Algorithm for the Optimizstion of
Arvithmetic Expressicns in 1401 FORTRAN

avrth~
Two inefficlencies which exist currently in the strings generated for ;re{m-

met?ic expressions by the 1401 FORTRAN compller are discussed.
C
1. Redundent paventhesis gener

ate redundant object time processing.
2. QCeneralization of the treatment of functions has led to inefficient
output strings in spscific cases.
The expresaion
A = {B} + {C)
generates
GTi=B
GT2 = C
A=GT1+ GT2
The cxpression
A=B+CxD
generates
A=C*D+Bb
which is correct, but becaus
A=BINFI{B)+C*D

would generate

A=ZINFA{C #D + B)
8 rule was establizhed which states that all functions force a gencrated
temporary. Conseguently, the sbove expression ig generated as

GT1 = SNF (D)

A=C+D+GT1



o B |
which i8 correct.
Bui this rule lsads {0 an inelficiency in the case of
5 = SINF {B)
which produces
GT1 = SINF (B)
A=GT1
To vorrect this situation, the following algorithm is recommended.

Algorithm
Rule 1. I the operand Immadiately following the squal sign of a siring
ia & gepersied termporary, the compuiation of the GT can be substituted
ior the operand &nd the QT siving cin be delsted.
Rule 3. When a GT occurs to the right of the equal sign, but is not the
firgt operand, and all preceding operstors have the stune hierarchy,
then by the rule of commutivity, the GT can become the {irst operand

and procegure 1 will apply.

Exception 1. K the opsrator preceding the operand is "-", the negate function
must be used.
A=pB~GTl
is equivalent o

A= NEGATF (GTDH + B
Exception 2. If the operstor preceding the operand is "/", optimization
should not take place. The use of the invert function is unacceptable

in fixed point computation and processing time might be inereased in

the case of floating point.



e
Exception 8. K any finction computation precades the GT, optimization

caanot oecur.

Txampie of Rule 1

A={ExC)»D
currently produces
GTls«B=2C
A = EXPF {LOGF (GT1) * D)
or in string notation
GT1 = BBB #CCC+ AAA=GTIL #DE £
Ey applying rule 1 we get
A =FXPF{LOCF (B ¥ C) % D)
or in string notation
AsA=BBB*CCCL*DE%

-y

Expmple of Rule 2

A=RBx{C+ L)
eurrently produces
GTl=C+D
A=Ba2CGT1
but by rule 2 it can be writlen as
GIl=C+D
£a=0T1l B
end by rule 1 can be reduced to
A=C+Da2B

whare each operation is done serially (hierarchy does not apply).



e
The algorithm ca&n be refined if it is convenlontly program

than one GT occurs in the siring. Congider the following expression
A={B+ C) s (L xE)=(F *G)
Thiz carrently produces
GTla B+ C
GT2=D=»E
GI8=F=*G
A= GT1 »GT3 » GT3
by epplying rule 1, it can be reduced to
I8 =D=E
GI3=P%G
A=B+ Co QTS G138
Wo further optimization can occur. However, if the original exprassion had
been written as
A=D*Ej»{Fa3}»{B+C)
the string could have been reduced o
GI3=B+C
A=D»E» ¥ »G %373
It appears, tharefore, that a third rule should be established which states
that when an expresgion contiing more than one GT, anslysis of the expressions
represenied by the GT's should occur before optimization takes place. This
rule will b2 harder to implement the first two rules.

GlM:meb QP Agvanced Progremming Development



