
28 September 2019 Page 1 of 12

Exception Handling in Fortran
Van Snyder

Jet Propulsion Laboratory, California Institute of Technology1

28 September 2019

NOTE

This is based upon a paper I wrote 13 February 2015. That paper described enumeration types.
Enumeration types are part of the work plan for the next revision and are not described herein.
This paper is not a proposal for a work item. It is intended to become part of a standing document
that contains proposals that were at one time believed to be good ideas, but for which there was
not sufficient time for them to be included in the work plan.

1 Introduction

Since 1966, Fortran has had only very rudimentary exception-handling mechanisms: END=, EOR=,
ERR=, IOSTAT=, and STAT= specifiers, and alternate returns. Alternate returns are now considered
to be obsolescent.

Block-structured exception handling has been provided in other languages for decades. According to
Programming Languages: Principles and Practice, 2nd edition, by Kenneth C. Louden (a notable text-
book on programming languages), “Exception handling was pioneered by the language PL/I in the 1960s
and significantly advanced in CLU in the 1970s. However, it was only in the 1980s and early 1990s that
design questions were largely resolved.” Ada 83, for which development began in 1976, is probably the
first language that provided block-structured exception handling in the modern form. It is generally
agreed that exception handling is commonplace in all modern languages.

It has been observed that the CHANGE TEAM construct described in the 6 November 2014 draft of TS
18508 (ISO/IEC JTC1/SC22/WG5 paper N2033) is, in effect, an exception block, but with an intrinsic
(and invisible) exception handler that only manages necessary synchronization and deallocations.

It’s time for Fortran to have a complete block-structured exception handling mechanism. Block-structured
exception handling has been proposed for Fortran, but has never been implemented.

Objections have been raised to block-structured exception handling, usually citing performance degra-
dation. While some implementations of block-structured exception handling impose expense even if an
exception does not occur, block-structured exception handling does not inevitably impose a significant
execution-time penalty if an exception does not occur. For example, the Janus and Verdix Ada com-
pilers’ block-structured exception handling mechanisms impose very low cost if an exception does not
occur, and the exception handling mechanism provided by the GNU Ada Translator (GNAT) imposes
zero cost if an exception does not occur.

The cost of exception handling should not be confused with the cost of exception detection. An exception
cannot be handled unless it is detected. Most processors have methods to specify whether certain
exceptions, such as subscripts out of bounds, are detected. The cost of an exception handler is the
additional cost to provide for handling an exception, if one is detected. Providing a mechanism to
handle an exception does not require or imply that the processor is instructed to detect it. If the
processor does detect it, the additional overhead to handle it is very small, or nonexistent, until the
exception is detected. If the processor does not detect it, the additional overhead to handle an exception
that cannot occur is very small, or nonexistent.

1Copyright c© 2019 California Institute of Technology. Government sponsorship is acknowledged.

Page 2 of 12 28 September 2019

2 Proposal

Block-structured exception handling shall be provided in Fortran. Exception handlers shall be allowed
in subprograms, BLOCK constructs, CHANGE TEAM constructs, CRITICAL constructs, and DO
CONCURRENT constructs.

Exceptions shall be identified by enumerators of enumeration types, not integers. Enumeration types
are therefore a prerequisite for a properly designed exception-handling mechanism.

An exception enumeration type, with specified enumerators, shall be described in the standard. To
facilitate user-defined exceptions, the exception enumeration type shall be extensible. That is, it shall
be possible to define new enumeration types, based upon existing enumeration types, with additional
enumerators.

3 Specification – Exceptions and Exception Handlers

3.1 Exceptions

The standard shall specify events that cause exceptions, and the identifiers of enumerators that identify
those exceptions. The enumerators shall be of a type EXCEPTION, defined in the intrinsic module ISO -
FORTRAN ENV. Every event that the standard specifies to be an error condition, or a condition that
initiates normal or error termination, shall raise an exception, except that an exception shall not be raised
if such a condition occurs during execution of a statement that has an END=, EOR=, ERR=, IOSTAT=,
or STAT= specifier, or during execution of an intrinsic subroutine that has a present status argument.
It shall be possible to specify whether additional conditions, such as subscripts that are not within
bounds or references to intrinsic procedures with prohibited argument values, raise exceptions if they
are detected. Enumerators identifying these exceptions shall be of a type OPTIONAL EXCEPTION, an
extension of type EXCEPTION, defined in the intrinsic module ISO FORTRAN ENV. Which of these
conditions a processor is able to detect is processor dependent.

3.2 Enabling Exceptions

Detection of all exceptions that are identified by enumerators of the type EXCEPTION defined in the
intrinsic module ISO FORTRAN ENV, is always enabled.

Whether conditions identified by enumerators of extensions of the type EXCEPTION are to be detected
can be specified by an ENABLE suffix on a BLOCK, CHANGE TEAM, CRITICAL, DO CONCUR-
RENT, FUNCTION, or SUBROUTINE statement. If detecting such a condition is not explicitly enabled
or disabled, whether detecting such a condition is enabled is processor dependent.

An ENABLE suffix applies only to the specification-part, and the block or execution-part, corresponding
to the statement, and enclosed constructs and subprograms. It does not apply to referenced subprograms
that are not enclosed within the scoping unit or construct for which an ENABLE suffix is specified.

Detection of exceptions raised by RAISE statements is always enabled.

NOTE

ENABLE is a suffix rather than a statement so that it it is clear that it applies to the entire
specification part of the subprogram or construct. If it were a statement, it would be necessary to
explain whether it applies to the entire specification part, none of the specification part, or only
statements within the specification part that appear after the ENABLE statement. It would be
necessary to constrain against multiple ENABLE statements, or at least against specifying the
same exception more than once within a specification part.

28 September 2019 Page 3 of 12

3.3 Exception Handlers

An exception handler is defined by a HANDLE statement, followed by an optional specification-part,
and an execution-part, that appears after the execution-part-constructs of an execution-part, or after the
block of a BLOCK construct, CHANGE TEAM construct, CRITICAL construct, or DO CONCURRENT
construct.

An exception handler may handle any number of exceptions. Any number of exception handlers may
appear, but separate exception handlers in a particular execution-part, or following a particular block,
shall not specify handling the same exception.

Within an exception handler, the identity of the exception, and additional data associated with the
exception, shall be available. The additional data are represented by a variable of a type EXCEPTION -
DATA defined in the intrinsic module ISO FORTRAN ENV, or an extension of that type.

3.4 Exception Handling

Exceptions may be raised be the processor, or by execution of a RAISE statement.

When an exception is raised, execution of the statement in which the exception is raised is abandoned.

When an exception is raised within a specification-part, block, or execution-part, and there is a handler for
the exception that is directly contained within the same subprogram or construct, control is transferred
to the handler.

When an exception is raised within a construct, and there is no handler for the exception that is directly
contained within the same construct, elaboration of its specification-part is abandoned, or execution of
the construct is abandoned, and the exception is raised in the enclosing construct, if there is one, or in
the enclosing subprogram otherwise.

When an exception is raised within a subprogram other than within a construct that could have a
handler, and there is no handler for the exception that is directly contained within the same subprogram,
elaboration of its specification-part is abandoned, or excecution of the subprogram is abandoned as if by
execution of a return-stmt, and the exception is raised within the statement that invoked the procedure.

If an exception is not handled, the image shall initiate termination. If the exception was not raised by
execution of a STOP statement, the processor shall initiate error termination and display a descriptive
message on ERROR UNIT.

If no exception occurs within a construct, and execution of the construct is completed by execution of the
last executable-construct within its block, control is transferred to the END BLOCK, END CHANGE
TEAM, END CRITICAL, or END DO statement of the construct. If no exception occurs within a
program unit, and execution of the execution-part of the program unit is terminated by execution of
the last executable-construct within that execution-part, execution proceeds from the last executable-
construct to the END statement of the program unit.

When execution of a handler completes by execution of the last executable-construct within its block,
control is transferred to the END BLOCK, END CHANGE TEAM, END CRITICAL, or END DO
statement of its enclosing construct, or the END statement of its enclosing program unit.

Page 4 of 12 28 September 2019

4 Detailed Description – Exception Handlers

4.1 Defining Exception Handlers

An exception handler consists of a HANDLE statement and a following block.

An exception handler can appear after the execution-part-constructs of an execution-part, or after the
block of a BLOCK, CHANGE TEAM, CRITICAL, or DO CONCURRENT construct. Syntax rules are
modified accordingly.

Syntax rule numbers for execution-part, block-construct, critical-construct, and do-construct are the same
as in 18-007r1:

R509 execution-part is executable-construct
[execution-part-construct] . . .
[exception-handler] . . .

R1107 block-construct is block-stmt
[specification-part]
handled-block
end-block-stmt

R1107a handled-block is block
[exception-handler] . . .

R1111 change-team-construct is change-team-stmt
handled-block
end-change-team-stmt

R1116 critical-construct is critical-stmt
handled-block
end-critical-stmt

R1119 do-construct is do-stmt
handled-block
end-do-stmt

C1130a (R1119) An exception-handler shall not appear unless loop-control is CONCURRENT concurrent-
header.

New syntax rules are introduced to define exception handlers.

R1190 exception-handler is handle-stmt
[specification-part]
block

R1191 handle-stmt is HANDLE [(handle-spec-list)] exception-enumerator-list
or HANDLE (handle-spec-list)

R1192 handle-spec is ID = exception-identity-variable
or DATA = exception-data-variable

R1193 exception-enumerator is name

C1190 (R1190) Within an execution-part or construct, every exception-enumerator in every handle-stmt

28 September 2019 Page 5 of 12

shall be distinct.

C1191 (R1191) Within an execution-part or construct, at most one handle-stmt without an exception-
enumerator-list shall appear.

C1192 (R1191) Each exception-enumerator shall be an enumerator of the type EXCEPTION defined
in the intrinsic module ISO FORTRAN ENV, or an extension of that type.

C1193 (R1192) No handle-spec shall appear more than once within a handle-stmt.

C1194 (R1192) If exception-enumerator-list does not appear, ID= shall appear.

C1195 (R1192) An exception-identity-variable shall be a scalar variable of an enumeration type that
includes all enumerators in the exception-enumerator-list, if any. It may be declared within the
specification-part of the exception handler. It shall not be a coarray or a coindexed object.

C1196 (R1192) An exception-data-variable shall be a scalar allocatable polymorphic variable of declared
type EXCEPTION DATA defined in the intrinsic module ISO FORTRAN ENV. It may be
declared within the specification-part of the exception handler. It shall not be a coarray or a
coindexed object.

C1197 (R1190) A branching statement within the block of an exception-handler shall not have a branch
target within the block or execution-part in which the handler is appears.

4.2 Handling Exceptions

When an exception is raised, execution of the statement in which the exception is raised is terminated.

When an exception is raised within a block or execution-part, and there is a handler for the exception
following the block or within the execution-part, control is transferred to the handler. The handler is the
one that identifies the exception in the exception-enumerator-list of its HANDLE statement, if there is
such a handler, or otherwise a handler for which its HANDLE statement does not include an exception-
enumerator-list. When execution of the block of the handler is completed other than by execution of a
branching, CYCLE, EXIT, RAISE, or RETURN statement, control is transferred to the end-block-stmt,
end-change-team-stmt, end-critical-stmt or end-do-stmt of the construct in which the handler appears,
if the handler appears within such a construct, or else to the END statement of the procedure in which
the handler appears.

When an exception is raised within a block and there is no handler for the exception following the block,
execution of the block is terminated and the exception is raised in the block of an enclosing construct, if
there is one, or in the enclosing execution-part.

When an exception is raised but not handled within a CHANGE TEAM construct, execution of the
block of the construct is terminated, and normal synchronization occurs at the END TEAM statement
before the exception is raised in an enclosing block or execution-part. If this synchronization causes an
exception, it is processor dependent which exception is raised within the enclosing block or execution-part.

When an exception is raised but not handled within a CRITICAL construct, execution of the block of
the construct is terminated, and the construct is considered to be completed before the exception is
raised within the enclosing block or execution-part.

When an exception is raised but not handled within a DO CONCURRENT construct, that iteration is
terminated and the exception is raised within the enclosing block or execution-part after every iteration
of the construct completes. If another exception occurs during another iteration before the construct
completes, and is not handled, it is processor dependent which exception is raised within the enclosing
block or execution-part.

Page 6 of 12 28 September 2019

When an exception is raised within an execution-part and there is no handler for the exception within the
execution-part, execution of the execution-part is terminated as if by execution of a return-stmt. If the
execution-part is the execution-part of a procedure that was invoked by a program unit defined by means
of Fortran, the exception is raised within the statement that invoked the procedure. If the procedure
was invoked by a procedure defined by means other than Fortran, it is processor dependent whether
the exception is handled by the invoking procedure, or raised instead at the most-recently executed
subroutine or function reference in a Fortran program unit that resulted in the Fortran subprogram
being invoked.

NOTE

If an exception is raised but not handled within a final subroutine, the statement in which it is
thereupon raised might not be a CALL statement.

If an exception is raised during execution of an exception handler, and it is not handled by a contained
handler, or one in an invoked procedure, it is raised in the block or execution-part that contains the block
that contains the exception handler, if the exception handler is within a construct, or it is raised within
the statement that caused the procedure to be invoked, as described above, if the exception handler is
within an execution-part.

If an exception is not handled by any handler, the image shall initiate termination. If the exception
is not identified by the value of the enumerator STOP STATEMENT defined in the intrinsic module
ISO FORTRAN ENV, the processor shall initiate error termination and display a descriptive message
on ERROR UNIT.

Data relating to the exception are provided in the exception-data-variable.

4.3 Raising Exceptions

An exception may be raised by the processor.

A program may raise an exception by executing a RAISE statement.

R1194 raise-stmt is RAISE [(exception-data-expr)] exception-expr

R1195 exception-data-expr is expr

R1196 exception-expr is expr

C1198 (R1194) exception-data-expr shall be of the type EXCEPTION DATA defined in the intrinsic
module ISO FORTRAN ENV, or an extension of that type.

C1199 (R1195) exception-expr shall be of the type EXCEPTION defined in the intrinsic module ISO -
FORTRAN ENV, or an extension of that type.

Executing a RAISE statement causes an exception to be raised. The identity of the exception is specified
by the exception-expr.

Data relating to the exception may be specified by exception-data-expr. If exception-data-expr appears,
its value is assigned to an exception-data-variable, if one appears, in the handler that handles the excep-
tion, as if by execution of an assignment statement.

If exception-data-expr does not appear and the handler that handles the exception has a DATA= specifier,
the exception-data-variable becomes deallocated.

28 September 2019 Page 7 of 12

4.4 Enabling Exception Detection

Detection of all exceptions that are identified by enumerators of the type EXCEPTION defined in the
intrinsic module ISO FORTRAN ENV, is always enabled.

Detection of exceptions that are not identified by enumerators of the type EXCEPTION defined in the
intrinsic module ISO FORTRAN ENV, such as subscript values not within array bounds, or prohibited
values of arguments to intrinsic functions, can be specified to be enabled or disabled by an ENABLE
statement.

Exceptions that are not identified by enumerators of the type EXCEPTION defined in the intrinsic
module ISO FORTRAN ENV, are identified by enumerators of extensions of that type. The type OP-
TIONAL EXCEPTION defined in the intrinsic module ISO FORTRAN ENV, an extension of the type
EXCEPTION, identifies exceptions corresponding to conditions or events specified by the standard to
be prohibited.

R1197 enable-suffix is ENABLE (enable-item-list)

R1198 enable-item is [−] exception-enumerator

C1199a (R1197) No exception-enumerator shall appear more than once in enable-item-list.

C1199b (R1198) Each exception-enumerator shall be an enumerator of a type that is an extension of the
type EXCEPTION defined in the intrinsic module ISO FORTRAN ENV.

R1108 block-stmt is [block-construct-name :] BLOCK [enable-suffix]

R1112 change-team-stmt is [team-construct-name] CHANGE TEAM (team-variable
[, coarray-association-list] [, sync-stat-list])
[enable-suffix]

R1117 critical-stmt is [critical-construct-name :] CRITICAL [enable-suffix]

R1123 loop-control is . . .
or [,] CONCURRENT concurrent-header [enable-suffix]

R1532 suffix is . . .
or enable-suffix

If an enable-item is an exception-enumerator not preceded by −, detection of the specified exception
is enabled within the construct or subprogram introduced by the statement in which the enable-suffix
appears, and in contained blocks or subprograms, unless explicitly disabled.

If an enable-item is an exception-enumerator preceded by −, detection of the specified exception is
disabled within the construct or subprogram introduced by the statement in which the enable-suffix
appears, and in contained blocks or subprograms, unless explicitly enabled.

If detection of an exception is not explicitly enabled or disabled by an enable-item in an enable-suffix in
the statement that introduces a construct, subprogram, containing construct, or containing subprogram,
whether detection of the exception is enabled is processor dependent.

Detection of exceptions raised by RAISE statements is always enabled.

Page 8 of 12 28 September 2019

5 Type Definitions in ISO FORTRAN ENV

5.1 EXCEPTION Type

The ordered enumeration type EXCEPTION shall be defined in the intrinsic module ISO FORTRAN -
ENV.

Type EXCEPTION shall include the following enumeration literals. Whether it includes additional
enumeration literals is processor dependent.

ALLOCATE ALLOCATED An allocated allocatable variable was allocated by an ALLOCATE
statement (6.7.1.3p1).

ALLOCATE FAILURE An otherwise unspecified error occured during execution of an ALLOCATE
statement (6.7.1.1).

ALLOCATE TYPE PARAM The value of a type parameter specified by a type-spec in an ALLO-
CATE statement is not correct (6.7.1.1p6).

AUTOMATIC FAILURE One or more automatic variables were not created.

BACKSPACE ERROR An error occurred during execution of a BACKSPACE statement.

CLOSE ERROR An error occurred during execution of a CLOSE statement.

DEALLOCATE DEALLOCATED A deallocated allocatable variable or a disassociated pointer was
deallocated by a DEALLOCATE statement (6.7.1.3p1, 6.7.3.3p1).

DEALLOCATE FAILURE An otherwise unspecified error occured during execution of a DEALLO-
CATE statement (6.7.3.1).

EMPTY REDUCE The initial sequence for a REDUCE intrinsic function is empty, and the IDEN-
TITY argument is not present.

END FILE ERROR An error condition occurred during execution of an END FILE statement.

END OF FILE An end of file condition occurred during execution of a READ statement.

END OF RECORD An end of record condition occurred during execution of a READ statement.

ERROR STOP STATEMENT An ERROR STOP statement was executed.

FLUSH ERROR An error occurred during execution of a FLUSH statement.

INQUIRE ERROR An error condition other than INQUIRE INTERNAL UNIT occurred during
execution of an INQUIRE statement.

INQUIRE INTERNAL UNIT The file-unit-number in an INQUIRE statement specifies an internal
unit (9.10.2.1p2).

LOCK ERROR An error condition other than LOCK LOCKED or LOCK LOCKED OTHER oc-
curred during execution of a LOCK statement (8.5.7p3).

LOCK LOCKED A lock variable in a LOCK statement is already locked by the executing image
(8.5.6p6).

LOCK LOCKED OTHER A lock variable in a LOCK statement is already locked by another image
(8.5.7p3).

OPEN ERROR An error occurred during execution of an OPEN statement.

28 September 2019 Page 9 of 12

READ ERROR An exception other than READ FORMAT ERROR occurred during execution of a
READ statement.

READ FORMAT ERROR An input field does not have the form specified for the format item
and is not acceptable to the processor (10.7.2.2p3, 10.7.2.3.2p8, 10.7.2.4p3, 10.7.3p2, 10.10.3p1,
10.11.3.2p2).

RESUME STALLED IMAGE A stalled image resumed execution at the end of the block of a
CHANGE TEAM construct.

REWIND ERROR An error occurred during execution of a REWIND statement.

STOP STATEMENT A STOP statement was executed.

SYNC ERROR An exception other than SYNC STOPPED IMAGE occurred in an image control
statement (8.5.7p2).

SYNC STOPPED IMAGE A SYNC ALL or SYNC IMAGES statement initiated synchronization
with a stopped image (8.5.7p2).

UNLOCK ERROR An exception other than UNLOCK UNLOCKED occurred during execution of
an UNLOCK statement (8.5.7p3).

UNLOCK UNLOCKED A lock variable in an UNLOCK statement is not already locked by the
executing image (8.5.6p6).

VALUE FAILURE One or more dummy variables with the VALUE attribute were not created.

WAIT ERROR An error occurred during execution of a WAIT statement.

5.2 OPTIONAL EXCEPTION Type

The ordered enumeration type OPTIONAL EXCEPTION shall be defined in the intrinsic module ISO -
FORTRAN ENV.

Type OPTIONAL EXCEPTION shall include the following enumeration literals. Whether it includes
additional enumeration literals is processor dependent.

ARGUMENT VALUE The value of an argument to an intrinsic procedure is not within the allowed
range.

COSUBSCRIPT ERROR The value of a cosubscript is not within the cobounds of the codimension
in which it is used, or the value of a final cosubscript is such that it does not specify a valid image.

DEALLOCATED ARGUMENT A deallocated allocatable variable is an actual argument corre-
sponding to a nonoptional nonallocatable dummy argument (6.7.1.3p1).

DISASSOCATED ARGUMENT A disassociated pointer is an actual argument corresponding to a
nonoptional pointer dummy argument.

ENUM RANGE The argument to a constructor for an enumeration type was of type integer, and its
value was not the value of an enumerator of the type.

ENVIRONMENT VARIABLE STATUS The GET ENVIRONMENT VARIABLE intrinsic sub-
routine was executed, an error condition occurred, and the STATUS argument was not present
(13.7.68p3).

EXECUTE COMMAND CMDSTAT The EXECUTE COMMAND LINE intrinsic subroutine was
executed, an error condition occurred, and the CMDSTAT argument was not present (13.7.58p3).

Page 10 of 12 28 September 2019

IEEE DIVISION BY ZERO An arithmetic operation or intrinsic function invocation caused the
IEEE DIVIDE BY ZERO (14.1) to be set.

IEEE INEXACT RESULT An arithmetic operation or intrinsic function invocation caused the IEEE -
INEXACT FLAG (14.1) to be set.

IEEE INF RESULT The result of an arithmetic operation or intrinsic function invocation was IEEE
Inf, or an item in an input list in a READ statement was IEEE Inf.

IEEE INVALID RESULT An arithmetic operation or intrinsic function invocation caused the IEEE -
INVALID (14.1) to be set.

IEEE OVERFLOW RESULT An arithmetic operation, intrinsic function invocation, or execution
of a READ statement, caused the IEEE OVERFLOW (14.1) to be set.

IEEE SIGNALING NAN RESULT The result of an arithmetic operation or intrinsic function in-
vocation was an IEEE signaling NaN, or an item in an input list in a READ statement was an
IEEE signaling NaN.

IEEE UNDERFLOW RESULT An arithmetic operation, intrinsic function invocation, or execution
of a READ statement, caused the IEEE UNDERFLOW (14.1) to be set.

INTEGER DIVIDE BY ZERO During execution of an integer divide operation, the divisor was
zero.

INTEGER OVERFLOW Overflow occurred during an arithmetic operation or intrinsic function
invocation whose result is of type integer, or during execution of a READ statement while reading
an input item of type integer.

PARENT IO An OPEN, CLOSE, BACKSPACE, ENDFILE, or REWIND statement was executed
while a parent data transfer was active on the same unit.

REAL OVERFLOW Overflow occurred during an arithmetic operation or intrinsic function invo-
cation whose result is of type real or complex, or during execution of a READ statement while
reading an input item of type real or complex.

RECURSIVE IO A function referenced within an input or output list caused data transfer using the
same unit.

RECURSIVE REF A nonrecursive procedure was referenced recursively.

SUBSCRIPT ERROR The value of a subscript is not within the bounds of the dimension in which
it is used.

UNDERFLOW Underflow occurred during an arithmetic operation or intrinsic function invocation
whose result is of type real or complex, or during execution of a READ statement while reading
an input item of type real or complex.

ZERO DIVIDE The value of the second operand of a divide operation, or the second argument of a
MOD or MODULO intrinsic function, was zero.

It is processor dependent which of the exceptions identified by these enumerators a processor is able to
detect.

If several of these exceptions might be raised by the processur during execution of an arithmetic opera-
tion or invocation of an intrinsic function, for example IEEE SIGNALING NAN RESULT and ARGU-
MENT VALUE, which exception is raised is processor dependent.

28 September 2019 Page 11 of 12

5.3 EXCEPTION DATA Type

The extensible derived type EXCEPTION DATA shall be defined in the intrinsic module ISO FOR-
TRAN ENV.

It shall have a type-bound procedure for defined formatted output, which shall not require a char-literal-
constant to follow a DT format specifier.

It shall have the following public components, and may may have additional processor-dependent public
or private components. These might represent, for example, the file name, program unit name, and line
number where the exception occurred.

STATUS is a default integer scalar. When an exception is raised by the processor, its value is the value
that would have been assigned to the variable in a STAT= or IOSTAT= specifier, if the statement
that caused the exception could have had such a specifier, or a status argument to an intrinsic
procedure, if the procedure has such an argument; otherwise, its value is zero.

MESSAGE is an allocatable default character variable with deferred length. When an exception is
raised by the processor, its value is the value that would have been assigned to the variable in
an ERRMSG= or IOMSG= specifier, if the statement that caused the exception could have had
such a specifier, or a message argument to an intrinsic procedure, if the procedure has such an
argument, or the text of the stop-code of a STOP or ERROR STOP statement, if any; otherwise,
its value and allocation status are processor dependent. If it is allocated, its value shall not be
undefined.

5.4 ARITHMETIC EXCEPTION DATA Type

The extensible derived type ARITHMETIC EXCEPTION DATA, an extension of the type EXCEP-
TION DATA defined in the intrinsic module ISO FORTRAN ENV, shall be defined in the intrinsic
module ISO FORTRAN ENV.

When an exception is raised by the processor during an intrinsic operation or intrinsic function invocation
whose result is of type real or complex, or during excecution of a READ statement in which reading an
input item of type real or complex resulted in an exception, a value of this type shall be assigned to the
exception-data-variable, if any, in the handler.

It shall have one kind type parameter:

KIND When an exception is raised by the processor, the value of the kind type parameter is the kind
of the result of the operation or intrinsic function invocation whose result is of type real or complex
and whose execution resulted in the exception, or the kind of an input item in a READ statement
for which reading the item resulted in the exception.

It shall have a type-bound procedure for defined formatted output that overrides the one for type
EXCEPTION DATA, which shall not require a char-literal-constant to follow a DT format specifier.

It shall have the following public component, and may have additional processor-dependent public or
private components.

INFO is of type real and of kind specified by the kind type parameter. When an exception is raised
by the processor, the component shall be defined with a processor-dependent value that might be
useful in explaining the exception, for example, a representation of the payload in a signaling NaN.

Page 12 of 12 28 September 2019

6 Example

This example illustrates the use of an exception handler to construct an efficient NORM2 function, that
produces a result that is within the range of the result kind, even if overflow or underflow occurs, unless
the result would overflow or underflow.

module NORM2_m

use ISO_Fortran_Env, only: IEEE_Invalid_Result, IEEE_Underflow_Result, &

& Real_Overflow, Underflow

implicit NONE

private

public :: NORM2

interface NORM2

module procedure DNRM2_1, SNRM2_1, DNRM2_2 ! ... for other kinds and ranks

end interface

contains

pure double precision function DNRM2_1 (X) &

& enable (IEEE_Invalid_Result, IEEE_Underflow_Result, Real_Overflow, &

& Underflow)

double precision, intent(in) :: X(:)

! This will be zero, without an exception, if every element of X is zero.

dnrm2_1 = sqrt (dot_product(x,x))

handle IEEE_Underflow_Result, Real_Overflow, Underflow

! We don’t care which exception occurred, and don’t need information

! about it, so the HANDLE statement does not need ID= or DATA= specifiers.

! Efficiency is not an issue here, because these exceptions are expected

! to be rare.

! We need to turn off detecting overflow and underflow, so we do not

! raise another exception if the result is out of range.

block enable (-IEEE_Underflow_Result, -Real_Overflow, -Underflow)

double precision XMAX

xmax = maxval (abs (x))

dnrm2_1 = xmax * sqrt (dot_product(x/xmax,x/xmax))

end block

handle IEEE_Invalid_Result

use IEEE_Arithmetic, only: IEEE_Is_Finite, IEEE_Is_NaN, &

& IEEE_Positive_Inf, IEEE_Quiet_Nan, IEEE_Value

if (any (IEEE_Is_NaN(x))) then

dnrm2_1 = IEEE_Value (dnrm2_1, IEEE_Quiet_Nan)

else

dnrm2_1 = IEEE_Value (dnrm2_1, IEEE_Positive_Inf)

end if

end function DNRM2_1

! and similarly for SNRM2_1, and for other ranks

end module NORM2_m

