to leave the option letters available for communication with the loaded program, the loader
uses the “file.element” fields of the processor cali for option specification. The available option
keywords are:

B MAP - Print a memory map.

B NUCLEUS - Create an initialized loader.

B TYPE - Specify tanguage library.

NODEBUG - Delete loader tables.
The options are specified in the element name fields of the @LOAD line, in any order. For example:
Format, Processor Call

@LOAD MAP, NUCLEUS, TYPE/DGT

This processor call requests that a memory map be printed, that a new ioader with a nucleus be
generated, and that the second library searched be SYSS#DGTLIBS. The generated loader will be
named LOAD and it will be left in TPFS.

4.2.2.1.3.1. MAP Option - Print Memory Map

The loader lists the names of the elements loaded with the first and last address assigned to each
location counter. Following the list of elements, the program’s common blocks are list2d with the
first and last address assigned to each. This listing is produced only if the MAP option is specified.

4.2.2.1.3.2. NUCLEUS Option — Create !nitialized Loader

The loader writes an absolute element in TPFS which contains a loader with the RB's from TPFS (and
all implied library routines) already loaded. The name of the created absolute element is specified
as part of the option: "NUCLEUS/name”. If name is omitted, the name of the absolute will be LOAD.
When the NUCLEUS option is specified, the loaded program will not be executed. This facility can
be very useful if a library nucleus can be identified which needs to be loaded for all, or most, programs
using the loader. The generated loader is used in exactly the same way as the loader from the
distribution tape. Thus, all the options and facilities described in this manual are available for a loader
with a library nucleus as described here. Naturally, the time needed to load a program is considerably
reduced if a large part of the library which it needs has slready been loadad.

This facility caa aiso be used to generzts special purpose processors in which the main program and
most of the Bbrary have already been loaded and only a few subroutines are to be provided when
the prosessor is called. This can be useful in educational settings, where a student’s routine can be
tested in a standurd environment. And since nearly all of the reauired library routines could be
preioaded in such a setting, the cost for each student run could be significantly reduced.

SPERRY UNIVAC 1100 SERIES SYSTEMS
SPRING 1978 USE-UUA/E CONFEHENCE NOTES 4-28

PEGE

4.2.2.1.3.3. TYPE Option - Language Specification

The TYPE option takes the form "TYPE/ttt; ttt is a three character language indicator which is used
in the language library file name SYSS*\tttL!BS“ If the indicator is not three characters long, the
TYPE option is ignored. If TYPE and NUCLEUS are specified together, the generated LOAD processor
will assume the language specified.

4.2.2.1.3.4. NODEBUG Option - Delete Loader Tables

In the process of loading a program, LOAD creates a set of tahles which correspond roughly to the
diagnostic tables produced by the coilector. However, these tables are resident in memeory and
cccupy on the order of 10K words (20 core blocks). f they are not needed during execution of the
program, they can be deleted by use of the NODEBUG option. Note that, while NODEBUG reduces
the execution time size of the program, it does not increase the addressing space of the loaded
program. The space occupied by the loader tables does not become availabte for use by the program.

4.2.2.1.4. SPECIAL SYMBOLS

The OS 1100 Collector defines fourteen special symbols; the Loader also defines these symbols, as
well as five others. Certain of these symbols are always defined to be zero. Those are ENTRYS,
COMMNS, XREFS, SLT$, FRSTIS and LASTIS. The symbois FRSTDS, LASTDS, FIRSTS, LASTS, BDIS,
BDMREFS, BDICALLS, IBJS and DBJS all have their usual meanings, although restricted by the fact that
the Loader creates a one bank program.

The additional symbols defined by the Loader are MINDS, DAVLS, LOADSCOMMON, LOADSENTRY
and LOADSELEMENT. The first of these, MINDS, is not actually defined by the Loader; MINDS is
defined with an absolute value EQU by the program and used by the Loader. The value defined for
MINDS specifies the minimum amount of storage to be available following LASTDS: when the Loader
expands the D-bank prior to reading the RB text, it will provide enough room for the space requesied
by MINDS, if possible. DAVLS is then defined as the number of words between LASTDS and the end
of the D-bank. - LOADSCOMMON, LOADSENTRY and LOADSELEMENT are the addresses of the first
entry in the common block, entry point and element tables. If the NODEBUG option is specified,
LOADSCOMMON, LOADSENTRY and LOADSELEMENT are zero. Note that these special symbols are
not accessible to high-level language programs; they must be referenced through assembly language.

Because the Loader does not produce an OS 1100 Collector format absolute element, the 0S 1100
RLIBS routines for conversion of addresses, BDI's and segment indices do not function correctly with
the Loader. These routines are described in Sections 2.2.2 through 2.2.8 of the Sperry Univac 1100
Series Executive System Programmer Reference, Volume 4, System Utility Programs, UP-4144.4,
The routines involved are CRELADS, CBNS, CSN$, CABSADS, CBXS, CSXS and CSYMVLS. They all
require use of the absolute element’s tables, and are thus not compatible with the Loader. Equivalent
functions are provided by an element distributed with the Loader, called LOADSDECODE. The names
and calling sequences are the same as the RLIBS routines. The functional differences result from the
specizal execution environment provided by the Loader. Where UP-4144.4 indicates that an SLTS
index is returned, LOADSDECODE always returns zero. CRELADS never takes the error return; there
is no 170 to fail. CBN$ always returns "$IBANK" or takes the error return. CSN$ and CSXS$ always
take the error return. The reinitialization specified for CABSADS and CRELADS in the case of
checkpoint restart is not necessary with LOADSDECODE; it will cause no problems, so it should
probably be specified if checkpoint restart is to be used. In order to avoid possible run time problems,
LOADSDECODE, which occupies about 100 words, should be in the nucleus of any preinitialized
Loader.

< SPERRY UNIVAC 1100 SERIES SYSTEMS
3PRING 1978 USE-UUA/E CONFERENCE NOTES 429

PAGE

4.2.2.1.5. RESTRICTIONS

The major restriction on use of LOAD lies in program debugging. Since there is no absolute element,
and thus no diagnostic tables, PMD is limited in dumping programs loaded by LOAD. The storage
addresses and values produced by PMD are correct, but element names and location counters are
not displayed.

If a ioaded program references a common bank, the common bank’s address space must not overlap
that of the program. This should present no problem on single-PSR machines or for usérs of PCIOS
or the mathematical library common banks, but use of other common banks on dual-PSR systems
may require remapping LOAD to provide an increased I-bank size limit.

4.2.3. Structure of the Loader

This section describes the organization and operation of LOAD in detail. The following sections will
discuss the physical fayout for both single-PSR and duzl-PSR systems, the overall logic of the LOAD
processor, and pertinent parts of the design details.

4.2.3.1.1. Organization

Tha LOAD processor can be divided into three main parts: the loader code and its static data, the
loader dynamic table, and the logded program. These parts are placed differently in memory
depending on the number of banks which can be based simultaneously. On dual-PSR systems, each
part cccupies a seperate bank:

Main PSR l-bank

Loader
Code

Main PSR D-bank

Program
Code, COMMON, Data

Utitity PSR D-bank

Loader
Tables

SPRING 1278 SPERKY UNIVAC 1100 SERISE SYSTE S

PAGE

USE-UUA/E COMFERENC HWATES 430

On single~-PSR systeins the Utility PSR is not avaiiable; the lcader tables are moved to follow the
loader in the {-bank:

7 -bank

Loader
Code & Tables

D-bank

Program
Code, COMMON, Data

A number of considerations went into the selection of this organization. The loader tables should
reside at the end of a bank so that they can be deleted by use of LCORES if they are not needed by
the program. This aiso makes it possible to initially resarve less than the maximum space for the
tables and expand them dynamically for largar programs.

In the initial design, the loader was to have resided in tha Main PSR D-bank starting at 0200000
with the program in the l-bank starting at 01000. Unfortunately, standard ibrary common banks
such as PCIOS require that some of the program'’s even location counters reside in a D-bank, so that
they are addressable from the common I-bank. Because of the initial design, LOAD has been coded
to be mappable at addresses greater than 0200000; while this capability is not currently used, it is
being maintained. On dual-PSR systems the loader code is placed in the I-bank, rather than
preceding the tables in the Utility D-bank, so that the loader code can be dzleted before the program
begins execution. On single-PSR machines the loader code is deleted only if the'loader tables are
deleted.

Buffers required for reading the table of contents, entry point table and relocatable element text are
allocated in the Main PSR D-bank. When a loader is generated with a preloaded nucleus, the buffer
addresses are adjusted to avoid overlaying the preloaded code.

SPERRY UNIVAC 1100 SERIES SYSTEMS
SPRING 1978 USE-UUA/E CONFERENCE NOTES 4

4.2.3.1.2. LOGIC OVERVIEW
The logic flow of LOAD breaks down into the following. steps:

M| Initialization

L |

Read RB preambles from TPF$

Scan entry point tables and read RB preambles from the library files.
Assign addresses to location counters.

Adjust D-bank siza.

Define undefined references from the nucleus.

Read and relocate RB text.

Free library files.

If NUCLEUS is specified, save Waiting Reference list, write loader element and quit.

Set up initial environment, release tables and loader code and start executing program.

4.2.3.1.3. DATA STRUCTURES

The loader is concerned with two primary groups of data structures: the 1100 system relocatable
element and the LOAD processor. tables. The relocatable element (RB) format is presented in the
following section; much of this material is duplicated in UP-4144.4 {current versicn; in the section
on the Relocatable Output Routine {ROR), but the information in UP-4144.4 is not complete. The
second section following describes the loader table structure.

4.2.3.1.3.1. Relocatable E!ement Format

An 1100 Series relocatable element consists of two parts, each stariing on a sector boundary on mass
storage. The first part is the relocatable text, which contains the actual values to be loaded into the
storage areas assigned to the element. The second partis the relocatable preamble, which describes
the element. The preambie lists the location counters and undefined symbois used by the element
and the entry points which it defines. The preamble also contains additional information describing
special features of the location counters.

The preamble begins with a Base Table, which is followed by cne or more of the four descriptive
tabies: the Location Counter Table (LCT), the Undefined Symbo! Tenle {UST), the Entry Point Table
{(EPT) and the Control linformation Tabiz {CIT). The buse table contails the index (word offset within
the preamble} and number of items for each of the tables. The base table is always four words long’
as shown:

SPERRY UNIVAC 1100 SERIES SYSTEMS
SPRING 13878 USE-UUA/E CONFERENCE NOTES e

index - LCT Item Count - LCT
Index - UST | Item Count - UST
Index - EPT Item Count - EPT
Index - CIT ‘ftemn Count - CIT

The Location COUI‘I!BI)’ Table specifies the K-bit count, the minimum data area address and the length
of each location counter. Each item in the LCT is one word long; the location counter number is the
word offset in the table of the corresponding item. The format of the LCT is:

K-bit count Length of LC Q
minimum data address Length of LC 1
177777 Length of LC 2
Frrrrr/ Length of LC n

The Undefined Symbol Table is a list of the symbols referenced by the element whigh must be defined
as entry noints by other elements. Each UST item is twe words long, containing the symbol as a2 12
character Fieldata name, left justified and space filled. An undefined symbol index in a relocation
bit stream is the item number, counting from zero; it is multiplied by 2 to obtain a word offset in the
UST. The maximum number of undefined symbols is limited by the K-bit count, which ranges from
1 to 10.

The Entry Point Table is a list of the symbols defined by this element for use by other elements,
together with defining information for each symbol. The entry point name is 12 Fieldata characters,
left justified and space filled. The descriptor word (the third word of an item) has two fields defined.
Bit 27 is set to 1 if the entry point value is absolute, and to O if the value is to be relocated by a location
counter address. Bits 18-26 (Q2) contain the location counter number when the entry point value
is relocatable. The value word is just a 36-bit value. The format of a four-word Entry Point Table
item is:

Entry Point Name
(12 Fieldata characters)

R-flag Loc Ctr I 157777

Value

The Control Informaticn Table is used primarily to hold descriptive information about common blocks;
its other uses are not currently supporied by the Loader. The common block name is 12 Fieldata
characters, left justified and space filled. The group number determines the function of the CIT item.
Group number 2 identifies named common blocks. Group number 4 identifies the blank-named
common block; for blank common, the common biock name may by zero, spaces, "BLANKSCOMMON"
or garbage. The minimum address is the lowest address at which the common block can be allowed
to start. The location counter number identifies the iocation counter which is used in the RB text to
identify the common block. The format of a 4—word CIT item is:

- SPERRY UNIVAC 1100 SERIES SYSTEMS
SPRING 1978 USE-UUA/E CONFERENCE NOTES +-33

PAGE

Common Block Name
{12 Fieldata Characters})

Group fr7r7// Minimum Address

Loc Ctr # ISR RN

The relocatable element text is written in fixed length blocks, currently defined by ROR to be 14
words. Each block consists of a sequence of relocation information bit streams, a sequence of text
words and a sequence check word. The relocation information is described later. After a word group,
if there is insufficient room for the relocation information and at least one text word of the next word
group, padding words will be inserted between the relocation information bit streams and the text
words to pad the block to 14 words. Padding words contain zero. Within a word group, the text
waords occur in the reverse of the order in which they are allocated to memory. Thus, within a text
block the relocation information scan starts at the beginning of the block and the text word scan starts
at the word preceding the sequence check word. T1 of the last word of each block containg two

Fieldata characters, starting with "AA" in the first text block and incrementing within the alphabet.
The format of a text block is:

Reloaction information for first word group

Relocation information for second word group

.

Text words for second word group

Text wards for first word group

Sequence IV NNINN

The relocation information for a word group starts with a series of fixed lzngth fields followszd by an
optional variable fength field. The relocation information always starts in the first two bits of a3 word;
the relocation bit stream is padded on the right with zerues if necessary to fill out its last word. The
initial fields of the relocation information are:

Flag 2 bits. The value of this field determines the type of word group. If this field is 10,
this is a normal word group. If this field is 11, then the effactive word group address
defined by the following fields is the transfer address of the. program. If the first bit
of this field is O, then there are no more word groups ir this block. The end of a block
is also detected when the word from which the rzlocation information would be taken
overlaps the text words.

Address 16 bits. The word offset from the beginning of the locaticn counter at which the first
text word is to be placed.

Count 9 bits. The number of text words in this group. Forilag = 11 (iransfer cu drussh, coutnl
is always zero.

SPERRY UNIVAC 1100 SERIES SYSTEMS

SPRING 7978 USE-UUA/E CONFERENCE NOTES hea
L 2 bits. This field defines the iocation counter to be used in determining the address

of the word group. The relocation function defines two special location counters:
NC1 and NC2. The location counter associated with NC2 is always 2; the value of
L determines which location counter is associated with NC1 and which focation
counter is used in computing the effective address, as follows:

00 NC1 = 0, code 14 - (0}
01 NC1 = 1, code — ${1})
10 NC1 = 1, code — ${2)
11 NC1 = gc, code — ${gc)

Ge K bits. The value of K is the K-bit count from the first word of the Location Counter
Table in the preamble. This field is present only if the previous field {I) is 11. This
field is then the location counter number to be used for NC1 and in which to place
the text words.

This fixed relocation information header is followed by a sequence of variable length relocation bit
streams. In the following discussion, some special symbols are used which are here defined:

RA Bits 15-0 of a word.

LA Bits 33-18 of & word.

RH Bits 17-0 of a word (i.e., H2).
itH Bits 35-18 of a word (i.e., H1).

{NC1) The starting address of the location counter currently associated with NC1.

{NC2) The starting address of the location counter currently associated with NC2.

t...u A K-bit field whose value is to be used as an undefined symbol index.

c...C A K-bit field whose value is to be used as a location counter number.
The relocation bit stream is interpreted. by scanning the bits in order. There is a seperate relocation
spemﬁcatlon for each word in a group. There are two major possibilities for a relocation specification.
If the first two bits of a specification are 00, then the specification is precisely two bits long and no
relocation is applied to the text word. Otherwise, the specificaticn consists of a sequence of subfialds,
of which the basic sequence is "ftvd".
The f subfield defines the field within the text word to which the relocation is to be applied. The

contents of a field are always sign-extended to 36 bits before relocation arithmetic is performed. The

possible values of { are:

t1zzz Field is RA, extend to 19 bits by appending 2zz on the left, then sir - extend to 36
bits.

0100zzz Field is LA, extend to 18 bits by appending zzz on the left, then sign extend to 36 b:ts.
0101z Field is RH, sign extend with z.
0110z Field is LH, sign extend with z.

O1110illrrrerr

' SPERRY UNIVAC 1100 SERIES SYSTEMS
SPRING 1978 USE-UUA/E CONFERENCE NOTES 4-35

PAGE

Field is bits Il to rrrrer of the word, sign extend with bit Il

The t subfield is a single bit which specifies the sign of the relocation. If tis O, the address specified
by v is added to the field; if t is 1, the address is subtracted.

The v subfield is either 2 or 2+K bits long; the value of v determines the address to be added to
or subtracted from the field. The values defined for v are:

00 (NC1)

01 (NC2)

10u..u The value of undefined symbol u.

11c..c The starting address of focation counter ¢.

The d subfield determines whether or not further relocation of the text word is required; d is either
one ar two bits long. The value defined for d are:

o No more relocation; the next bit begins a new text word.
10 More relocation for this word; ftvd follow.
11 More relacation for this field; tvd follow.

4.2.3.1.3.2. Loader Table Format

Element List Item

ELEMENT 1

NAME 2

ELEMENT CREATION DATE 3

ELT SEQ NUM FL TEXT LENGTH 4

NEXT ELT LIST ITEM TEXT ADDRESS 5

UNDEFINED SYMB # LOC CTRS 6

K-BIT COUNT AFLG UFLG Y 7

ADDR OF LOC CTR O LENGTH OF LOC CTR O 8
ADDR OF LOC CTR N LENGTH OF LOC CTR N
111717 ADDR OF UST ENTRY 0

SPERRY UNIVAC 1100 SERIES SYSTEMS

SPRING 1973 USE-UUA/E CONFERENCE NOTES S-3s
177177
111177
111777
111177 ADDR OF UST ENTRY M

ELEMENT NAME

Words 1 & 2. This is the Fieldata name of the element, 12 characters left justified
and space filled. The version name is not retained.

ELEMENT CREATION DATE
Word 3. This is the time and date the element was created, as recorded by ER PFl$.
ELT SEG NUM

T1 of word 4. This is the sequence number of the element in the table of contents
of the file it was taken from.

FL #

S3 of word 4. This is the number of the file from which the element was taken. This
is used to determine the file name when the RB text is to be read.

TEXT LENGTH
H2 of word 4. This is the length of the RB text in sectors.
NEXT ELT LIST ITEM
H1 of word 5. This is a pointer to the next Element List item.
TEXT ADDRESS
H2 of word 5. This is the sector offset in its file of the RB text of the element.
#F UNDEFINED SYMB

H1 of word 6. This is the number (M+ 1) of undefined symbol slots in this Element
List item.

LOC CTRS

H2 of word 6. This is the number {N+ 1) of location counter slots in this Element List
item.

K-BIT COUNT
H1 of word 7. This is the K~bit count from the RB preamble. This is the length of

focation counter and undefined symbol number fields in the relocation bit streams of
the RB text. '

SPRING 1978

SPERRY UNIVAC 1100 SERIES SYSTEMS
USE-UUA/E CONFERENCE NOTES 4-37

PAGE

AFLG
5S4 of word 7. This flag is set to 1 when addresses are assigned to the element.
UFLG

S5 of word 7. This flag is set to 1 when any one of the entry points defined by the
‘glement is referenced in the text of an element.

ADDR OF LOC CTR i

H1 of words 8 - 8+N. This is the address assigned to location counter i. This field
is also used to temporarily hold the address of the corresponding Common Block
Table item prior to address assignment.

LENGTH OF LOC CTR i
H2 of words 8 —~ 84+N. This is the length of focation counter i, as taken from the RB
preamble. This field can be set negative during address assignment to flag location
counters for which addresses have already been assigned.

ADDR OF UST ENTRY j

H2 of words 94N - 94N+ M. This is the address of the External Symbol Table item
for the element’s undefined symbol number j.

Common Block Tabie ltem

COMMON BLOCK 1
NAME 2

SIZE ADDRESS 3

.‘ | SPERRY UNIVAC 1100 SERIZS 2YSTEMS
SPRING 1978 USE-UUA/E CONEERENCE NOTES 4-33

PAGE

NEXT CBT POINTER SNy 4

COMMOM BLOCK NAME

Words 1 and 2. This is the Fieldata name of the common block, 12 characters left
justified and space filled.

SIZE
H1 of word 3. This is the size of the commeon block in words. This is the actual size
of the common block: the sizes in the corresponding location counter slots are taken
directly from the RB preambles and may thus be smaller than the actual block size.

ADDRESS

H2 of word 3. This is the address 2ssigned to the common block. This address is
also copied into all the corresponding location counter slots.

NEXT CBT POINTER
H1 of word 4. This is the address of the next item in the Common Block Table.

External Symbol Table Item

ENTRY 1
NAME 2
VALUE ‘ 3
LEFT EST POINTER RIGHT EST POINTER 4
LAST UST POINTER NEXT UST POINTER 5

T TR T T T WU G QT M e S T BT T A - PR T - e e e e

SPRING 1978

SPERRY UNIVAC 1100 SERIES SYSTEMS
USE-UUA/E CONFERENCE NOQOTES 4-39

PAGE

JIIIII0 ELT ITEM POINTER 6

ENTRY NAME

Words 1 and 2. This is the entry point's Fieldata name, 12 characters left justified
and space filled.

VALUE

Word 3. Prior to address assignment this is the absolute part of the entry point value.
Following address assignment this is the value of the entry point.

LEFT EST PQINTER

H1 of word 4. This is the pointer to the next External Symbol Table item with an entry
name less than the name in words 1-2 of this item.

RIGHT EST POINTER

H2 of word 4. This is the pointer to the next External Symbol Table item with an entry
name greater than the name in words 1-2 of this item.

LAST UST POINTER

H1 of word 5. This points to the External Symbol Table item which precedes this one
on the Undefined Symbol chain. This field is zero if the symboi has been defined.

NEXT UST POINTER

H2 of word 5. This points to the External Symbol Table item which follows this one
on the Undefined Symbol chain. If the symbol has been defined, this field is broken
into two subfields. Q3 is a relocation flag: O if relocation of the entry value is
incomplete, 1if the entry value is not reloccatable and 2 if relocation of the entry value
is complete. Q4 contains the lacation counter number used, or to be used, in
relocating the entry value.

ELT ITEM FOINTER

H2 of word 6. This points to the Element List ltem for the element which defined this
symbol.

Fe— SPERRY UNIVAC 1100 SERIES SYSTEMS
“CRING 1678 " USE-UUA/E COMFERENCE NOTES 4-40

PAGE

Waiting Reference ltem

T LBIT LEN NEXT W. R. ITEM 1

UST POINTER TEXT WORD ADDKRESS 2

S1 of word 1. This field indicates the sign of the relocation. Zero means the entry
value is to be added to the field; one means that the entry value is to be subtracted
from the field.

LBIT

$2 of word 1. This is the number of the leftmost bit of the field {(numbering O to 35,
right to left, as usual).

LEN

S3 of word 1. This is the number of bits in the field.

NEXT W. R. ITEM

H2 of word 1. This is the address of the next Waiting Reference item, or 2ero at the
end of the chain.

UST POINTER

H1 of word 2. This is the address of the External Symbol Table item for the symbol
whaose value is to be used in the relocation.

TEXT WORD ADDRESS

H2 of word 2. This is the address of the program word containing the field whose
value is to be relocated.

4.2.3.1.4. INITIALIZATION
Initialization consists of the following steps:
a) Set up base registers.

b) Place loader defined tags in the External Symbol Table and MINDS$ in the Undefined Symbol
Table.

T Y T, T R A T AR T I S o, s s ey et o e T T R e —_——

: SPERRY UNIVAC 1100 SERIES SYSTEMS
SPRING 1978 USE-UUA/E CONFERENCE NOTES b

¢) Save initial register values.
d) Read and validate option field.
e) f MAP is specified, print the sign-on line.

If the loader does not have a nucleus, execution starts at the tag BEGIN, where steps a and b are
performed. If the loader has a nucleus, step b was performed when the nucleus was loaded; execution
starts at the tag RESTART, which performs step a. For both cases, steps c-e are performed at the
tag CSTART.

The routine at GETOPT, which performs step d, first clears the option flags (except for TYPE, which
is carried over from the nucleus buiid). This routine simply scans the processor call subfields, looking
for element name subfields. All subfields found in the scan which are not element names, or are not
among the recognized option keywords, are diagnosed as incorrect options. For keywords which use
the following version subfield as a parameter, the scan is automatically advanced past the varsion
subfield.

4.2.3.1.5. READ TPF$

This process consists of three routines, {TPFS, FINDRB and PRMBL. First ITPF$ is called to read the
TPFS File Table Index and Table of Contents. Next FINDRB and PRMBL are called alternately to
process all the relocatable elements in TPFS. [TPFS sets A15 to the number of TOC entries and X9
10 the address of the first entry. FINDRB scans forward through the TOC until an undeieted relocatablas
element is found or A15 is decremented to zero. On return from FINDR3, X8 coniains the address
of the relocatable element TOC entry, or zero if the end of the TOC has bezn reached.

PRMBL read the preamblie of a reiocatable element, builds an Element List item for it and builds or
updates Common Block Table items and External Symbol Table items.

Once the preamble has been read, PRMBL sets up the Element List item, leaving the location counter
and undefined symbo! slots empty. PRMBL maintains in MAXTXT a record of the longest RB text
encountered, for use in buffer ailocation during a later step.

The first preamble table scanned is the Control Information Table. Only group numbers 2 and 4 are
processed; group 7 {even address) is ignored and group 8 location counters {(diagnostic table
information) are loaded as if they were data. Blank common is changad to named common with the
name BLANKSCOMMON. The common blocks are processed individually. {f a Common Biock Table
(CBT) item does not exist for a C.L.T. entry, it is created and fillad in. I one does exist, its length is
checked: unequal lengths are diagnosed and the greater length is used. {Note that no diagnostic is
issued for unequal lengths for blank commoi) In either case, H1 of the location counter slot in the
Element List item is set to the address of the CBT item. At the end of this step, H1 of each location
counter slot is either zero or the address of a CBT item.

P -7 SPERRY UMIVAC 1100 SERIES SYSTENS
SFRING 1978 USE-UUA/E CORFERENCE NOTES e

PAGE

Next the Location Counter Table in the preamble is scanned. The length of each location counter
is moved to H2 of the location counter siot in the Element List item.

Next the Entry Point Table is scanned. For each entry, an External Symbol Table item is found or
created. If the EST it2m is on the Undefined Symbol chain, it is removed from the ‘chain, since it is
now defined. The defining information is moved into the EST item.

Finally, the Undefined Symbol Tablz in the preamble is scanned. For each symbol, an EST item is
found or created and its address is placed in the corresponding undefined symbol slot of the Element
List item. If the EST itemn is created in this step, it is placed on the Undefined Symbol chain.

4.2.3.1.6. SCAN LIBRARIES

This is step 3 in the logic overview presented earlier. For each of the three libraries in turn, the library
is assigned, its entry point table is read and selected elements are processed.

Three routines are used to assing the libraries and read the entry point tables: RUNLIB, TPLIB and
RLIB. Each is entered via LMJ and each skips one instruction on return if the entry point table was
not successfully read. In each case the LMJ is followed by an LMJ to SCANLRB the routine which
scans the entry point table. Each of the three routines assigns or check assignment of a file, then
branches to LIBOO1, where the entry point table is read.

Once an entry peoint table has been read, SCANLB is czlied 10 scan the Undefined Symbol chain and
look up each symbol in the entry point tablfe. SCANLE scans the Undefined Symbol chain, lgoking
up each symbol ir the entry point tatle. If the symbol is found, SCANLB chacks for and diagnoses
muitiple definitions and selects and element. That element’'s TOC entry is read and passed to PRMBL
{discussed in the preceding section, "Read TPFS"). One side effect of PRMBL is-to remove the current
symbol from the Undefinad Symboi chain. Any new symbols added to the chain by PRMBL follow
the current symbol, so they will be processed later against the same file. This process repeats for
each item ¢n the Undefined Symbol chain.

4.2.3.1.7. ASSIGN ADDRESSES

This is step 4 in the logic overview. Address assignment takes place in four parts: odd noen-common
location counters, common bloc¢ks, even non—common location counters and entry peoints. Once
addresses have been completely assigned for an element, the flag ELTAFLAG is set in the Element
List item. This flag is checked to aveid reassigning addresses for elements in the nucleus. During
address assignment, the length and address parts {H2 and H1, respectively) of a location counter slot
serve several functions. These fields are referred to here as LEN and ADDR. Initially LEN is the length
from the location counter table in the RB, and ADDR is the address of the corresponding Common
Block Table item, or zero. During part 1 the odd numbered location counters are assigned addresses
in numerical order, with the first elements added to the Element List being processed first; commen
block location counters are skipped. When the address is placed in ADDR, LEN is complemented
to show that ADDR is a data address.

During part 2 addresses are placed in the Common Block Table items.

During part‘ 3 the Element List is again scanned as it was in paﬁ 1, but now all location counters are
examined. Three cases are distinguished:

LEN < O

An address has already been assigned in ADDR; LEN is set to —-LEN.

SPERRY UNIVAC 1100 SERIES SYSTEMS
SPRING 1978 USE-UUA/E CONFERENCE NOTES 443

PAGE

LEN >0 & ADDR >0

This is 8 common block: ADDR is set from the Common Block Table item whose address
is in ADDR.

LEN >0 & ADDR =0
This is a data location counter; an address is assigned and placed in ADDR.

During part 4 the elements of the binary tree which makes up the External Symbol Table are scanned
and addresses are computed for items with relocatable definitions. Only one point presents any real
complexity. H2 of word 5 of an EST item contains the UST pointer if 2 symbol is still undefined; this
address is always greater than 01000 so Q3 is non-zero for all undefined symbols. Once an entry
point has been defined, Q3 is O if the definition is relative to a location counter, 1 if the definition
is absolute, and 2 if the definition is relative and the absolute address has been computed and placed
in the item. Thus it is possible to determine that an EST item needs to have an address computed
if 03 of word 5 is zero. Note that the test far an undefined symbol could be made on word &, which
contains the address of the Eiement List item of the defining element.

4.2.3.1.8. ADJUST D-BANK

This step consists of determining the required D-bank size to accommodate the program plus a buffer
as large as the largest relccatable element text and, if necessary, enlarging the D-bank to that size.

4.2.3.1.9. DEFINE WAITING REFERENCES

When a nucleus is being built and a relocation requires the value of an undefined external symbol,
a Waiting Reference item is created. This step performs the relocations specified by the existing
Waiting Reference list, if any. If an item references a symbol which is still undefined, the item is again
deferred. The Waiting Reference item is copied into a new chain which follows the loader tables.

4.2.3.1.10. RELOCATE RB TEXT

This step first stores zero into all words assigned to location counters of this load; i.e., starting after
the existing nucleus, if any. Then the Element List items are passed one at a tiime to the routine
READRB, which reads and relocates the RB text.

The first step of READRB is to load the taxt length from the item, then to set the text length in the
item to zero. If the loaded text length is zero, READRB returns immediately; this prevents attempts
to reload the nucleus or to load the text of an empty element. READRB then reads the text into the
buffer which follows the program space.

The text of an element is processed, stariing with the first 14 word bleck and continuing until the
end of the text is encountered, a transfer address is found, or the first word of the next block is zero.
Within esach block, the relocation bit strings are decoded left to right and the corresponding text
words are loaded, relocated and siore in the appropriaiz word of the program. The end of a block
is identified when the first word of the next relccation bit string is zero or when there are not at least
two words left in the block at the end of a word group. READRB ierminates, returning centrol to the
routine which scans the Element List, «when the last text block of the elament has been loaded.

