Algorithm for the Optimization of
Arithmetic Expreasions in 1401 FORTRAN

N
I‘._ P & ['H’\ =
- Two inefficiencies which exist currently in the strings generated for aretu~

m;ei-;}\ic expressions by the 1401 FORTRAN compller are discussed.
1. L/Reclundiai.nt parenthesis generate redundant object time processing.
2. Generalization of the treatment of functions has led to inefficient
output strings in specific cases.
The expresaion
A =(B})+ (C)
generates
GT1=B
GT2 = C
A=GT1+ GT2

j The expression

A=E+CxD
generates
A=C*D+B

which is correct, but because
A=JBINF(B)+C »D
would generate
A =GINF (C *D + B)
a rule was established which states that all functions force a generated
temporary. Consequently, the above expression is generated as
GT1 = SINF (B)

A=CxD+GT1

e’



D
which is correct.
But this rule leads to an inefficiency in the case of
A = 3INF (B)
which produces
GT1 = 8INF (B)
A=GT1
To correct this situation, the following algorithm is recommended.

Algorithm
Rule 1. If the operand immediately following the equal sign of a string
is & generated temporary, the computation of the GT can be substituted

for the operand and the GT string can be deleted.

Rule 2. When & GT oceurs to the right of the equal sign, but is not the
first operand, and all preceding operators have the same hierarchy,
then by the rule of commutivity, the GT can become the first operand
and procedure 1 will apply.

Exception 1. If the operator preceding the operand is "~", the negate function
must be used.

A=B~GTl
is equivalent to
A = NEGATF (GT1) + B
Exception 2. If the operator preceding the operand is /", optimization

should not take place. The use of the invert function is unacceptable
in fixed point computation and processing time might be increased in

the case of floating point.



.
Exception 3. If any fimction computatien precedss the GT, optimization

ik
) cannot occur.
Example of Rule 1
A=(BxC)#»D

eurrently produces
GTl=Bx*»C
A = EXPF (LOGF (GT1) * D)
or in string notation
GT1=BBB # CCC ¥ AAA=GTIL *DE #
By applying rule 1 we get
A = EXPF (LOGF (B * C) * D)

or in string notation

4
y

y AnA=BBB*CCCL*DE #

W

Example of Rule 3
A=B*x(C+ D)

currently produces
GT1zC+D
A=B=*»3T1

but by rule 2 it can be written as
GT1=C+D
a=QGTl »B

and by rule 1 can be reduced to
Aa=C+D=B

’E where each operation is done serially (hisrarchy does not apply).



b
The algorithm can be refined if it is conveniently programmable when more
than one GT occurs in the string. Consider the following expression
A={(B+C)*(D*E) *(F *G)
'This currently produces
GTl1=B+C
GI2=D*E
GIS=F*@
A =GT1 QT8 % GT3
by applying rule 1, it cen be reduced to
GT2=D»E
GI3=F=»G
A=B+ C* QT2 *GT3
Mo further optimization can occur. However, if the original expression had
been written as
A=(D*E)*x(F*G) *(B+ C)
the string could have been reduced to
GT8 =B+ C
A=D+xE»FxG+GT3
It appears, therefore, that a third rule should be established which states
that when an expression contains more than one GT, analysis of the expressions
represented by the GT's should occur before optimization takes place. This
rule will be harder to implement than the first two rules.

Gary Mokotoif
GM:meb GP Advanced Programming Development



