On the Problem of Uniform References to Data Struciures

CHARLES M. GESCHKE axp JAMES G. MITCHELL

'

Absiract—The cost of a change to a large software system is
o_ften primarily a function of the size of the system rather than the

complexity of the change. One reason for this is that programs which -
access some given data structure tust operate on it using notations -
which are determined by its exact i'eprésentati_ox'l:“'rhu-s,' changing’ -
how it is implemented may necessitate_changes to the programs
which access if. This paper develops a progremuning language nota=

ton gnd sem&ﬁtiq-ipterpretaﬁons which allow a program to operate " -
on a data object in a manner which is dependent only on its logical -

or zbstract properties and independent of its underlying concrete
representation. :

Index Terms—Abstract data types: éompilation, data description,
extensible languages, generic functions, Simula 67, sparse arrays,
structured values, systems programming language, uniform refer-
ences,

INTRODUCTION

EF A programmer needs to represent a table which
associates a sum of money with a name for all the
checking accounts in some bank branch office, he must

;\;Ianuscript received February 1, 1975,
The authors are with the Palo Alto Research

Center, Xerox
Corporation, Pala Alto, Calif. 84304.

first decide what operations are germane to an account

- table.. Adding. an-amount- to someone’s “account (e.g., ...
- increase John' Smitli’s account by $5.03), subtracting an. . -
“smourit from an’ account. (possibly with a: ‘éhei?k;-ag&insﬁ P
.‘.bﬁzeljdrawihg) ;- closing an. Taccouﬁt_ '(dele'fcil.lg;- fh?'"fenﬁ}‘jﬁ; AT

he-table- for John Smith), and-opening a:new_sccount”
(e.g:, making a fiew entry in the table for-Jane Dos.
with an initial balance of $0.00) are one possible set.
Once such a set of logical operations on the account
table are known, the programmer can make decisions on
how to represent one in the computer.

Any specific way of implementing an account table
will have to provide storage and storage management
for the table itself, as well as concrete operations cor-
responding to the logical operations on an aceount table.
To distinguish between the notion of an account table
and the specific way in which it is implemented in the
computer, we will refer to the former as an abstract data
structure (or simply an abstraction) and to the latter as

‘a representation of it. For instance, representing an account

table as two arrays, one containing strings (the names
associated with the accounts), and the other containing
numbers (the funds in the accounts), would mean that the

tTt 208

concrete counterpart of making a withdrawal involves
looking up an account name in the first array and then
subtracting the amount from the corresponding entry in
the numbers array. One would also have to speecify
what is to be done if the name cannot be found in the
array of names or if there are not sufficient funds in
the account to cover the withdrawal, but these considera-
tions are issues about any representation of the abstract
strueture and not just about this implementation. Other
considerations, however, may well be properties of a
particular representation and not intrinsic to the abstract
structure.

A good illustration of a constraint imposed by the
concrete form of an abstraction is provided by the above
representation for an account table. Since we need to be

.. ‘able to open mew accounts, and since arrays typically
’ _:-have a fixed number of en’mes, we.may be unable . to
.open a new acconnt if- the names array:is.full: We will
have more . to. say about. this situation-later; for the
- moraent, it points- out that we mlght want. to change

" situations which prompt them are a common occurrence
in al] large softiare systems.

In fact, a large software system may be viewed as
a set of abstract data structures along with control
programs which use them to some common end. The
data represent the knowledge which is available for
action, and the control programs are strategies which
are driven by it. Compilers for programming languages,
airline reservation systems, control systems for petroleum
refining, and operating systems all have this flavor, if
one is willing to accept people at computer terminals and
chemical reactions as data structures with certain logical
operations which can be invoked from the software
system.”

THE UNIFORM REFERENCE PROBLEM

Since the representations of a number of the abstract
data structures in a large system can be expected to
change over its lifetime, it would be desirable if programs
in the system which access a given data structure could
be decoupled as much as possible from the exact, concrete
form which its implementor chose to give it. Then, chang-
ing the representation would not require altering all the
programs which depend on the abstraction.

To be more precise, let us call all the logical operations
on an abstract data structure its afiributes.. This term
is intended to include those operations which we view as
manipulating the data in some nontrivial way (such as
withdrawing funds from a checking aceount), and those
which we view as simpler properties (such as the current
balance in someone’s checking account). And, iristead of
speaking of a specific abstract data structure, we will talk
about abstract (data) fypes, since it is often the case that
there are a number of specific examples of the same
abstraction serving different purposes in a single ‘system

e R R e S I e e v SR A2 S

JEEE TRANSACTIONS ON SOFTWARE ENGINEERING, JUNE 107!

(e.g., a table for a checking account and another for ¢
savings account might be equivalent at the abstrac!
level). Each such use of an abstract type will be called ar
tnstance of the type or an object of that type.

If a program using an object z of type T could always
refer to attributes of z using a single, uniform notation,
then it would be independent of exactly how the type 7
is represented. This is the uniform reference problem,
and its solution is the central issue of this paper.

Currently, there is no reasonable solution for this
problem: changing the representation of an abstract type
will often precipitate widespread chantre/a to the programs
which use it, even though the semantics of the abstractior
have not changed. This has (at least) three unfortunate
side effects:

1) each unnecessary change to an already reliable

© program: is an opportunity to ‘introduce errors into - it,
- and makmg global program alterations in order to ac:
-commodate a single change in data representation can be
f'devastatmcr to a system s reliability;

T the representation for an account table because we found - -
““drawbacks in the one chosen, Such modifications and the

2) the hlgh cost of diffusing 2 data change throurrhoui

""a_, program inhibits experimentation with representations,

and artificially increases the inertia of the system to good
and necessary modifications;

3) the well-advertised advantages of abstraction [5] as
an aid to producing good software are often lost as
references to the abstract properties of an object are
(manually) translated into the various syntactic forms
demanded hy the particular representation chosen.

The remainder of this paper is divided into five sections,
The first (Historical Background) will review past attempts
and partial solutions to the problem and give a reasonably
explicit statement of the form of our solution for it. The
second and third section (Syntax for Defining and Using
Data Types, and The Forms of Type Extension) contain
an assortment of programming language syntax necessary
to the explanation and development of a solution. After
that we will develop, by a series of examples, the semantic
actions needed to support a solution in a compiler. That
set of examples is believed to cover all the interesting cases
of the problem. A statement of the general solution for the
problem will follow that development.

HISTORICAL BACKGROUND

In this section we will show why past and current

* programming languages do not support solutions to the

uniform reference problem, how Simula 67 [10] yields a
partial solution which seems extendible to a complete
solution, and what its form is.

The manipulation of a cloud of data structures which
characterizes large software systems also exposes the main
weakness of languages such as Fortran and Algol 60 when
used for systems programming. If one wishes to represent
an abstraction such as a stack in Algol, and wishes to
separate programs using it from how it is represented, he
must implement the logical operations such as ‘“push
an item onto the stack,” “pop an item from the stack,”

Sasa AuaMALINLESG AW AP AL OAIVUUL GALEGD

or “is the stack emply?” as a set of procedures. Such
procedural extensions are the most time-honored means
or realizing abstractions, but they suffer from two main
flaws:

1) programs which use procedural abstractions generally
lose much of tl clarity of simple Algol and begin to
acquire the appearance of pure Lisp as functional em-
bedding becomes the major form of control;

2) implementing all the attributes of a type as proce-
dures can ‘be intolerably inefficient of both space and
time.

Simula’s dot notation provides some asswtance with
these two problems. In Simula, the expression z.Aitr is
used to apply the attribute Attr to the object z. If z is
of type T (actually class T in Simula), Aitr may be either
a procedure or a simple value declared within the defini-
tion of T. For example let the class Vector define objects
with attributes z, y, rho, and theta. This tvpe is one

possible way of capturing the semantics of two-dimen-
sional vectors (there are undoubtedly others). The
attributes are intended to have the following meanings:
z is the z-coordinate in a rectangular coordinate system
with basis vectors [1,0] and [0,17; y is the corresponding
y-coordinate; 7ho is the length of a Vector (= Seri[z 12 +
y712]); and theta is the angle between a Veclor and the
z-axis (= ArcTan[y/x]). In Simula, these attributes of
a Veclor, v, are referred to as v.z, v. Y, v.rho, and v.theta
1efraldle=s of whether the attubutes are 1mpl(mented as
simple values or as procedures. A bonus from this uniform
means of referring to attributes is that the representation
of Vector objects could be rectangular or polar, without
the necessity of changing the programs w]nc.l refer to
them. Of course, the programs might have to be recom-
piled if the representation of Vector were altered, but no
aiterations to the source text would be required.

Simula, however, imposes two (severe) limitations on
this notion. First, attribute expressions may not appear
on the left-hand side of assignment operators unless the -
attributes are simple v alues. Thus, if a prograni oper. ating -
on Vectors contained a-Statement such as “y.z 5. 0 i

the representation for Vectors could not be’ 6hanged to_

'1mplr\ment ho and ‘thela as values and x and Y as proce-

dures without altering this ct‘xtement ‘perhaps to some- -

‘thing of the form “Setz[»,5.07.” T}HS of course, is just
procedural extension.

The second limitation is that it is not possible to
augment the meanings of the-built-in Simula operators
such as “+4” or “~" to include similar operations on
programmer-defined types except by procedural extension.
Such a capability has, however, been provided in a number
of extensible languages such as ECL [2], PPL [3], and
Algol 68 [47.

These two limitations to an otherwise satisfactory
notation suggest the form and content of a more general
solution to the uniform reference problem:

1) an attribute Aitr of an object = should be accessible
m hoth right- and left-hand contexts- using either of the
notations x. Atlr or Aitr[z] (function form) ;

204

2) the built-in language operators such as ‘-, “4 7
etc., should be extensible to user-defined data types.
The second goal is closely econnected with the first since
a statement such as “‘z. Altr « "’ may require extension
of “< in order to allow Attr to have meaning in this
context.

SYNTAX IFOR DEFINING AND-
USING DATA TYPES

This section defines and explains some syntactic con-
structs which are useful for dealing with the uniform
reference problem. This syntax has been drawn from the
language definition of the Mesa programming svs stem, in
which these facilities are being implemented. This is not
a complete language definition, and only those syntactic
entities which are useful for explaining the solution of the
problem are included. All syntax equations Will be written
in standard Backus—Naur form (BNF) except that non-
terminal symbols are printed in italics and may contain
a hyphen. A declaration of anything in the Mesa program-
ming language (MPL) has the form

declaration 1= list-of-identifiers : type
A type will be more fully defined later, but it includes

familiar forms such as INTEGER, REAL, and BoOLEAN: e.g.,

" xzl: RBAL;.
1,J: INTEGER;

One can also specify an initial value to be assigned to
a variable being declared by appending “«— expression’” to
a declaration. For example,

zl: REAL < 7.5;
1,j: INTEGER «— ged[23, 777;

The latter case will initialize both ¢ and j to the value
computed by the function call “ged[23, 7717 Addi-
- tionally, it 1s posuble to 1eplace the ‘e~ in an 1mtlal11a— _
tion by “

appear on - the left _of an- qqsmmncnt opelator.

specml “but frequent case-that ¢
H

tis g COmp]IP-UXTlG constant, the variable so-decls *ed'
and initialized will also be a compile-time constant. For
example,

Pi: REAL = 3.141592654;

declares pi to be a compile-time constant, and the compiler
may take advantage of this constancy to produce more
efficient code, or to save storage if either is feasible. This
rule for constancy extends naturally to include cases
such as

pis_quare: REAL = pi¥pi;
which makes pisquare a compile-time constant because
Pt is.

The built-in types of the language can be extended by
declaring variables of typc TypE. Such a variable is

S T

S A R b T R

’in which case thé variable 0. mmalwm ig - Tl
.m0t allo“ed to be changed aftcr dec]ar‘a.tmn (e it carmon___;_. e

the: expression - founw B

B R L0 PETA RA

210

declared just like any other, with the additional constraint
that its declaration must include an “=" initialization
in which the expression is a compile-time constant. Some
examples satisfying these demands are

wni: TYPE = INTEGER;
intarray: TYPE = ARRAY [1..107] oF ni;

This works because “INTEGER,” and “ARRAY...,"”
being built into the language, are valid examples of
compile-time TYPE constants. Consequently, in¢ and
ntarray gre/also TYPE constants, and may be used to
declare other variables:

t,§: int < gcd[23, 777;
Ta: ntarray;

. This notion that there is no real distinction between-

TYPE variables and others in the language-insofar as their-.
dedmatlon scopes ete., are concuned 18 due primarily

to ECL [2]

THE FOR\IS OF TYPE EXTL\SIO\

- " Besides built-in TYPE constants such as INTEGER and
" REAL, the programmer can build new types from others

using one of the four following tyvpe forms.

1) An array type is formed by defining an interval for
the indices which can be used to select individual com-
ponents, and a range type defining the type of the com-
ponents. For example,

ThreeD: 1YPE = ARRAY [1..3] OF REAL;

defines a new type ThreeD, and any variable id declared

to be of that type will consist of three mear values:
(d[17, w27, and #d{3]. Arrays are not essential for
explaining the uniform reference problem, and they will
generally be omitted from further discussion, although the
operations and language facilities provided for them are
comparable to the other type forms to come.

2) A record type forms a new type from a list of others:
the result describes objects each of which contains a set
of components whose types correspond to those given in
the record list. Records, and their creation, manipulation
and destruction are central to the language’s philosophy.
Two-dimensional vectors could be represented as records
like

Vector: TYPE = RECORD [&: REAL, ¥: REAL };
And, if one-declared the variable vv as
w: Vector;

then the two components of v are accessible as w.x and
.y, respectively, as in Simula.
- 3) A procedure type is “similar” to a record type

because all procedures are viewed as having record-

“values” as their results (the input parameter list to a

procedure is also a record value). This apparently rigid
constraint on parameters-and return values will be ¢x-
plained below. dMost procedure type forms are not used
to declare new types, but are used dircetly in declaring

JEEE TRANSACTIONS ON SOFTWARE ENGINEERING, JUNE 1075

procedure variables and real, live procedures as in Algol.
For example, the declaratlon

hypolenuse: PROCEDURE [z,y: REAL]
RETURNS [REAL]J;

uses a procedure type form (everything after the first ;%)
to declare the variable hypotenuse. Alternatively, we
could have given two declarations as in previous examples:

Melric: TYPE = PROCEDURE [2,7: REAL]
RETURNS [REAL];
hypoteruse: Melric;

This accomplishes much the same thing insofar as hypote-
nuse is concerned, and also gives a name to its type,
Metric. ‘

4) A pointer type describes—objects which contain the
addxe sses. of othex Ob]GCta of . some r~pec1ﬁed type I* ot
example S

VeclorPtr TYPE == POI\ITER TO V ectm

Any vaua.ble vph dedmed to be of t}pe Vecthh will
contain the addresses of Vector objects as possible values,
and may be used to access those objects and their com-
ponents. For instance, if vptr contained the address of
w [see 2) above], then vptr.z and vptr.y would have the
same effect as vv.2 and vw.y, respectively.

Hereafter, we will use the torm fype to mean any type
form, the name of a type variable, or a type constant.
The next sections deseribe record, procedure, and pointer
types in more detail.

DETAILED SYNTAX FOR DECLARING
EXTENDED TYPES

When a record type is defined, a list of types is given.
Normally, cach element of the list has an identifier, called
a selector name associated with it, but there is also a form
n which no selectors are supplied (it is primarily used in
defining return records for procedures). The exact syntax
for a record form is

record 1= RECORD [record-list
record-list ::= declaration-list | type-list

declaration-list ::= declaration | declaretion-list,
declaration
lype-list ::= type | type-list, type

If a component declaration includes an initialization
part, it applies when any object of the record type comes
into existence. If the initialization is a compile-time con-
stant, then all instances of that type will “possess” the
same value for that component—the compiler may,
thercfore, take advantage of this constancy just as for
simple declarations. For instance, in the declaration

Polar: 1Yre = nEcomD [
Angle: TYPE = REAL,
ninety: Angle = pi/2,
rho: REAL
theta: Angle ;

GERCHKE AND MITCHELL: UNIFORM REFERENCES TO DATA STRUCTURES

the internal declaration of the type Angle can be used
at compile time to declare the type of the component
theta, and the component ninety neced not even be
allocated space in Polar objects since it is a compile-time
constant. Also, any program using the Polar declaration
may also state declarations such as

v: Polar;

mytheta: Polar.Angle;

thus making assignments such as
mytheta < v .theta; mythela «— v .ninety;

correct as to type. The use of the expression
“Polar. Angle”

(whose type is TYPE) in defining mytheta shows that a
full definition of what a type form ean be must also include
general expressions.

As mentioned previously, a procedure is viewed as
taking a record object as-its argument and returning a
record object as its result. The syntax for declaring a
procedure type is-

procedure ::= PROCEDURE procedure-domain
procedure-range
procedure-domain == [record-list] | emply
procedure-range ::= RETURNS [record-list]
| empty

IExamples arve

§qrl: PROCEDURE [#: REAL | RETURNS (rmar];
Create: PROCEDURE [1,1: REAL ¢ 0]
RETURNS [¢: Complex];

A procedure object may be “assigned” a procedure-
body as a value, and this supplies executable code for it.
The form of guch a body is.

Pr ogedme—boch 1= BEGIN ez‘a{ement—lzst END

Pl occduu, Vanables “hxch are assigned a bodv ucmg an
initialization’ ave the analoou(,s of nounal Algol. or
P asc '11 [8] plocrdures f()l mctanw

erealc: PROCEDUR_E [r,z: REAL < O]
RBTURNS [¢: Complex] =

BEGIN
¢« [ri]; —construct a

Complex and assign it to ¢
END

The value “[r,7]” assigned to ¢ is an example of a
structured value and is called a constructor. Tor each
type form there is an associated constructor form for
writing values of those types. In' fact, the syntactic
form procedure-body is the constructor form for procedure
types. There are also constructor forms for arrays, records,
and pointers,

CONSTRUCTOQRS

A record constructor is a list of values to be associated
with the various components of an object of that type.

211

Itach value may be preceded by “seleclor-name:’’ in which
case it will be associated with the component having that
name. If no value is specified for some component, and
there is an injtialization expression associated with it in
the record definition, then it will be assigned that value.
For example, suppose that r1 is defined as

71: RECORD [f1: REAL « 0, 2: BOOLEAN,
J3: INTEGER];

Then the following assignments of various constructors
to rl are equivalent:

rl « [f2: TRUE, f3: 107;
r1«[f3:10, j1: 0, f2: TRUE];

The result of each of these assignmentsis that r1.f1 = 0,
r1.f2 = TrUE, and 71.f3 = 10. Notice that—the order of
the component values is not important because each of
them is identified by selector name. Also, in the first
assigninent, the value of the f1 component is supplied by
the default initialization in the record form.

It is often convenient to omit the selector names and
simply write a list of values in a constructor. In this case,
it is the position of a value which associates it with a
component of the record (the order is determined by that
given in the record definition). Using
structor, the above effect could also be obtained by
writing

7l « [0, TruE, 10];
r] « [, rruE, 107;

Here too, omitted values must correspond to com-
ponents having an initialization expression in the defini-
tion. :

These two forms can he intermixed, with some com-
ponent/value associations being determined by name and
others by position. The Ill].@b govermncr ﬂns are: the
fo]]omng)

1) a. namcd value is. assocxaied w1th the componont,r

havmrr that seléctor name; o S oy

. 2) if the leftmost valie in-the. constr uctor is- poqmona] ,
it is aqelgnnd to the leftmost companent in the record;

3) a positional value is assigned to the component in
the record-list which follows the one to which the preceding
value (whether positional or named) was assigned;

4) components which are declared with ="’ initializa-
tion are excluded from positional counts, and cannot be
assigned values in a constructor.

The following “mixed” constructors perform exactly
as the two sets of previous examples:

rl « [f2: tRUE, 10, f1:07;
rl « [0, /3: 10, f2: TrUE];

The above rules for mixed constructors are adopted
from the TSS/360 Command Language [7]. Of course,
other rules are possible and have heen used [6]. -

The dual of constructing a record object-from separate
values is disassembling a record into its component

a positional con-

RSr—

212

values. The mechanism for assigning parts of a rccord
value to a set of variables is called an extractor. Its form
is syntactically similar to a constructor, but it is used
only on the left-hand side of assignment operators. For
example, if the variables r, b, and 7 are declared as -

7: REAL; b: BOOLEAN; ¢: INTEGER;

then the following examples of extractors closely parallel
the coustructors above:

[r,b, 2] rl;
[f3:4,f1:7,f2:b] «r1;
[7,/3:4,f2:] «—rl;

—a positional extractor

—extraction by names only

—mixed name/positional
extraction

These all result in the assignments

"__ rrl.f1; b —rl.f2; 7,<—T1 f3

Calhng procedures and receiving results from them

make heavy use of constructors. and extractors because
procedures accept and return only records. ThlS has the

.. following effécts:

" 1) a parameter list to a procedure is a record construc-
tor, and all the capabilities for specifying or defaulting
values in constructors hold for parameters to precedures;

2) a procedure result, being a record value, may be

. disassembled using an extractor;

3) anything which can be transmitied to a procedure
as an argument can also be received as a result, since both
are record tyvpes.

The following procedure "declarations and caHs on
themn take advantage of these capabilities:

Create: PROCEDURE [1,2: REAL <— 0]
RETURNS [¢: Complex];
czero: Complex «— Creale [];
—defaults r and 4 to'0,
imayg: Complex «— Create [i:17;
—defaults only r to 0.
Rool: PROCEDURE [7: REAL, 77 INTEGER ¢« 2]
RETURNS [REALJ;
Z: REAL «— Root [57;
—defaulting n gives square root

As we shall see, named values in constructors and the
constructor/parameter-list identity are cssential to our
solution of the uniform reference problem.

Constructors for pointer values provide a good foil

for the syntactic wizardry for records: a pointer construc- -

tor consists only of the symbol “@’ (to be read as “ad-
dress of”) followed by a referable-value. And the only
referable-values are simple identifiers, array selections
(e.g., td[7]) or record component selections (e.g., vv.x).
As further constraints on pointer values, one is not allowed
to combine any pointer value with operators other than
assignment and the various selection mechanisms (e.g.,
the “.” notation). Thus, statement such as

P (@) Fup -

is simply not allowed.
The main advantages and power of having pointer

TEEE TRANSACTIONS ON SOFTWARE ENGINEERING, JUNE 1975

objects in the language are the ability to alter objects
in “stiw, and the ability to build structures which are
bound together by pointer links. They also have many
disadvantages, including the problems of the relative
lifetimes of pointers and the objects to which they rcfer,
whether or not to build a system which assumes a garbage
collection scheme, or whether using a pointer variable
provides automatic access to the object to which it
refers. This last difficulty is a special case of the critical
role of coercions in the language, and we shall expand the
problem first for pointers gnd then for procedures and
records.

COERCIONS

In Simula, pointers are alw ays automa’clcaﬂy dereferenced
(followed) on the left of “:="2-and there is a special form
of assignment “:—"" for bypassmg this automatic feature.’
If it did not cxlst there would be no way to assign one
pointer value to another. In Mesa, a pointer variable in
a left-hand context is never automatically followed to
obtain a value. If p is declared as

P. POINTER TO {;

then the statement “p <« ¢” has the following possible
meanings, depending solely on the type-of g, the right-
hand side:

1) if ¢ is declared as
q: POINTER TO ¢ s

then the value of ¢ is simply copied into », and they will
then both point to the same object;

2) if g is a referable-value of type t (as described pre-
viously), then a pointer to it is stored in p. In particular,
if ¢ is a simple variable, “p « ¢ is equivalent to “‘p «
@q.n

These interpretations are based on two principles:

1) never automatically coerce the left-hand side of an
assignment: this simplifies the analysis of assignment
and avoids the surprises to programmers (and language
designers!) which can accompany automatic dereferencing
of pointers;

2) associating actual parameters with formals in proce-
dure calls should have the same semantics as normal
assignment.

If, in the latter case, a procedure declares a parameter
p as

p: POINTER TO i;

then the only reasonable meaning to attach to passing
an actual parameter g of type { is that it be passed “by
reference’’: i.e., the value of p should be the address of g.
Hence, “p < ¢’ means “p « @¢"’ in this particular case—
consequently, it has this same meaning in all normal
assignments. .
The restricted form of a referable-value has an interesting
side ecffect for procedure parameters: one cannot, in.
genernl, write an arbitrary cxpression as an argument to

-

- LY

GESCHKE AND MITCHELL: UNIFORM REFEREKCES TO DATA &§TRUCTURES

a procudure which expects a pointer. Such a restriction
mzy at first appear somewhat overconstraining. However,
it performs the valuable function of affirming that trans-
mitting a pointr to an object gives the called procedure
indirect access to it: if it does not need pointer access to a
parameter, it should be passed by value. Such a rule
would prevent the infamous Fortran problem which occurs
when a subroutine alters a constant (such as “1”’) passed
to it by reference, thereby creating an obscure seqlience of
events later in the calling program when Teferences to
the “constant’ yield some other value.

The language also has a limited number of coercions
which are applicable inright-hand contexts only. In the
following descriptions, the notation TYpE [z] means “the
type of z,” and “i1 = 2" means “type 11 is coercible to
type 12",

c1) If rveE [x] = rEcorD [t] (i.e., a single-component
record), then TyPE [x]=>{ by “unbundling” it. A proce-
dure defined as

P: PROCEDURE. . .RETURNS [7: REAL];

may thus be used as if it returned a simple REAL.

¢2) It rvee [2] = PoINTER TO !, then Tvem [x]=t
by following the pointer value. Thus, if y is declared as

“y «— 2" means store the value to which z points

into y.

¢3) If TvPE[2] = PROCEDURE..
TYPE [z] =5 RECORD [t] by ecalling z.

c¢t) Any combinations and levels of ¢1), ¢2), and ¢3) are
allowed. For example, if

.RETURNS [t], then

Z: REAL;
f* PROCEDURE RETURNS [POINTER TO REAL];

then “z <« f”” means “call f, unbundle the single-com-
ponent return record, and assign the value to which it
refers to .

Another way of leoking at these rules is that they
de&(ube a str 1tevy for coercing types which curretponds_
to a “minimum energy” solution: if two types on the left
and right of an”assigniment match, then absolutely no
coercion takes place; if they do not, the right will be
evaluated enough to make them the -same; if no such
sequence of evaluations on the right side is possible, the

assignment is invalid,

Of course, sometimes one wants the right or the left
1o be evaluated even though these rules would not auto-
matically cause it. In this case the programmer may
write the operator “Evar’” preceding. any expression
whose evaluation is required. The compiler’s autoniatic
rules then apply to the assignment with the Evared type
of that expression replacing its normal type. The following
contrived example shows this:

PtrToXproc: TYPE = POINTER To Xproc;

Xproc: TYPE = PROCEDURE
RETURNs [PirToXproc];

p: PtrToXproc;

anXproz: Xproc;

213

Normally, the assignment “p «— anXproc’’ would mean
“p — @anXproc,” according to the foregoing rules. How-
ever, if one wanted to call the procedure anXproz and
store the pointer value which it produces in p, it can be
done by writing either

.p — EVAL anXproc;
or

p «— anXproz[J; —empty argument list

Phe type of the evaluated right-hand side in cach case is
PtrToXproc and will therefore be stored directly into p
without further evaluation.

If the programmer knows what {ype he wants an
expression to be evaluated to, he can append “.type” to
it. This casts the expression in that typ®=provided, of
course, that a reasonable sequence of evaluations can
produce a result of the desired type. This is similar to
the coercion of the same name in Algol 68 [4]). For exam-
ple, if v1, v2, and pv arc defined as

-v1, v2: Vector;) ’

pr: POINTER TO Vector «— @vl;
and one wants to assign »2 to whatever value pu currently
points, then writing

. Veclor «— v2;
accomplishes this by casting the left-hand side as a
Vector (instead of a pointer to ong). This notation seams

to naturally cxtend the use of pointers for selecting
record components to allow them to sclect entire records.

A SOLUTION FOR THIZ UNIFORM
"REFERENCE PROBLEX

The preceding language capabilities and a set of rules

for assigning meanings to.attribute references are suf-
“ficient 10 ‘generate a solution for the uniform reference
‘problenm. We will develop the necessary rules by examining
‘a set of .examples which are belicved to “cover”
‘special cases of the problem.

“all the

make the notations z.Attr and Attr[z] equivalent in
both right- and left-hand contexts. Aftr may be a simple
selector name, a procedure name, or an array name (the
array case is very similar to the procedure case and will
generally be given short shrift).

If Attr is a selector name in a record type, it is local
(in scope) to that definition, and more than one record
type may contain the same selector name. This is very
handy for common attributes such as LENGTH, ete.,
which are often properties of different types of objects.
If Attr is to be allowed to be a procedural attribute
instead of a simple value, then procedures must have this
same locality with respeet to their parameters’ types as
selector names do. .

Ideuntically named proecedures which are differentiated
by the types of their arguments arc called generic [97:
their common name implies a function which has meaning

The basic problem is 10

214

over a number of different types. In the Mesa system, all
procedures are potentially generic (i.e., any with the
same name are distinguished by their parameter and
return record types). This yields an immediate solution to
a large number of the common cases of the uniform
reference problem (viz., attribute references in right-hand
contexts) and that solution has the same capabilities as
Simula’s, although built from quite a different semantic
base. _

Procedural attributes in Simula gain locality of naming
by being declared within a class, just like value com-
ponents. This is a solution which is also usable in Mesa.
For example, if we were to implement the type Vector
mentioned in the introduction, we might construct a
definition such as the following (recall that its attributes
ave to be z, y, rho, and thele and that it is to represent
two-dimensional vectors):

Vector: TYPE = RECORD [
| Z,Y: REAL,
rho: PROCEDURE RETURNS [REAL] =
BEGIN
RETURN [SQRT[z T2+ v T2]]
END, : ‘
thela: PROCEDURE RETURNS [REAL] =
BEGIN
rETURN [ARCTAN [y/z]] END
J;

The variables z and y which are referred to in rho and
theta are, of course the z and y components of the record
definition. Thus, the compiled code for evaluating an
expression such as v.rho must provide a-pointer to v as
part of rho’s execution environment. There is another

way to define 7ho and theta which points out low generic

procedures can provide procedural attributes which work
in left-hand contexts. We will give another, equally valid
definition of Vector which defines rho and theta generically
and obtains the same effect as the above:

Vector: TYPE = RECORD [
Z,7: REAL,
Handle: TYrE = POINTER TO Veclor];
rho: PROCEDURE [v: Vector. Handle]
RETURNS [REAL] =
BEGIN :
RETURN, [SQRT[(v.2) T2 + (v.y) T 2]1];
END; A
thela: PROCEDURE [v: Vector. Handle]
RETURNS [REAL] =
BEGIN
#ETURN [ARCTAN: [v.y/v.2]];

IND;

In these definitions, the Vector to be operated on is
passed explicitly (by reference since a Vector. Handle is a
pointer to & Veclor), and there could be many procedures
named rho: the right one to use in o phrase such asv.rho

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, JUNE 1975

(=rho [v]) is determined by »’s type. More importantly,
however, we can use two other generic procedures, also
called vkho and thela, to provide left-hand meanings for
the two attributes.

The issue of what interpretation to place on v.7ho in
left-hand contexts reduces to what meaning to assign
to rho in a statement such as “v.7ho «r.”” We will interpret
it as “rho [v,r]7 if there is a (generic) procedure named
tho which takes a Vector. Handle and a REAL as parameters
(assuming the type of 7 is REAL) . Such a definition might be

rho: PROCEDURE [v: Vector. Handle, r: REAL] =
BEGIN g '
v. Vector « [z: r+COS[v.thela],
y: r+SIN[v.thela]];
END; —_

This ‘definition allows us to alter the rho “value” of
a Veclor by mapping that change into suitable effects
on the underlying [z,y] representation. It. also demon-
strates the first of the nonobvious interpretations which
Mesa is prepared to apply to an attribute reference in
support of uniform referencing.

There are two minor but interesting points about the
body of the procedure itself:

1) it accesses v.thela as if theta were a simple value
(it is niot; look at the procedure definitions above);

2) although the cxpression SIN [v.thela] could have
been written v.theta. SIN, it is sometimes nice to think of
functions as functions and not as attributes of the object
to which they are being applied.

Generic procedures also provide a natural way of
extending built-in operators such as “+" to new types
of operands. In Mesa, the meaning assigned to the ex-
pression “a + b is “prus [o,b],” and if theve is a suitably
defined generic function prus, the meaning of the ex-
pression is that it be called and the value which it returns
(whose type is determinable at compile time) will be the
value of the expression. If no user-supplied prLus is found,
the system-defined meaning (which, of course, is defined
in machine code terms) will be encountered at the outer
most scope of the program. All the built-in operator:
including assignment, creating a record value using ¢
constructor, etc., can be extended in this way.

Operator extension by generic procedures provides ye!
another programmer-augmentable interpretation for attri
bute references: normally, a simple variable » appearing
in a right-hand context may be given the meaning
sELECT [»] assuming that there is a suitable procedur
seLECT which accepts v-like objects as its parameter
Similarly, the statement ‘e« b’ normally mean
AssiGN [a,b]. Using this interpretation, one could defint
a stack type for which assignment means “push,” and fo
which its appearance in a right-hand context can b
interpreted to mean “pop and return the top value o1
the stack.”

We will motivate a slightly generalized form of thi

e S iy WS Ao

g e

GESCHKE AND MITCHELL: UNIFORM REFERENCES TO DATA STRUCTURES
[L |

interpretation by another example. A sparse array is an
object which is indexed by integer values and which
maintains a collection of values for all those components
of the array whose values are different from some distin-
guished value, ¢ (c is often 0). If sa is a sparse array, and
sa[1] = ¢, there is no storage allocated for su[%]. Setting
sali] to ¢ does nothing if sa[1] = ¢ already; if sa[2] is not
equal to ¢, then the storage for sa[4] is reclaimed. Finally,
accessing se[7] yields ¢ if no component for sa[7] is
allocated. The hard part of this exercise centers around
the meaning of the statement “sai] e z,’% since the
valuc of the right-hand side must be known in order to
perform the correct action. The following type and
procedure definitions accomplish this:

SparseArray: TYPE =
RECORD [)
head: POINTER T0 Node «— N1,
7. INTEGER «— (), —count of number
of things in the “array”

Node: Typm
RECORD [
value: INTEGER,
tndex: INTEGER,
next: POINTER TO Node
A
Handle: TvPE = POINTER TO
SparseArray
1
¢ INTEGER = 0; —the value for all
unallocated components
SELECT: PROCEDURE [7! INTEGER,
sa: SparseArray . Handle]
RETURNS [INTEGER | =
BEGIN
2: POINTER TO Sparsedrray . Node «—
findNode[se. head, 7];
RETURN [IF p = NIL THEN ¢ ELSE p.value];
END; , '
ASSIGN: PROCEDURE. [
1; INTEGELR, _
- s Sparse Array. I’anale -)
Ths: INTEGER | = =~
BEGIN
P POINTER TO SparseArray. Node
' FindNode[sa. head, 1],
IFrhs = ¢ '
THEN
BEGIN
WP =
END
ELSE
BEGIN
IF p = NIL
[THEN P ¢ NewNode[sa,i];
p value «— v;
END

NIL THEN ReleaseNode[p]

END;

-‘genel 1] than the simple ones illustrated above. This is

215

The procedures IFindNode, ReleaseNode, and NewNode
perform the obvious tasks. The procedure seLecr will be
called whenever an expression of the form s[4} appears in
a right-hand context. That is, one interpretation of the
normal form i.s in a right-hand context is seLECT[d,s],
for which the above example has provided a meaning.
Similarly, the function -assien[4,s,2] is an allowable in-
terpretation of the normal form assignment “4.s <« v”
(or of “‘s[1] « v").

Could the notion of a sparse vector have been imple-
mented any other way? The explanation of left-hand
meanings for rho and theta in the Vector example suggests
that the answer is yes; if, instead of a general type
SparseArray we had only needed to represent a single
sparse array se¢ we could have done so by declaring a pair
of generic procedures:

$a: PROCEDURE [¢: INTEGER]
RETURNS [REAL] =

BEGIN
——code for the right-hand meaning ;;
END;
sa: PROCEDURE [7: INTEGER, rhs: REAL]
RETURNS [rhecopy: REAL] = 4
BEGIN 3
—code for the left-hand meaning
END; '

Using these procedures, the meaning of sa[7] (right-hand
context) is a call on the first procedure, and the meaning
of sa[i] <7 is sali,;r], a call on the second procedure.
Of course, we would also have needed a set of suitable list :
management procedures similar to those for the type
SparseArray. In this example it is worth noticing that the 3
object named sa has no actual existence, but is constantly
fabricated by procedures.

GENERALIZATIONS AND LIMITATION
OF THE SOLUTION |

References to attributes of objects are often more

a-natural consequence of “structuring data so that the
components of &n obJect are themselves composed of a
set of attributes. If, for cmmplo, onc had an v of
records, each containing a string and a number (a possible
implementation of the account table absiraction dis-
cussed in the introduction) defined as

)
ar

AccountTable: TYPE =

ARRAY [1..1000] oF

RECORD [name: STRING, balance: REAL];
checking: AccountTable;

then a complex selection expression such as

“checking [7].name.LENGYT” i

could easily oceur. It would be nice if all su:h expressions
could be placed into some standard form which involved
only dots or brackets, but not both. Then our analysis
of the meaning of the expression could be simpler.

o a e di i,

T
ity 4t

We define the form “z.0,.0,-1++-a1,” where z is an

expression and ay,- - +,a, are attribute references, as the
normal form for cascading attribute accesses. An attribute
reference string involving both dot notation and brackets
can be unambiguously put into this normal form. There
is no normal form which uses only brackets and not dot
notation, so this is not a reversible process. The rules for
doing this are the following:

1) the normal form for a[7] is 7.a;

2) the normal form for a[x1,22,---,2n] is [z1,22;---,
zn].e, where the [z1,- - +,2n] is a record value;

3) any mixed-attribute reference can be normalized in
a piece-wise fashion: from left to right, once one knows
that “[” binds more tightly than “.”. For example:
a.r[i1 becomes a.(7.7), and a[7].b[m].ic becomes
(<.a).(m.b) .ic.

The examples in the prev10us “section and the inter-
“pretations developed to provide specific solutions to the
_problem form a basis from which a general solution can be
developed. Of course, there is no proof that this is so.

As with many issues in programming languag(‘s we' are
only able to generate examples to test this base for com-
pleteness. So far, all such examples have fallen into one or
more of the above interpretation categories. We will give
here a final example which we believe is sufficiently
“paroque” (although not implausible) to demonstrate
this as well as show the direction in which we have
generalized the simple interpretations,

If we extend the previous sparse array example to
define a sparse array of record objects, it can still be
represented using our schemes. We define the following
record type as the type of the components of the sparse
array:

RecordType: TYPE = RECORD [Al: sTRING,
A2: REAL];

As before, our strategy will be to define suitable
generic procedures, each named se, to handle the forms
“sali7? (right-hand contexts) and “sal7]<«—7hs.” In
addition, since each component of se is a record ohject,
we need to supply procedures to-handle “sa[2]. A1 « rhs”
and “safi]. A2 « rhs.”

$a: PROCEDURE [7: INTEGER
RETURNS [RecordType] =
BEGIN
—code for the right-hand
meaning for sa[7]
END;
$a: PROCEDURE [¢: INTEGER, rhs: RecordType] =
BEGIN
—~Code for the left-hand
meaning for sa[7]
END;
Alname: TYPE

It

mw {A1l}; —like Pascal sur
(see below)
A2name: TYPE = IN {42};
sa: PROCEDURE [i: INTEGER, comp: Alname,
rhs: STRING | = '

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, JUNE 197

BEGIN ~—procedure which handles
sa[t]. AL «rhs
sa[i}« [Al: rhs, A2: sa[i].A2];

— the sa to the left of ““«~"" is the second
procedure above; the sa[7] appearing
after “42:" is a call on the first
procedure above

EBND; '
sa: PROCEDURE [1: INTEGER, comp: A2name,
rhs: REAL | =
BEGIN —procedure which handles
sa[1]. A2 «rhs
sali] < [Al: sa[z]. A1, A2: rhs];
END;

.

A solution containing fewe-generic procedures seen
somewhat complex, but the data structure being emulate
is not a simple one. The main reason that this set «

procedures is an acceptable representation for an amra

of tecords is that a statement such as
sa[i].Al <——‘7'7\),S;

(which, in normal form is ‘“4.se.Al ¢—7hs”) can
interpreted to mean

sal7,AlrhsT;

if a suitable procedure sa exists. There is a progra
“pun’ used to achieve this effect in the above exampl
The secoiid argument to the last two procedures is
special type (either Alname or A2name). Such a tyy
corresponds to the Pazcal notion called a set, and variabli
declared of such a type may assume one of a set of value
The names of those values are the identifiers inside the |
in the type definition. Thus, in 4 1name we have introduce
a set type for which only a single valus, indicated by tt
identifier 41, is valid. The pun is that it is identical to tt
first selector name in the definition of RecordType. Thu
when the programmer writes an assignment such as tl
one above, A1 will be taken to be a value of the tyy
Alname, and not a selector in RecordType. This tric
enables the compiler to pick the appropriate procedu
which can handle the type of the right-hand side (eith
4 STRING Or 4 REAL).

One might think that a single procedure could be writte
to replace the last two above. It would confain a cas
statement for deciding which field (Al or A2) to alte
such as the following: '

CASE c:)mp OoF
Al: sa[7] «— [rhs, sa[i].42];
A2: sali] «— [sa[3]. A1, rhs];
END; .

The only problem with this solution is that the type
the parameter 7hs must be able to bg either sTrRmvG |
REAL, and run-time type checking would be needed in tl
cASE statement. The two-procedure solution avoids bo
of these issues. '

The real point of the example is that one inter pretatlc
of the general form

. Altrle- - Altrn «—y;

A + Coe
- GESCHKE AND MITCHELL: UNIFORM REFERENCES TO DATA STRUCTURES
18

Attr1 [z, Atlr2,- - - Attrn,y;

as we will show,in the next section. It is also possible to
develop a. more general representation which parallels the
SparseArray type developed earlier. That case generalizes
in a fashion similar to the “sa’ version: strLecT and
AssIGN will receive the extra attribute names as param-
eters which they may use to decide which action is
required.

The language syntax and semantic rules ‘which we
have presented appear to satisfactorily solve at least,
the obvious cases of the uniform reference problem. No
- guarantee is made that all Mesa, programs will be free of
the problem, but it should be possible for someone defining
a new abstract type to “enforce” the virtual access to its
attributes and thereby free” programs using it from
representation dependencies. Specifically, this means that
when a data type is redefined and the programs which use
objects of that typc are recompiled, one of the two fol-
lowing conditions must hold:

1) the recompiled programs now access the altered
attributes and require no change; or

-2) some construction in a program is not suitable for
the altered atiributes, will be flagged as an error, and
must be changed.

The latter possibility correctly suggests that our solu-
tion to the problem is not foolproof. It also illustrates one
reason for naming the values in a constructor.

I we were using the previous definition Tor a Vector
(with-z and y value components), it would seem entirely
reasonable to write a statement such as

ybasis: Veclor « [0,17;

which, besides declaring ybasts, is also intended to have
the effect

ybaszs z <+ 0; Jbaszs Y1

Hu“ aver, 1f we decided to alter the type Veclor so that
rho and z‘heta were the simple value components, and &
and y were implemented as procedural attributes, the
dbOVC assignment statement, although still’ valid, would
mean

ybasis.vho «— 0; ybasis. theta « 1;

which is not what was orlglnally intended (it is interesting
to note that simple procedural extension of data types
would also have this problem).
- One way out of the difficulty is to permit only named
values in constructors and- eliminate positional notation
altogether. Then the original assignment would have
been

ybasw «—[z:0, y: 1],

and, ovcn after the definition of Vector has been altered,
would still mean . -

ybasis.z «— 0; ybasis,y «1;

which would correctly invoke the new procedural meanings
for z and y.

REvcn i o

217

Another way of avoiding the problem without dis-
carding the venerable positional notation requires that
an expression in a constructor which is to be assigned to
an exlended type either be cast as that type or be a named
value. In that case, the implementer for Vector could
have described its form as

Veclor: TYPE = RECORD [
Length, Angle: TYPE = REAL,
rho: Length,
theta: Angle];

In this case, the statement “ybasis — [0,17;”” would cause
an error when compiled because “0’”” and “1” are neither
named nor cast as a Length or an Angle. The user could
then alter the constructor to something like “[z:0, y:17]”
as above or to “[rho:1, theta:pi/2F" or fo “[1.Length,
(pi/2) . Angle}”’ (castmg) to avoid future change.

We are now in a position to state the complete set of
rules for interpreting normal forms in both right- and left-
hand contexts in the general case.

GENERAL RULES OF INTERPRETATION

The general forms under consideration are

(Bn) 2.00.0n 1 -a1 (right-band contexts only)

(Ln) .@p Goeye = caq .

In general, the following rules can assign Zero, one
or more meanings to a single expression in a program.
If zero, the expression is meaningless {probably because
some identifier was not dedared), if more than one,
the form is ambiguous and is in error. If exactly one
meaning is found, the form is semantically valid (whether
or not it is pragmatically correct and performs the actions
the programmer intended is a separate and much more
difficult question!).

(Ru) z .

The case of a simple variablo used in a rlght hand
context has been - described prewoualy in the section
Coercions. The form “z”’ always means QELECT [z737;if

‘there is a procedure -

SELECT: PROCEDURE [TYP5 [x]] RETURNS [t],

then this will be used as the meaning of z and overrides
any of the default coercion/evaluation rules. One could
use this interpretation to define a type “stack” which
would pop the value from a stack variable s whenever it
appeared in a right-hand context.

(Lo) e~y
The possible interpretations of thisform are
Case 1): assieN [,y]
Case 2): z[y].

The built in meanings are associated with Case 1)
and are replaceable by suitable user-defined functions
named “assieN.” To define the stack type mentioned
in Ry, one would also write a function

S SR TR - o - L.

ERRE TP

gl e L e
o i b0 4 .

e e

218

~

ASSIGN: PROCEDURE [s: Stack.Handle, v: Value]

to push Values onto the stack objeet for which s is a
Handle. Case 2) is a trivial version of the previous sparse
array examples.

(Rl) X.q

The possible interpretations of this form are
1) If there is a procedure

SELECT: PROCEDURE [TYPE [z], TYPE [a1]]
RETURNS [1],

then sBLECT [#,01] iIs a possible interpretation.
2) If there is a procedure

@1: PROCEDURE [TYPE [«]] RETURNS [1],

_ this is possibly a procedure call, and tyre[z.a:] = .
"This form was used in defining the right-hand value for
“the procedural attribute 7ho in the Vector example.

-8) If « is a record type r, and a, is one of the selectors

- for 7, then this may be a simple component selection, and

TYPE [z.¢1] is the type of that component.
4) If there is an array

a1: ARRAY [m..n] OF ¢,
then this may be an array selection, with Tyes [ai[z]] = t.
(L) z.ay ¢y
1)‘_ If there is a procedure
ASSIGN: PROCEDURE [1YPE [z,
TYPE [ai], TYPE [y]],

then assieN [2,e1,5] is a possible interpretation.
2) If there is a procedure

¢1: PROCEDURE [TYPE [z], TYPE [¥]],

then ai[x,y] is a possible interpretation. This form was
used to define the left-hand procedural attribute r%o in the
Vector example.

3) If ryee [2]=>r (a record type), a; is a selector
name in r, and TYPE [y] = TYPE [z.a.], then a possible
interpretation is an assignment to a record component,

4) If there is an array

Q1: ARRAY [m..n] OF

and TYpE [y]=>{, then this may be an assignment to an
array component.

The general cases R, and L, are generalizations of’

Ro, Ry, Ly, .and L, above. A large number of extra cases
are introduced by allowing the normal form z.a,---a, to
associate to the left: for instance, a reference string
z.a.b.c could be taken to mean (z.a).b.c or (z.a.b).c
if the parenthesized portions had meanings which coupled
with the remainder of the string. The expression

“checking [7].name.LENGTH"
given previously has this property.
(R,) .0y .Qp 10+ v s

1) If there is a procedure

1IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, JUNE 1975

SELECT: PROCEDURE [TYPE [z], TYr [a,],
«++,rYPE [a:]]
RETURNS 1],

then SELECT [2,84,84-1,° * +,a1] 15 a possible interpretation.
2) If there is a procedure

@, PROCEDURE [TYPE [z], TYPE [a,_1],
see, TYeE [a]],

then @,[2,@,-1,*++,a1] is a possible interpretation. (Left-
associativity) for all k v [0..n), let

W= T.0p G LR

be meaningful using interpretation Rx (k < n); then
Wy pyes 0y (Rn_ ;;) —

is a possible interpretation of R,.

(L) .0y Qa1 a1 — Yy
1) If there is a procedure
ASSIGN: PROCEDURE [TYPE [z], TYrs [,],

<o, oyei [ad], TYeE[y]],

then assioN [%,a,,-«+,a1,5] is a possible interpretation
of L,. This possibilify is the most general interpretation
for the form since it simply passes all the relevant informa-
tion to thé procedure assicx.

2) If there is a procedure .

@n: PROCEDURE [1YPE [z, TYPE [an_1],
s+, 1yee [ag], Tyee [y]],

then a.[z,8,_1, - +,01,57] is a possible interpretation. (Left-
associativity) for all & v [0..%), let

W= C.0p***Aper
be meaningful as an R, interpretation (& < m); then,
W, lpepe1® > 01 ¢ Y (Lin-)

is a possible interpretation of L,.

Although these rules define how meanings are attached
to normal forms, that does not mean that there is an
implementation of suitable efficiency for a compiler. There
is, however, a conceptually casy method: generate all the
interpretations of a normal form and then attempt to
match each with the possible types for the identifiers in it.
If only one such matching is correct, we are done; if none
match, or if there is more than one, it is an error. Un-
happily, the number of potential interpretations of a
normal form is too large to make this reasonable (because
of all the subcases introduced by left association). How-
ever, a slight modification of the naive approach appears
to have much better propertics. By keeping all the possible
semantics of a given identifier in the compiler’s symbol
table on a single thread (i.e., associated in some easily
accessible way), one can drive interpretation generation
in a bottom-up rather than a top-down fashion, discarding
an interpretation as soon as a mismateh occurs. The bulk

T N T T R B e T B R e i o TS B SR BT AT M IS VT e 55,2 i

Ta RS

GESCBEKE AND MITCHELL: GNIFOTRM REFERENCES TO DATA STRUCTURES

of the possible interpretations will normally not even be
attempted because of the absence of suitable identifier
meanings; others will be discarded as soon as they fail to
match. Lastly, because just onc interpretation fits in the
“normal” ease, the amount of work done is close to the
amount for type checking in any strongly typed language.

CONCLUSIONS

We have attempted to knead the myriad-notations for
accessing and operating on data in programming languages
into a common form. The gains from doing this are two-
{fold: .

1) changing the way in which an abstract data type is
implemented can be localized to the portion of the pro-
gram where it is implemented;

2) the user of a data type can concentrate on its logical
properties since he cannot take advantage of particular
representational characteristics which it might have.

The solution to the uniform reference problem which we
developed in this paper depends strongly on two features
of programming languages. The first, data type extension,
has been developed over the past decade and required
little augmentation to support our solution. The second,
allowing multiple meanings for an expression depending
on the availability of named objects of appropriate types,
has been a feature of only a few languages used in artificial
intelligence’ (c¢f. Bobrow and Raphacl [137). Our human
linguistic abilities for context-sensitive communications
will probably move future languages even further from
the use of syntactic precision as the means of ensuring
semantic precision.

Most of our concern with uniform references as well as
the initial direction of the solution were inspired by
Simula 67 {107, AED [147, and LIS [157. Simula has also
pointed out the way in a number of other areas, most
notably with respect to the idea of classes, and with the idea
that certain manipulations for a. data type are the purview
of the program which implements it and are too important
to allow random programs to operate on it in that way.
This is a form of the pervasive protection problem. We
have purposely ignored both these issues in this report, but
others (ef. Liskov and Zilles [12] and Wulf [117) are work-
ing to generalize the class notion and to employ protection
domains to constrain the access to data objects from dif-
ferent parts of a software system. Both of these areas
could have strong effects on the reliability of future
software, our methodologies for producing it, and our
ability to reuse already developed program components
nstead of rewriting them in almost cvery new system.

ACKNOWLEDGMENT

The research reported here is the result of contributions
from a’number of individuals, including C. Dornbush,
C. Ivby, B. Lampson, E. Satterthwaitc, and B. Weghreit.

REFERENCES

(1] D. B. Wortman, Td., in Proc. Workshop Ailainment of Relinble
Software, Univ. Toronto, Toronto, Ont., Canada, June 1974.

219

[2] B. Wegbreit, “The treatment of data ypes in EL},” Commun.
Ass. Comput. Mauch., vol. 17, s)p. 251-26:4, May 1974,

[3] B. A. Taft and T". A. Standish, PPL Users]t[a_.mml, Cent-e_r for
Res. in Computing Technol,, l;arvard Univ., Cambridge,
Mass.,, Tech. Rep. 21-74, Sept. 1974 _

4] J. Br;mquart, JI.) Lewi, M. Sintzoff, and P. L. Wodon, “The
composition of semantics in .;}Ilg'ul 16(3 ,’1' Commun. Ass. Compul.
Mach., vol. 14, pp. 697-70%, Nov. 1971, °

{5] O.-J. Dahl, E. 1\1V. Dijkstra, and C. A. R Hoare, Structured
Programming. New York: Acar,lt'zmxc, 1972. o

[6] IBM System/360 Operating System, Assembler Language,
Poughkeepsie, N. Y., I'orrn C28-6514-4, 1964.

[7] IBAM System /360 Time Sharing System: Command Language

. User's Guide, Yorktown Heights, N. Y., Form C28::.2001, 1966.

[8] N. Wirth, “The progmmmi{;]__;.ri language Pascal,” Acta In-
Jormatica, vol. 1, pp. 35-63, 1¢ 71, .

{91 IBM Syslem/860 Operating System, PL/1 Language” Speci-
Jications, New York, N. Y., Form 92§-6571, 1965. ‘

(10] O.-J. Dahl, B. Myhrhaug, and K. Nygaard, “The Simula 67
common base language,” Norwegian Computing Centre, Oslo,
Norway, 1968,

[11] W. A."Wulf, “Alphard: Teward a language to support strue-
tured programs,” Dep. Comput. Sci.,, Carnegie-Mellon Univ.,
Pittsburgh, Pa., Internal Kep., Apr. 1974, ~

[12] B. Liskov and S. Zilles, “Programming with abstract data
types,” in Proc. Symp. Very High Level Languages, SIGPLAN
Notices, vol. 9, Apr. 1974, pp. 50—‘59.)

{13] D. G. Bobrow and B. Raphael, “New programming lvauguages
for artificial intelligence,” Ass. (,'q_mpul. Mach. Compuling
Surveys, vol. 6, pp. 155-174, Sept. 1974 .

[14] D. T. Ross, “Uniform referents: An essential property for a

software engineering language,” in Software Enginecring,

J.T. Tou, Ed., vol. 1. New York: Academic, 1969‘, pp. 91-101.

J. D. Ichbiah, J. P. Rissen, and J. C. Heliard, “The two-level

approach to data independent programming in the LIS system

implementation language,’” in Machine Orienled Higher Level

Languages, Van der Poel and Maarssen, Ed. Amsterdam:

North-Holland, 1974, pp. 161-174

——

{13]

Charles M. Geschke was born in Cleveland, Ohio, on September 11,
1939. He received the A.B. degree in Latin and the MS degree in
mathematies from Xavier University, Cincinnati, Ohio, in 1962 and
1963, respectively, and the Ph.DD. degree in computer science from
Carnegie-Mellon University, Piztsburgh, Pa., in 1972,

He is a- member of the Research Staff at Xerox Palo Alto Resear.ch
Center, Palo Alto, Calif. Prior to his gr:}duate studies at Carnggxe—
Mellon University, he taught ranathematics at John Carroll Univer-

sity, Cleveland, Ohio. His eurrent - vesearch interests’are in pro-

gramming langnages, optimizing compilers, and the design of
instruction sets for eflicient execution of higher-level languages.

Dr. Geschke is a member of ihe Association for Computing Ma-
chinery, the Mathematical Association of America, and Fi Mu
Ipsilon.

James G. Mitchell was born in Waterloo, Ont-.,..Canada, on A_pnl 25,
1943. He received the B.Se.(Honors) degree in mathematics and
physics from the University of Waterloo, Waterloo, Ont., Canada,
in 1966, and the Ph.D. degree in computer science from Carnegie-
Mellon University, Pittsburgh, Pa., in 1970.

While at the University of Waterloo, he was a men}ber of the
group which produced the first WATFOR compiler. ‘I‘IJS gradu_ate
work at Carnegie-Mellon University was concerned with the design
and construction of interactive programming systems. Since 1971,
he has been a membher of the Hesearch Staffat.Xerox Palo Alto
Research Center, Palo Alto, Caulif. His primary m_{:ergsts are pro-
gramming languages, interactive systems, and distributed com-~
puting environments. e)

Dr. Mitchell is a member «f the Association for Computing
Machinery.

Tt

—.

