

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

1a. REPORT SECURITY CLASSIFICATION

UNCLASSIFIED

1b. RESTRICTIVE MARKINGS

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

Aplproved for public release; distribution
unlimited.

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

NSWC TR 86-251

5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(If applicable}
Naval Surface Weapons Center K33

6¢. ADDRESS (City, State, and ZIP Code)

Dahlgren, VA 22448-5000

7b. ADDRESS (City, State, and ZIP Code)

- Ba. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

Bc. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NQOS.

S | e | e | e
|
| 11. TITLE (include Security Classification)
' NSWC LIBRARY OF MATHEMATICS SUBROUTINES
| 12. PERSONAL AUTHOR(S)
Alfred H. Morris, Jr.
13a. TYPE Of REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr., Mo., Day) 15. PAGE COUNT
FROM TO 1987 April 440
16. SUPPLEMENTARY NOTATION
17. COSATI CODES 18. SUBJECT TERMS {Continue on reverse if necessary and identify by block number)

| FIELD GROUP SUB. GR.

? 19. ABSTRALT (Continue on reverse if necessary and identify by block number)

The NSWC library is a library of general-purpose FORTRAN subroutines that provide a basic computa-
tional capability in a variety of mathematical activities. Emphasis has been placed on the transportability
of the codes. Subroutines are available in the following areas: Elementary Operations, Geometry, Special
Functions, Polynomials, Vectors, Matrices, Large Dense Systems of Linear Equations, Banded Matrices,
Sparse Matrices, Eigenvalues and Eigenvectors, €; Solution of Linear Equations, Least-Squares Solution of
Linear Equations, Optimization, Transforms, Approximation of Functions, Curve Fitting, Surface Fitting,

Manifold Fitting, Numerical Integration, Integral Equations, Ordinary Differential Equations, Partial
Differential Equations, and Random Number Generation.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED/UNLIMITED SAME AS RPT. DTIC USERS UNC LASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL 22, T'EL‘EP:ONECN%BER 22c. OFFICE SYMBOL
Alfred H. Morris, Jr. (703) 663-7164 K33
DD FORM 1473, 84 MAR EDITION OF 1 APR 83 IS DBSOLETE. UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

ECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

FOREWORD

In 1976 work began on the formation of a library of numerical mathematics sub-
routines for general use at NSWC. The subroutines were to be written in FORTRAN. This
report describes the subroutines currently in the library. The report supersedes technical
report NSWC TR 84-143. Development of the NSWC library is funded by.the Computer
and Information Systems Division, Strategic Systems Department, NSWC. The report was
administratively reviewed by Robert T. Bevan, Head of the Systems Integration and Net-
working branch (K33),

Released by:

A48 Ceh.

David B. Colby, Head
Strategic Systems Department

iii

CONTENTS

Page
Introduction e 1
Elementary Operations
Sorting Lists — ISHELL, SHELL, SHELL2................0iiiiiiiniinnnnn. 3
Cube Root — CBRT i i e e e ien s S
Four Quadrant Arctangent — ARTNQ, DARTNQccnnn... S
Length of a Two-Dimensional Vector — CPABS, DCPABS S
Square Root of a Double Precision Complex Number — DCSQRT 6
Conversion of Polar to Cartesian Coordinates — POCA 7
Conversion of Cartesian to Polar Coordinates — CAPO....................... 7
Rotation of Axes — ROTA i i e i eans 7
Planar Givens Rotations — SROTG, DROTGcciiiiiiiiiininn.. 9
Three Dimensional Rotations —ROT3 i, 11
| Rotation of a Point on the Unit Sphere to the North Pole — CONSTR 13
Hyperbolic Sine and Cosine Functions — SNHCSH 15
Exponentials — REXP i e 17
Logarithms — ALNREL, RLOG i ittt e 19
Geometry
The Convex Hull for a Finite Planar Set — HULL 21
Areas of Planar Polygons — PAREA i, 23
Special Functions
Error Function — ERF, ERFC, ERFC1,CERF00, 25
Normal Distribution Function — PNDF...... i, 27
Complex Fresnel Integral — CFRNLI......... ... iiiiiiiniiiiiinnnn. 29
Real Fresnel Integrals — FRNL.o i 31
Exponential Integral Function — CEXPLL, EXPLI cooouet. 33
Sine and Cosine Integral Functions — SI,CIN, 37
Gamma Function — CGAMMA, GAMMA,GAMLN 39
Digamma Function — CPSI, PSI i, 41
Logarithm of the Beta Function — BETALNcciievenn... 43
Incomplete Gamma Ratio Functions — GRATIOc.conetn 45
Inverse Incomplete Gamma Ratio Functions — GAMINV 47

v

| Incomplete Beta Function — BRATIO, ISUBXot 49

Bessel Function J,,(z) — CBSSLJ, BSSLJ, BES)Y. . .o e e S1
Bessel Function Y ,,(z) — BSSLYot 53
Modified Bessel Function I,,(z)— BSSLL, BESI ...t 55
Modified Bessel Function K ,(z) — CBSSLK, BSSLK....... ..ot 57
Complete Complex Elliptic Integrals of the First and Second

Kinds — CK, CKE ..ttt ittt it 59
Real Elliptic Integrals of the First and Second Kinds — ELLPT 63
Real Elliptic Integrals of the Third Kind —EPLLRYoonnn 65

| Jacobian Elliptic Functions — ELLPFoooiiiiiiiiiin . 69

Weierstrass Elliptic Function for the Equianharmonic and

Lemniscatic Cases — PEQ, PEQ1, PLEM, PLEM1 71
Integral of the Bivariate Density Function over Arbitrary

Polygons and Semi-Infinite Angular Regions — VALR2 75
Circular Coverage Function —CIRCV i, 79
Elliptical Coverage Function — PKILL, PKILL3ooooiiiiinn 81

Polynomials

Copying Polynomials — PLCOPY, DPCOPYot 83
Addition of Polynomials — PADD, DPADDcociiiinnnnnn 85
Subtraction of Polynomials — PSUBT, DPSUBTcouh. 87
Multiplication of Polynomials — PMULT, DPMULT 89
Division of Polynomials — PDIV,DPDIV it 91
Real Powers of Polynomials — PLPWR, DPLPWRcooonnt. 93
Derivatives and Integrals of Polynomials — MPLNMV, 95
Lagrange Polynomials — LGRNGN, LGRNGV, LGRNGX.................... 97
Orthogonal Polynomials on Finite Sets — ORTHOS, ORTHOV, ORTHOX 99

Solutions of Nonlinear Equations

Zeros of Continuous Functions — ZEROINot 101

Solution of Systems of Nonlinear Equations —HBRD........................ 103
Solutions of Quadratic, Cubic, and Quartic Equations —

QDCRT, CBCRT, QTCRT ...ttt ettt anae s 105

Double Precision Roots of a Real Polynomial — RPOLY 107

| Accuracy of the Roots of a Real Polynomial —RBND........................ 109

vi

Vectors

Copying Vectors — SCOPY, DCOPY,CCOPYciiiriiiieiiinnann.n 111
Interchanging Vectors — SSWAP, DSWAP,CSWAPcovvvvnn.. 113
Planar Rotation of Vectors — SROT, DROT, CSROTccovuuiurinnn.. 115
Dot Products of Vectors — SDOT, DDOT, CDOTC,CDOTUc....... 117
Scaling Vectors — SSCAL, DSCAL, CSCAL,CSSCALccivuunn.. 119
Vector Addition — SAXPY, DAXPY, CAXPY 121
L, Norm of a Vector — SASUM, DASUM, SCASUMciunnn 123
L, Norm of a Vector — SNRM2, DNRM2,SCNRM2 125
L_ Norm of a Vector — ISAMAX, IDAMAX, ICAMAXccuuiu. ... 127
Matrices

Packing and Unpacking Symmetric Matrices — MCVFS,

DMCVES, MCVSF, DMCVSF ... i e e i 129
Conversion of Real Matrices to and from Double Precision Form —

MCVRD, MCVDD R ... i e e e e 131
Storage of Real Matrices in the Complex Matrix Format — MCVRC 133
The Real and Imaginary Portions of a Complex Matrix —

CMREAL,CMIMAG ... ittt it i ettt e enns 135
Copying Matrices — MCOPY, SMCOPY, DMCOPY, CMCOPY............... 137
Computation of the Conjugate of a Complex Matrix — CMCONJ 139
Transposing Matrices — TPOSE, DTPOSE, CTPOSE, TIP,

DTIP, CoIP. .. i i e e et et it 141

| Computing Adjoints of Complex Matrices — CMADJ, CTRANS 143

Matrix Addition — MADD, SMADD, DMADD, CMADD 145

Matrix Subtraction — MSUBT, SMSUBT, DMSUBT,CMSUBT 147

Matrix Multiplication — MPROD, DMPROD,CMPROD 149
Product of a Packed Symmetric Matrix and a Vector —

SVPRD, DSVPRD e 151
Transpose Matrix Products — TMPROD i ... 153
Symmetric Matrix Products — SMPROD it 155
Kronecker Product of Matrices — KPROD, DKPROD, CKPROD 157
Inverting General Real Matrices and Solving General Systems of Real

Linear Equations — CROUT, KROUT, NPIVOT, MSLV,DMSLV 159
Solution of Real Equations with Iterative Improvement — SLVMP 165

vii

l Solution of Almost Block Diagonal Systems of Linear Equations —

ARCECO, ARCESL i e i e 167
Solution of Almost Block Tridiagonal Systems of Linear

Equations — BTSLV e 171
Inverting Symmetric Real Matrices and Solving Symmetric Systems of

Real Linear Equations — SMSLV, DSMSLV ol 173
Inverting Positive Definite Symmetric Matrices and Solving Positive

| Definite Symmetric Systems of Linear Equations — PCHOL, DPCHOL..... 177
Inverting General Complex Matrices and Solving General Systems of

Complex Linear Equations —CMSLVo oo 179
Solution of Complex Equations with Iterative Improvement — CSLVMP 181
Singular Value Decomposition of a Matrix — SSVDC, DSVDC, CSVDC......... 183
Evaluation of the Characteristic Polynomial of a Matrix —

DET,DPDET, CDETottt ittt a e 185
Solution of the Matrix Equation AX +XB =C — ABSLV, DABSLV 187
Solution of the Matrix Equation A'X + XA = C when C is

Symmetric — TASLV, DTASLVo i i 189
Solution of the Matrix Equation AX> + BX+C=0—SQUINT 191
Exponential of a Real Matrix —MEXP,DMEXP 193

Large Dense Systems of Linear Equations

Solving Systems of 200-400 Linear Equations — LE, DPLE,CLE 195
Banded Matrices

Band Matrix Storageoo oottt e e e s 197

Conversion of Banded Matrices to and from the Standard Format —

CVBR, CVB(C, CVRB, CVCB,CVRB1,CVCB1 « o sz o 199
Conversion of Banded Matrices to and from Sparse Form —

MCVBS, CMCVBS, MCVSB, CMCVSB e 201
Transposing Banded Matrices — BPOSE, CBPOSE 203
Addition of Banded Matrices — BADD, CBADDt 205
Subtraction of Banded Matrices — BSUBT, CBSUBToovn... 207
Multiplication of Banded Matrices — BPROD, CBPROD 209
Product of a Real Banded Matrix and Vector —

BVPRD, BVPRD1, BTPRD,BTPRD1......... ..ot 211

viii

Product of a Complex Banded Matrix and Vector — CBVPD, CBVPD1,

CBTPD,CBTPDI T o B - TR 213
Solution of Banded Systems of Real Linear Equations —

BLSV, BSLV I . e e 215
Solution of Banded Systems of Complex Linear Equations —

CBSLV, CBSLV I . . e i i e 217

Sparse Matrices
Storage of Sparse MatriCesottt i 219
Conversion of Sparse Matrices to and from the Standard

Format — CVRS, CVCS,CVSR, CVSC 221
Computing Conjugates of Sparse Complex Matrices — CSCONJ 223
Transposing Sparse Real Matrices — RPOSE, RPOSE1 225
Transposing Sparse Complex Matrices — CPOSE, CPOSEL................... 227
Addition of Sparse Matrices — RADD, RADD1, CADD, CADD1.............. 229
Subtraction of Sparse Matrices — RSUB, RSUB1, CSUB, CSUB1 231
Multiplication of Sparse Matrices — RMLT, RMLT1, CMLT, CMLT1 233
Product of a Real Sparse Matrix and Vector — MVPRD, MVPRDI1,

MTPRD, MTPRD i et e 235
Product of a Complex Sparse Matric and Vector — CVPRD, CVPRDI,

CTPRD, CTPRDI . .. it ittt it e ie e e 237
Ordering the Rows of a Sparse Matrix by Increasing Length — SPORD......... 239
Reordering Sparse Matrices into Block Triangular Form — BLKORD 241
Solution of Sparse Systems of Real Linear Equations — SPSLV,

RSLYV, TSV L e i ittt aas 243
Solution of Sparse Systems of Complex Linear Equations —

CSPSLV, CSLV, CTSLV . ..ottt it i it e iiiae e 247

Figenvalues and Eigenvectors

Computation of Eigenvalues of General Real Matrices — EIG, EIG1 251
Computation of Eigenvalues and Eigenvectors of General Real

Matrices — EIGV, EIGV1 i i i 253
Double Precision Computation of Eigenvalues of Real Matrices — DEIG........ 255
Double Precision Computation of Eigenvalues and Eigenvectors of Real

Matrices — DEIGV o i i i e 257

ix

Computation of Eigenvalues of Symmetric Real Matrices — SEIG, SEIG1.......
Computation of Eigenvalues and Eigenvectors of Symmetric Real

Matrices — SEIGV, SEIGV 1. i i
Computation of Eigenvalues of Complex Matrices — CEIG
Computation of Eigenvalues and Eigenvectors of Complex Matrices — CEIGV . ..
Double Precision Computation of Eigenvalues of Complex Matrices —

T) (1€
Double Precision Computation of Eigenvalues and Eigenvectors
of Complex Matrices —DCEIGV oo

g Solution of Linear Equations

2, Solution of Systems of Linear Equations with Equality and
Inequality Constraints — CL1t T

Least Squares Solution of Linear Equations

Least Squares Solution of Systems of Linear Equations —

LLSQ,HEFTL HFTI2. it et iiiianans
Least Squares Solution of Overdetermined Systems of Linear Equations

with Iterative Improvement — LLSQMPoiiinin..
Least Squares Solution of Systems of Linear Equations with Equality

and Inequality Constraints —LSEIL oot
Least Squares Solution of Systems of Linear Equations with Equality

and Nonnegativity Constraints — WNNLS.................t
Least Squares Iterative Improvement Solution of Systems of Linear

Equations with Equality Constraints — L2SLV..................
Iterative Least Squares Solution of Banded Linear Equations — BLSQ..........
Iterative Least Squares Solution of Sparse Linear Equations —

SPLSQ, STLSQ ..ttt i e

Optimization

I Minimization of Functions of a Single Variable — FMIN
Unconstrained Minimum of the Sum of Squares of Nonlinear
Functions — LMDIFF i e
Linear Programming — SMPLX, SSPLX i
The Assignment Problem — ASSGN

......................................

Transforms

Fast Fourier Transform — FET, FFT1 i 307
Multivariate Fast Fourier Transform — MFFT, MFFT1 309
Discrete Cosine and Sine Transforms — COSQI, COSQB, COSQF,

SINQB, SINQF ..o i e e e e e 311

Approximation of Functions
Rational Minimax Approximation of Functions — CHEBY 315
L, Approximation of Functions —ADAPT........................... 317
Curve Fitting
Linear Interpolation — TRP i e 323
Lagrange Interpolation — LTRP........ i, 325
Hermite Interpolation — HTRP i i 327
Conversion of Real Polynomials from Newton to Taylor Series

Form — PCOEFF i i i i et it e 329
Least Squares Polynomial Fit — PFIT iiiiiieiiinn..n. 331
Weighted Least Squares Polynomial Fit — WPFIT 333
Cubic Spline Interpolation — SPLIFT it 335
Weighted Least Squares Cubic Spline Fitting — SPFIT....................... 337
Cubic Spline Evaluation — SCOMP, SCOMP1, SCOMP2 339
Cubic Spline Evaluation and Differentiation — SEVAL,

SEVALL SEVAL i i i e e e 4
Spline under Tension Interpolation —CURV1 o it 343
Spline under Tension Evaluation —CURV2 345
Differentiation and Integration of Splines under Tension —

CURVDD, CURV L. i i et et ot s oo simmas o o oaiiie s 347
Two Dimensional Spline under Tension Curve Fitting —

KURVL, KURV 2. i i e e e cen e 349
Two Dimensional Spline under Tension Closed Curve Fitting —

KURVPL KURV P2 e e 351
Three Dimensional Spline under Tension Curve Fitting —

QURVL, QURV 2. i i e et e 353
2 B) 1 L1 355
Piecewise Polynomial Interpolation —BSTRP0, 357

Xi

Conversion of Piecewise Polynomials from B-Spline to Taylor

Series Form — BSPP. i i e e 359
Piecewise Polynomial Evaluation — PPVALot 361
Weighted Least Squares Piecewise Polynomial Fitting — BSL2 363

Surface Fitting over Rectangular Grids

Bi-Splines under Tension ittt e 365
Bi-Spline under Tension Surface Interpolation — SURF 367
Bi-Spline under Tension Evaluation — SURF2, NSURF2 369

Surface Fitting over Arbitrarily Positioned Data Points

Surface Interpolation for Arbitrarily Positioned Data Points —
BV, BV P . e e e e e 371

Manifold Fitting

Weighted Least Squares Fitting with Polynomials of n Variables —

MFIT, DMFIT, MEVAL, DMEVAL iiiiiiaiaiiinn. 375
Numerical Integration
Evaluation of Integrals over Finite Intervals — QAGS, QSUBA, DQAGS 379
Evaluation of Integrals over Infinite Intervals — QAGI, DQAGI............... 385
Evaluation of Double Integrals over Triangles — CUBTRI 389
Integral Equations
Solution of Fredholm Integral Equations of the Second Kind —IESLV 391

Ordinary Differential Equations/Initial Value Problems

The Initial Value Solvers — Introductory Commentsoovuvnvnn.. 395
Adaptive Adams Solution of Nonstiff Differential Equations —ODE 397
Adaptive RKF Solution of Nonstiff Differential Equations —RKF45 401
Adaptive RKF Solution of Nonstiff Differential Equations with

Global Error Estimation — GERKo oo, 405

xii

I Adaptive Solution of Stiff Differential Equations — SFODE, SFODEL.......... 409
Fourth-Order Runge-Kutta — RK i i, 413
Eighth-Order Runge-Kutta — RKS8 415

Partial Differential Equations

Separable Second-Order Elliptic Equations on Rectangular
Domains — SEPDE e 417

Random Number Generation

Uniform Random Number Generator — URNG......... I X T N 421
Gaussian Random Number Generator using the Box-Muller
Transformation —NRNG i 423
Distribution

xiii

INTRODUCTION

In 1976 formation of the NSWC library of numerical mathematics subroutines began.
The objective was to form a high-quality library of general purpose subroutines that would
provide a basic computational capability in a variety of mathematical activities. The routines
were to be written in FORTRAN. Even though the routines were intended for use on the
CDC 6000-7000 Series computers, emphasis was to be placed on their transportability. This
report describes the subroutines currently in the library. Every attempt has been made to
ensure the reliability of the codes for any FORTRAN having a single precision arithmetic
of 7 or more digits.

All routines are subject to evaluation and possible modification before being accepted
for the NSWC library. Primary considerations include the reliability and transportability of
the routine, its efficiency and ease of use, and the generality of the routine. In regard to
reliability, the major concerns are accuracy, the mathematical stability of the algorithm
being employed, and the routine’s robustness. The routine is tested, portions of its code are
examined, and an assessment is made of the utility and overall performance of the routine.
All routines in the library are periodically reviewed for possible improvement. When better
routines are obtained the older routines are eliminated.

In regard to transportability, it is clear that machine dependent constants and precision
dependent algorithms cannot be avoided. However, machine dependent code and 1/O state-
ments are not permitted. For a subroutine or function to be acceptable it is required that
the coding adhere to the 1966 and 1977 ANSI FORTRAN standards, -the only exception
being the following:

Statements such as REAL A(1), which specify as arrays arguments in the call line of a

subroutine or function are acceptable, It is assumed that subscript bound checking for

such arrays is not performed by the FORTRAN being used.
It is assumed that the single and double precision floating point arithmetics being used
satisfy criteria such as:

(1) All small integers are represented exactly in the floating point arithmetic.

(2) —x is representable as a floating point number if x is a floating point number.

(3) 1/x is representable as a floating point number (possibly 0) if x is a nonzero float-

ing point number.
To date, no procedures have been formulated for avoiding the problems that can arise when
such assumptions are violated.

The ease of use criterion is of considerable importance, The main purpose of the
library is to provide a service to as broad an audience as possible. Thus. it is important that
duplicate abilities be kept to a minimum, and that the routines be as simple to use and as
comprehensive in scope as is practical. Development of software that satisfies the ease of use

criterion can be characterized as a packaging problem, the objective being to package
mathematical theory and formulae into comprehensive, simple-to-use subroutines. To help
meet this criterion, many specialized subroutines are incorporated into the library at a
subordinate level, being referenced by simple-to-use driver routines. The driver routines are
fully documented in this‘rep'or’t," but the supportive routines are only referenced. The
policy of referencing supportive code makes it possible to replace or modify the code with-
out bothering the prograﬁnﬁer. "Also, it significantly simplifies the situation for many users,
thereby promoting greater and better use of the software than could otherwise be expected.

The routines in the NSWC library are selected from a variety of sources. All routines
are subject to testing before being accepted for the library. The testing serves many pur-
poses, including determination of the accuracy and efficiency of the software, checking for
defects in the code, and searching for regions of numerical instability. Because of the
theoretical complexity of many of the mathematical activities being computerized, only
infrequently will the testing be complete. Normally the testing must be highly selective,
being used to locate and examine weaknesses in the algorithm and code. If the precision
of a subroutine can be established, then this information is given with the description of
the routine. All precision estimates are for the CDC 6000-7000 Series floating point arith-
metics, The estimates do not include inherent error.! Thus it may occur that the accuracy
of a routine is better than the inherent error of the mathematical function that it is com-
puting.

Distribution of Code. The NSWC library subroutines are available for general use, both at
NSWC and elsewhere, The library contains no proprietary code.

! See “Automatic Error Analysis using Computer Algebraic Manipulation” by David R. Stoutemyer in ACM Trans. Math
Software 3 (1977), pp. 26-43.

SORTING LISTS

Let A be an integer or real array containing n 2> 1 elements a, ,...,a . Then the follow-

ing subroutines are available for reordering the elements of A in increasing order.

CALL ISHELL(A n)
CALL SHELL(A,n)
CALL SHELL2(A,B,n)

If ISHELL is called then it is assumed that A is an integer array. Otherwise, if SHELL
or SHELL? is called then it is assumed that A is a real array. The elements of A are re-
ordered so that a; <a;,; fori=1,...,n— 1. In SHELL?2 it is assumed that B is also a real
array containing n entries. The same permutations are performed on B as on A, thereby
reordering the elements of B so as to correspond with the new ordering of A.

Algorithm. The Shell sorting algorithm with increments (3k — 1)/2 is employed.
Programmer. A.H. Morris

Reference. Knuth, D. E., The Art of Computer Programming, Vol. 3, Sorting and Searching.
Addison-Wesley, Reading, Mass., 1973, pp. 84-95.

CUBE ROOT
The following function is available for computing the real cube root of a real number.
CBRT(x)
CBRT(x) =+/x for any real x.

Programmer. A.H. Morris

FOUR QUADRANT ARCTANGENT

The function ARTNQ is similar to the ATAN2 function, the differences being that its
value lies in the interval [0,27) and its value at the origin is 0. DARTNQ is the double preci-
sion counterpart of ARTNQ.

ARTNQ(y,x)
DARTNQ(y,x)

ARTNQ is used if x and y are single precision real values, and DARTNQ is used if x and
y are double precision real values. ARTNQ is a single precision function and DARTNQ is
a double precision function.

If (x,y) is a point in the plane other than the origin (0,0), let L denote the straight line
connecting the points (x,y) and (0,0). Then the function is assigned the value 6 where 6 is
the angle between L and the positive x-axis measured in a counterclockwise direction. Here
0 <6 <27. Otherwise, if (x,y) is the origin (0,0), then the function is assigned the value 0.

Programmer. Richard Pasto

LENGTH OF A TWO-DIMENSIONAL VECTOR
The following functions are available for computing the length of a real vector (x,y).

CPABS(x,y)
DCPABS(X,Y)

CPABS isused if x and y are single precision real values, and DCPABS is used if x and y
are double precision values. CPABS is a single precision function and DCPARBS is a double
precision function, The value of the function is \/x2 +y?2.

Programmer. A. H. Morris

SQUARE ROOT OF A DOUBLE PRECISION COMPLEX NUMBER

The following subroutine is available for computing the square root of a double
precision complex number,

CALL DCSQRT(Z,W)

Z and W are double precision arrays of dimension 2, It is assumed that Z(1) and Z(2)
are the real and imaginary parts of a complex number z, When DCSQRT is called, if z = 0
then W(1) and W(2) are set to 0. Otherwise, if z+ 0 then the square root w =+/z where
—7/2 < arg(w) < 7/2 is computed and stored in W. W(1) and W(2) contain the real and
imaginary parts of w respectively.

Note. Z and W may reference the same storage area.

Programming. DCSQRT calls the function DCPABS. DCSQRT was written by A. H. Morris.

CONVERSION OF POLAR TO CARTESIAN COORDINATES

The following subroutine is available for converting polar coordinates (r,0) to cartesiar
coordinates (x.,y).

CALL POCA(1,0,x,y)

Let (1,0) be the polar coordinates of a point in the plane and let x,y be variables. When
the routine is called, x and y are assigned the values x = rcos § andy = rsin 0.
CONVERSION OF CARTESIAN TO POLAR COORDINATES

The following subroutine is available for converting cartesian coordinates (x,y) to polar
coordinates (r,0).

CALL CAPO(x,y,r,0)

Let (x,y) be the cartesian coordinates of a point in the plane and let r,0 be variables. If
(x,y) is the origin then CAPO sets r = 6 = 0. Otherwise, if (x,y) is a point other than the
origin, let L denote the straight line connecting the points (0,0) and (x,y). Then when CAPO
is called, r is assigned the value +/x2 +y2 and @ is defined to be the angle between L and the
positive x axis. Here -7 < 8 < 7.

ROTATION OF AXES

Let (x,,y,) be the (cartesian) coordinates for a point in the plane. The following sub-

routine computes the new coordinates (x5.¥,) for the point after the x,y axes have been
rotated by an angle 6.

CALL ROTA(x, y,,0.X,.y,)

Here X, and y, are variables. When the routine is called, X, and y, are assigned the
values:

X, = X, cost9+y1 sin @

Yy = -X, sinf +y, cosf

PLANAR GIVENS ROTATIONS

If a and b are real numbers where a? + b2 # 0, then there is an orthogonal matrix (_g (s:
such that (_g g) (%) = ((r)) In this case r2 = a2 + b2, ¢ = a/r, and s=b/r. The matrix (_g §
represents what is called a Givens rotation. Given a and b, the matrix is uniquely defined
up to the sign of r. For any real a, let sgn(a) =1 if a 2 0 and sgn(a)=—1if a < 0. If we
define r = 0v/a2 + b2 where

sgn(a) if lal > [b]
sgn(b) if |a| < |b]

then for r # 0 we note that |c| > [s| implies ¢ > 0, and that [c| < |s| implies s > 0. For con-
venience, whenr=0wesetc=1ands=0.

The value o is not needed for the construction of a Givens rotation matrix, but its use
permits the representation of ¢ and s by a single value z. For each c and s, z is defined as
follows:

s iflsi<corc=0
l/c ifO<|¢c|<s

The mapping (c,s) > z is 1-1. If the user wishes to reconstruct ¢ and s from z, then this can
be done as follows:

Ifz=1thensetc=0ands=1.
If |z] <1 then set ¢ =V1—z2 and s = z.
If |z| > 1 then set ¢ = 1/z and s =V1-c2.

The subroutines SROTG and DROTG are available for computing c, s, 1, and z. SROTG is
used when a and b are single precision real numbers, and DROTG is used when a and b are
double precision numbers.

CALL SROTG(AR,BZ,C,S)
CALL DROTG(AR,BZ,C,S)

When SROTG is used then AR, BZ, C, and S are single precision real variables. Other-
wise, when DROTG is used then AR, BZ, C, and S are double precision variables. On input,
AR =aand BZ =b. When the routine terminates AR =r,BZ=2z,C=c,and S =s.

Programming. These routines are part of the BLAS package of basic linear algebra sub-
routines designed by C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. SROTG
and DROTG were coded by Charles Lawson (Jet Propulsion Laboratory).

10

THREE DIMENSIONAL ROTATIONS

If A = (a;) is a 3 X3 orthogonal matrix, then A can be represented in the form
A =R;R,R,E where

1 0 0 cosf, O —sinb,
R; = 0 cosf; -sinb, R, = 0 1 0
0 sinf; cosb, sinf, O cosb,
cos B3 —sin O, 0 1 0 O
Ry =|sinf; cosO; O E={0 1 0
0 0 1 0 0 =1

R, represents a rotation around the x-axis, R, a rotation around the y-axis, and Ry a rota-
tion around the z-axis. Since A is orthogonal the determinant det(A) = #1. If det(A) = 1
then E is the identity matrix and A is the combined rotation R3R,R;. If det(A) =—1 then
A is composed of the rotation R3R,R; and the reflection E = diag(1,1, —1). The following
subroutine is available for finding the angles 6,,6,,0; where -7 < 8; <, |0,| < 7/2, and
- <03 <.

CALL ROT3(A,THETA)

THETA is an array of dimension 3 or larger. When ROTS3 is called, the angles 6,,0,,03
are computed and stored in THETA.

Algorithm. 1f aj; = ay = O then let §; = 0. Otherwise, let 63 = ATAN2(ay;,a;;). Then

r !
I a1 a3
RiA =[0] = A
3 4 43 | T

431 ap Ay
where r; =V a%l + a%l. Also, if 8, = ATAN2(a3,1;) then
14 ”
Ty 4 43
R =| 0 ap ay|=A

r ’
0 ayp axn

11

where r, = V17 +a3,. Since r, > 0, by orthogonality it follows that r, = 1 and aj, =aj3 = 0.
Finally, if 6; = ATAN2(a3;,a%) then
1 0 O
RIA" =| 0 13 apn

0 0 a'3'3

where r; = \f(a'zz)2 + (a'32)2. Since r3 = 0, by orthogonality we obtain r; = 1, ay =0,
and a%; = *1.

Programmer. A.H. Morris

12

ROTATION OF A POINT ON THE UNIT SPHERE TO THE NORTH POLE

Given the point (x,y,z) where x? +y? +z? = 1, Then there exist orthogonal matrices

1 0 O Cy 0 —Sy
Ry = 0 Cx —Sx and Ry = 0 1 0
0 sy oy Sy 0 Cy

X 0
such that Rny(3Z’>= (?) R, represents a rotation about the x-axis and Ry a rotation
about the y-axis. The following subroutine is available for obtaining the values CysSx:CysSy-

CALL CONSTR(x,y,z,CX,SX,CY,SY)

CX,SX,CY,SY are variables. When CONSTR is called, these variables are assigned the

values CxsSx:CysSy- ’

Programmer, RobertJ, Renka (Oak Ridge National Laboratory)

13

HYPERBOLIC SINE AND COSINE FUNCTIONS

The following subroutine is available for computing the functions sinh(x) — X,
cosh(x) — 1, and cosh(x) — 1 —x2/2 for real x.

CALL SNHCSH(S, C, x,ISW)

S and C are variables, and ISW is an input argument which specifies the functions to be
computed. ISW takes the values:

ISwW =
ISW =
ISW =
ISW =
ISW =

-1

0
1
2
3

if only sinh(x) — x is desired.

if sinh(x) —x and cosh(x) — 1 are desired.

if only cosh(x) — 1 is desired.

if only cosh(x) — 1 —x2/2 is desired.

if sinh(x) — x and cosh(x) — I —x2/2 are desired.

S is assigned the value sinh(x) — x if this function is requested. When cosh(x) — 1 or
cosh(x) — 1 —x2/2 is computed then the value is stored in C.

Precision. For all x, sinh(x) — x has a relative error less than 2.3E-14, cosh(x) — 1 has a
relative error less than 2.2E-14, and cosh(x) — | — x2/2 has a relative error less tharn

3.8E-14.

Programming. Written by A.K. Cline and R.J. Renka (University of Texas at Austin).
Modified by A. H. Morris.

15

EXPONENTIALS
The following function is available for computing e* — 1.
REXP(x)
REXP(x) =e* — 1 for all real x.

Algorithm. For |x| < .15 a rational minimax approximation is used. Otherwise, e* — 1 is
computed using the function EXP.

Precision. REXP is accurate to within 2 units of the 14" significant digit.

Programmer. A. H. Morris

17

LOGARITHMS
The following functions are available for computing In(1 + a) and ¢(x) = x — | — In(x).
ALNREL(a)

ALNREL(a)=1In(l+a)fora>—1.

Algorithm. For |a] < .375 a rational minimax approximation is used. Otherwise, In(1 + a)
is computed using the function ALOG.

Precision. ALNREL(a) is accurate to within 2 units of the 14" significant digit when
ALNREL(a) # 0.

Programmer. A. H. Morris
RLOG(x)

RLOG(x) = ¢(x) for x > 0.

Algorithm. If |x — 1] < .18 then ¢(x) = 2r2 [1/(1 — 1) - rw] is applied where r = (x — 1)/
(x + 1) and w is a rational minimax approximation of E 2/(2n+ 3). If .61 <x<.82

or 1.18 < x < 1.57 then x is reduced to the interval [. 82 1 18] using ¢(cz) = ¢p(c) + p(z) +
(c — 1) (z — 1). Otherwise, ¢(x)is computed using the function ALOG.

Precision. RLOG is accurate to within 3 units of the 14t" significant digit.

Programmer. A.H. Morris

19

THE CONVEX HULL FOR A FINITE PLANAR SET
If (x1,¥1)s---,(Xp ,¥m) are m distinct points in the plane, then the following subroutine
is available for finding the smallest convex polygon which with its interior contains the

points.

CALL HULL (X.Y m, BXBY. k.VX. VY, n)

It is assumed that m 2 2. X and Y are arrays containing the abcissas Xy X and
ordinates y, ...y~ respectively. When HULL is called the points are reordered so that
y, <+ <y_. This reordering is permanent. Thus X and Y may be modified when the

routine terminates.

BX and BY are arrays of dimension m + 1 or larger, and k is a variable. When HULL
terminates, BX and BY will contain the abcissas and ordinates of the points (xi ,yi) which lie
on the desired convex polygon, and k will equal the number of points stored in BX and BY.
If BX and BY contain the abcissas x| ,...,x, and ordinates Y] Yy, then the points (x,y})
are indexed in the order they occur when traversing the convex polygon in a counterclock-
wise manner. The last point of the sequence, namely (xl'(,yl'(), will be the same as the first
point of the sequence;ie., x; = x| and y; =vy,.

VX and VY are arrays of dimension m + 1 or larger, and n is a variable. When HULL
terminates, VX and VY will contain the abcissas and ordinates of the vertices of the desired
convex polygon, and n will equal the number of points stored in VX and VY. If VX and VY
contain the abscissas x|,...,X; and ordinates y{s-Y., then the vertices (x!',y;') are indexed in
the order they occur when traversing the convex polygon in a counterclockwise manner.

n

The last vertex, namely (x[,y.), will be the same as the first vertex; i.e., x] = x| and
Vo = Y-

Example. Assume that we are given the points
(-1,-3), (1,1), (0,3), (2,2), (-2,4), (-1,-1). When
HULL is called X and Y are reordered so that:

X contains -1-1,1,2,0,-2

Y contains -3-1,1,2,3,4 I .7
BX contains -1,2,0,-2,-1

BY contains -3,2,3,4-3 \ /
VX contains -1,2,-2,- 1 \| [/

VY contains -3,2,4,-3 ‘T /f

21

Remarks. If the points all lie on a single straight line, then either the ordinates will all be
different or they will all be the same. If they are different, then after the points arc
rcordered yl< <ym. Otherwise if Y= = Y, then the routines will rcorder the
points so that x; <---<{x_ . In either case

BX will contain XX 5%y (X sY)
BY will contain YooY mo¥q

VX will contain X, X, X, (x;95)
VY will contain y,,y_ .Y, (x,¥,)

and the variables k and n will be assigned the valuesk=m + 1 and n = 3.

Programming. HULL was written by Richard K. Hageman and modified by A. H. Morris.
The routine calls the function SPMPAR and the subroutines SHELL and SHELL?2.

Reference. DiDonato, A. R., and Hageman R. K., An Algorithin for Finding the Convex
Hull of a Finite Point Set in the Plane, Technical Note TN 7942, Naval Surface Weapons
Center, Dahlgren, Virginia, 1979.

AREAS OF PLANAR POLYGONS

Given a sequence of points », = (x,,y;,) (= 1,...n +)wheren=1andv _,=v,. Let
7 denote the polygon whose boundary 97 is a polygonal line which begins at point »,,
traverses the points », in the order that they are indexed, and is the straight line segment
connecting », to v, fori=1,.,n. Then the function PARFA is available for computing
A(r) = [f,dxdy. If the boundary o7 is a positively (negatively) oriented simple closed curve,
then A(r) is positive (negative) and |A(7)| = the area of 7. However, o7 need not be simple.
It may be self-intersecting or have overlapping line segments.

PAREA(X,Y,NB)

X and Y are arrays containing the abscissas Xy se-Xyp and ordinates y,,....¥yp
respectively. The argument NB may have the value n orn+ 1. Since Vo1 =PV Xp 4 and
Y.+ are not required to appear in X and Y. PAREA(X,Y,NB) is assigned the value A(r).

Programmer. A. H. Morris

Reference. DiDonato, A. R., and Hageman, R. K., Computation of the Integral of the Bi-
variate Normal Distribution over Arbitrary Polygons, Technical Report TR 80-166, Naval
Surface Weapons Center, Dahlgren, Virginia, 1980.

23

ERROR FUNCTION
For any complex z the error function is defined by

2 A
erf(z) = -\/—Ff e~t? dt
0

and its complement by erfc(z) = 1 — erf(z). The subroutine CERF is available for computing
erf(z) and erfc(z) when z is complex, and the functions ERF, ERFC, and ERFC1 are avail-
able for computing erf(z) and erfc(z) when z is real.
ERF(x)
ERF(x) = erf(x) for any real x.
Precision. ERTF maintains accuracy to within 2 units of the 14th significant digit.

Programmer. A.H. Morris

Reference. Cody, W. I., “Rational Chebychev Approximations for the Error Function,”
Mathematics of Computation 23 (1969), pp. 631-637.

ERFC(x)
ERFC(x) = erfc(x) for any real x.
Precision. ERFC(x) is accurate to within 2 units of the 14™ significant digit for x < 1.
Programmer. A.H. Morris

Reference. Cody, W. J., “Rational Chebychev Approximations for the Error Function,”
Mathematics of Computation 23 (1969), pp. 631-637.

ERFCI1(IND,x)

IND is an integer and x a real number. ERFCI(IND,x) = erfe(x) when IND =0 and
ERFCI(IND,x) = ex? erfc(x) when IND # 0.

Precision. ERFCI(IND,x) is accurate to within 2 units of the 14% significant digit when
IND=0and x < 1, or when IND # 0 and x = -1.

Programmer. A. H. Morris

25

Reference. Cody, W. J., “Rational Chebychev Approximations for the Error Function,”
Mathematics of Computation 23 (1969), pp. 631-637.

CALL CERF(MO,z,w)

MO is an integer, z a complex number, and w a complex variable. When CERF is
called, w is assigned the value erf(z) if MO = 0 and the value erfc(z) if MO 0.

Algorithm. For z = x + iy where x = 0, if z satisfies |z| < 1 or both of the inequalities
1 <|z]<+/38 and x2 —y? +.256 x2y? <0, then the series

o0 - 2n+1
erf(z) = 2 (—1)nz2n

JT nzo nl(2n+1)

isused. If 1 <|z|<+/38 and x2 —y2 +.256 x2y2 > 0 then

-2 18 T
erf(z) = 1 - XLy o

VT on=1 22+

is employed. A, and 1, are the poles and residues of the rational function approximation
for the complex Fresnel integral E(z) given in the reference. The error function is related to
E(z) by erf(z) = 1 — i +/2 E(-z2) for |arg(z)| < #/2. If |z| > +/38 and x > .01 then erf(z) is
computed by the asymptotic expansion erf(z) = 1 — Y (z). Here

1.3...(2n—1)} Iarg(z)l <_1£_

v =<2 |l B e
\/? z n=1 Jngln+l

where m = 37. Otherwise, if |z| 2 +/38 and 0 < x < .01 then the modified asymptotic
expansion erf(z) = —{ (z) is employed. When x < 0 then the relation erf(—z) = —erf(z)
is applied.

Precision. CERF is accurate to within 4 units of the 14™ significant digit when z is real, and
to within 5 units of the 13 significant digit when Re(z) = 0.

Programming. Written by A. V. Hershey. Modified by A. H. Morris.

Reference. Hershey, A.V., Approximation of Funcrions by Sets of Poles, Technical
Report TR-2564, Naval Weapons Laboratory, Dahlgren, Virginia, July 1971.

26

NORMAL DISTRIBUTION FUNCTION
For any real x the normal probability distribution function P(x) is defined by

X

|
Var),

P(x) = e 2 dt

and its complementary function by Q(x) = 1 — P(x). The following function is available
for computing P(x) and Q(x).

PNDF (x,IND)

IND is an integer and x a real number. If IND = Q then

-

P(x) if x =2 -8

PNDF (x,0) = P'(x) _
{f’—(x_) if x < -8

where P'(x) is the derivative of P(x). Otherwise, if IND # O then

Q&) if x < 8
PNDF(X,IND) = Q’(X)

QX

if x > 8

where Q'(x)_is the derivative of Q(x).

Algorithm. The identities P(x) = —,’12. erfe(-x/V2) and Q(x) = % erfc(x/V2) are used.

Programming. PNDF calls the function ERFC1. These functions were written by A. H.
Morris.

27

COMPLEX FRESNEL INTEGRAL

For any complex z not on the positive real axis the complex Fresnel integral E(z) can
be defined by

D N
E(z)—\/z—nf_m\/t_dt,

Here it is assumed that 0 < arg(z) < 2« and arg(\/E) = 1/2 arg(z). E(z) can be extended to
the positive real axis by letting 0 <X arg(z) < 2#. Then erf(z) = 1 — i \/TE(—zz) for
—m/2 < arg(z) < w/2 where erf(z) is the error function and arg(—z2) = w + 2 arg(z). The
following subroutine is available for computing E(z).

CALL CFRNLI(MO,z,w)

MO is an integer, z a complex number, and w a complex variable. When CFRNLI is
called, w is assigned the value E(z) if MO = 0 and the value ¢ 2E(z) if MO # 0.

Algorithm. If z = x + iy satisfies |z| < 1 or both of the inequalities 1 < |z| < 38 and
—x +.064 y? <0, then the series

b oo n
E@) = ———=+ V2z/1 X z

V2 n=0 n!(2n+ 1)

isused. If 1 <|z| <38 and —x +.064 y2 > 0 then

18 T
_ Z =z n
E@ = V 27 © nzz:l z— 8§,

is employed. If |z| 2 38 and either x < 0 or |Im +/2z/w| = .008, then E(z) is computed
by the asymptotic expansion E(z) = ¥ (z). Here

=_L m 1'3"'(21’1_1)
¥ (z) o I:I + nz=:l ooy j|

where m = 37. Otherwise, if {z| 2 38 and |Im v/ 2z/7| < .008 then the modified asymptotic
expansion E(z) = —i/v/2 + ¥ (z) is employed.

29

Precision. For real z, E(z) is accurate to within 4 units of the 14th significant digit when
z is negative, and to within 5 units of the 13t significant digit when z is positive.

Programming. Written by A. V. Hershey. Modified by A. H. Morris.

Reference. Hershey, A. V., Approximation of Functions by Sets of Poles, Technical Report
TR-2564, Naval Weapons Laboratory, Dahlgren, Virginia, July 1971.

30

REAL FRESNEL INTEGRALS

For any complex z the Fresnel integrals C(z) and S(z) can be defined by

f ' (ﬂ tz) dt
X cos 5

z T
f sin (— t2> dt .
0 2

The following subroutine is available for computing C(z) and S(z) when z is real.

C(2)

S(z)

CALL FRNL(x.C.S)

The argument x may be any real number. C and S are variables. When FRNL is
called C is assigned the value C(x) and S is assigned the value S(x).

Algorithm. If 0< x< 1.65 then x ! C(x) and x~3 S(x) are computed by minimax
polynomial approximations. Otherwise, if x 2 1.65 then the relations

C —_ l_’_ f 1 z 2 E 2

(x) = > (x) sin 5 X -g(X)coszx
1

S(x) = E - f(x) cosgx2 - g(x) singx2

are invoked. For 1.65 < x < 6, xf(x) and x3g(x) are computed by rational minimax
approximations. Otherwise, for x 2 6 the auxiliary functions f(x) and g(x) are computed by
the asymptotic expansions:

_ 1 L i1'3"'(4i—1)
fx) = Wx[l +i§l D (7rx2)2i :|
[+3:(4it+1)

1 m
= — 3 (-1) :
g(x) X i=0() (mx2)2i*1

Here m = 5. If x <O then the relations C(-x) = -C(x) and S(-x) = -S8(x) are applied.
Precision. If | x | < 1.65 then FRNL is accurate to within 3 units of the 14th significant
digit. Otherwise, if | x |>= 1.65 then FRNL is accurate to within 1 unit of the 14th

significant digit.

Programming. FRNL calls the functions SPMPAR and I[IMACH. FRNL was written by
A. H. Morris.

31

EXPONENTIAL INTEGRAL FUNCTION

For any complex z # 0 not on the positive real axis the exponential integral function

Ei(z) is defined by
Z et
Ei(z) = J T dt.

Ei(z) is an analytic function. If z is replaced by -z and t by -t we obtain the related
function
-t

B,(2) = - Ei(-2) =f = at

which is defined for all z # 0 not on the negative real axis. It can be verified that

Zl'l

Ei(z) = v +In(-z) + °2°
n=1 nen!

everywhere in the plane cut along the positive real axis.! Thus the values of Ei(z) on the
upper and lower edges of the cut are

Ei(x £i0) = eix) ¥ 7i

where ei(x) is the real function defined by

n

oo
ei(x) = v+lnx+ Z :
n=1 n.n!

for x > 0. ei(x) is also known as the exponential integral function. It is a strictly monotone
function having a zero at the point x, = .37250 74107 81367. ei(x) has the integral

representation
€t R
e e
ei(x) = lim l:f — dt +f — dt}
e-0})t t

€

for all x > 0. Ei(z), E;(z), and ei(x) may be computed by the subroutines CEXPLI and
EXPLI. CEXPLI handles complex arguments and EXPLI handles real arguments.

CALL CEXPLI(MO,z,w)

MO may be 0 or 1, z+# 0 is a complex number not on the positive real azis, and w is a
complex variable. When CEXPLI is called, if MO =0 then w is assigned the value Ei(z).
Otherwise, if MO = 1 then w is assigned the value e 2Ei(z).

'v is the Euler constant .57721 56649 ... and In z denotes the single-valued branch of the logarithm defined by
Inz=1nz| +1i arg(z) where |arg(z)| < =.

33

Precision. For real z, e 2Ei(z) is accurate to within 3 units of the 14" significant digit if
-9 <z<0, and accurate to within 4 units of the 14!® significant digit if z < -9.

Programmer. A. V. Hershey

Reference. Hershey, A. V., Approximations of Functions by Sets of Poles, Technical Report
TR-2564, Naval Weapons Laboratory, Dahlgren, Virginia, 1971.

CALL EXPLI(MO x,v.JERR)

MO may have the values 1,2, or 3. The argument x is a non-zero real number, and y is a
real variable. When EXPLI is called, if MO = 1 then y is assigned the value Ei(x) forx < 0
and the value ei(x) for x > 0. If MO = 2 then it is assumed that x > 0. In this case y is
assigned the value E,(x). Otherwise, if MO = 3 then y is assigned the value e~ *Ei(x)
for x < 0 and the value e *ei(x) forx > 0.

Error Rerurn. TERR is an integer variable that is set by the routine. If no input errors occur
and underflow/overflow do not occur, then IERR is assigned the value 0. Otherwise, IERR
is assigned one of the following values:

IERR =1 if underflow occurs
IERR = 2 if overflow occurs
IERR = 3 ifx =0

IERR = 4 ifMO =2 and x <0

Underflow occurs if MO =1 and x <-669.31, or if MO=2 and x > 669.31. When it
occurs, y will have the value 0. Overflow can occur only when MO = 1 and x > 748.28. If
overflow occurs then y will not be assigned a value. The settings IERR = 3 and 4 indicate
input errors. In these two cases y is not assigned a value.

Precision. ¢ * Ei(x) is accurate to within 2 units of the 14t significant digit for
-10<x <0, and to within 1 unit of the 14'™ significant digit for x <-10. e Xei(x) is
accurate to within 2 units of the 14" significant digit for 0 <x < 12, and to within 1 unit
of the 14™ significant digit for x>>12. The only exceptions are for the intervals
408 <x <.413 and |x-x,I< 4:107!% where x, is the zero of ei(x). Accuracy is
maintained to within 5 units of the 14" significant digit for .408 < x < .413, and to within
2 units of the 14'" significant digit for | x - x, | <4-10713.

Programming. EXPLI belongs to the FUNPACK package of routines developed at Argonne

National Laboratory. The routine was modified by A. H. Morris. EXPLI employs the func-
tions EXPARG and I1MACH.

34

References.

(1) Cody, W. J., and Thacher, H. C., “Rational Chebychev Approximations for the
Exponential Integral E, (x)”, Mathematics of Computation 22 (1968), pp. 641-649.

2y _ “Chebychev Approximations for the Exponential Integral Ei(x)”,
Mathematics of Computation 23 (1969), pp. 289-303.

35

SINE AND COSINE INTEGRAL FUNCTIONS

For any complex z the sine integral and cosine integral functions Si(z) and Cin(z) are
defined by

z .
Sic = [L g
o ¢
£1-cost
Cin(z) = f —t°—- dt.
0
These are entire functions. The following functions are available for computing Si(z) and
Cin(z) when z is real.
SI(x)
SI(x) = Si(x) for all real x.

Precision. SI is accurate to within 2 units of the 14" significant digit.

Programming. S1 calls the function SPMPAR. SI was written by Donald E. Amos and
Sharon L. Daniel (Sandia Laboratories), and modified by A. H. Morris.

CIN(x)
CIN(x) = Cin(x) for all real x.
Precision. CIN is accurate to within 2 units of the 14 significant digit.

Programming. CIN calls the function SPMPAR. CIN was written by Donald E. Amos and
Sharon L. Daniel (Sandia Laboratories), and modified by A. H. Morris.

37

GAMMA FUNCTION

For any complex z the gamma function I'(z) is defined by

1 oo z
P C “Ve-
r'a zet? 11 (1 + n)e z/n

n=1

where C is Euler’s constant. I'(z) has a simple pole at z = 0,-1,-2, ... and 1/T'(2) is an entire
function. If Re(z) > 0 then

I'z) = f tz-le"t dt.
0

The subroutine CGAMMA is available for computing I'(z) and In I'(z) when z is complex,
and the functions GAMMA and GAMLN are available for computing I'(z) and In I'(z)
when z is real. CGAMMA is less efficient and accurate than GAMMA and GAMLN.

CALL CGAMMAMO, z,w)

MO is an integer, z a complex number satisfying z # 0, —1, =2, ..., and w a complex
variable. When CGAMMA is called, w is assigned the value I'(z) if MO = 0 and the value
In I'(2) if MO # 0.

Programmer. A.H. Morris

Reference. Kuki, Hirondo, “Complex Gamma Function with Error Control,” Comm.
ACM 15 (1972), pp. 262-267.

GAMMA (x)

The argument x is a real number. If I'(x) can be computed then GAMMA(x) is assigned
the value I'(x). Otherwise, if ['(x) cannot be computed, then GAMMA(x) is set to 0.

Remark. On the CDC 6000-7000 series computers I'(x) can be evaluated only when
x#0,-1,-2,...and X[< 177.8.

Algorithm. If |x| < 15 then x is reduced to the interval [1,2) by I'(a+ 1) =aTl(a), and a
rational minimax approximation is employed. Tf x < —15 then

(_1)n+1,n.

PO = Sn) XITOxD

39

is applied. Here |x| = n + X\ where n is the largest integer less than [x|. For x = 15

1

In'(x) = (x—1/2)Inx — x + 5

In27 + g(x)

is computed where g(x) is a minimax approximation. The function g(x) is evaluated in
single precision, and a double precision value is obtained for In x. This yields a double
precision value for In I'(x). If In I'(x) = a + § where « is the leading portion of In I'(x),
then I'(x) is set to e*(1 + §). This is permissible since 1 + & are the only terms of the Taylor
series expansion for e? that are significant.

The logarithm In x is evaluated as follows: Let n be the largest integer less than or
equal to x, and let t = (x —n)/(x+n). Then x = n(1 + t)/(1 —t) so that In x=In n+In[(1 +t)/

(1 -1)]. Also 0 < t<1/(2n). The function In[(1 + t)/(1— t)] is computed by a polynomial
minimax approximation in single precision, and the value In n is stored in double precision.

Precision. If 0 < x <2 then GAMMA(X) is accurate to within 2 units of the 14t gignificant
digit. If x = 15 then GAMMA(x) is accurate to within 3 units of the 14th significant digit.
Otherwise, GAMMA(x) is accurate to within 5 units of the 14 significant digit.

Programming. GAMMA calls the functions GLOG and EXPARG. Thése functions were
written by A, H. Morris, The function [IMACH is also used,

GAMLN (x)
GAMLN(x) = In I'(x) for all positive real x.

Algorithm. Rational minimax approximations are used for In I'(1 + a)/a and In I'(2 + a)/a
when —,2 <a<X.6and —4<<a<.25. Forx>15

InTx)=x—-1/2)Inx — x+—é—ln 21 + g(x)
is computed where g(x) is a minimax approximation,

Precision. GAMLN(x) is accurate to within 2 units of the 14! significant digit when
GAMLN(x) # 0.

Programming. GAMLN employs the function GAMLN1. These functions were written by
A. H. Morris.

40

DIGAMMA FUNCTION
For any complex z # 0, —1, =2, ..., the digamma (or psi) function Y (z) is defined by
Y(z) = I'(2)/T(2)

where T'(z) is the gamma function. The subroutine CPSI is available for computing Y(z)
when z is complex and the function PSI is available for computing y/(z) when z is real.

CALL CPSI(z,w)

The argument z is a complex number satisfying z # 0, -1, =2, ..., and w is a complex
variable. When CPSI is called, w is assigned the value Y (z).

Algorithm. 1f z = x + iy satisfies x 2> 0 and |z| > 8, then the asymptotic expansion

is employed. Otherwise, if x = O then the smallest nonnegative integer n is found for which
|z + n| > 8, and the relation

n-1 1

Y(z) = *]E

0 Zt] + Y(z+n)

is applied. When x <0 then
v(2) = Y(1—z) — 7 cot(nz)
is also invoked.
Programmer. A.H. Morris
PSI(x)

The argument X is a real number. If x # 0,-1,-2,... then PSI(x) is assigned the value
Y(x). Otherwise, PSI(x) is assigned the value 0.

Precision. For x > 0 PSI(x) is accurate to within 2 units of the 14th sjgnificant digit.

41

Programming. PSI belongs to the FUNPACK package of routines developed at Argonne

National Laboratory. The format of the routine was modified by A. H. Morris. The func-
tion SPMPAR is used.

. Reference. Cody, W. J., Strecok, A. J., and Thacher, H. C., “Chebychev Approximations
for the Psi Function,” Mathematics of Computation 27 (1973), pp. 123-127.

42

LOGARITHM OF THE BETA FUNCTION
For a,b > 0 the beta function B(a,b) can be defined by
1
B(a,b)= f =1 (1 -1 dt,
0

From this it follows that B(a,b) = T'(a)['(b)/T'(a + b) where I'(@) is the gamma function,
The following function is available for computing In'B(a,b).

BETALN(a,b)
BETALN(a,b) = In B(a,b) for a,b > 0,
Precision. BETALN(a,b) is accurate to within 4 units of the 14! significant digit when
a,b > 1 and BETALN(a,b) # 0. In particular, when a,b > 15, BETALN(a,b) is accurate to

within 2 units of the 14th significant digit,

Programming. BETALN employs the functions ALNREL, ALGDIV, BCORR, GAMLN,
GAMLNI, and GSUMLN. These functions were written by A. H. Morris.

43

INCOMPLETE GAMMA RATIO FUNCTIONS

For a2 0 and x = 0, where a and x are not both 0, let P(a,x) and Q(a,x) denote the
functions defined by

X
P(ax) = - f e 1214t
I'(a) 0
Q(a,x) = L) e tta~1g¢ .
I'(a) J,

Then 0<P(a,x)<1 and P(a,x)+ Q(a,x) =1. The following subroutine is available for
computing P(a,x) and Q(a,x).

CALL GRATIO(a,x,P,Q, 1)

P and Q are variables. GRATIO assigns P the value P(a,x) and Q the value Q(a,x).
The argument i may be any integer. This argument specifies the desired accuracy of the
results. If i=0 then the user is requesting as much accuracy as possible (up to 14 signifi-
cant digits). Otherwise, if i=1 then accuracy is requested to within 1 unit of the 6™
significant digit, and if i+ 0,1 then accuracy is requested to within 1 unit of the 39 signifi-
cant digit.

Error Return. P is assigned the value 2 when a or x is negative, when a = x =0, or when
P(a,x) and Q(a,x) are indeterminant. P(a,x) and Q(a,x) are indeterminant when x ~ a and a
is exceedingly large. On the CDC 6000-7000 series computers this occurs when |x/a—1]|
<107 and a > 6.6E25.

Programming. GRATIO calls the functions ERF, ERFC1, REXP, RLOG, GAMMA, GAM]1,
and SPMPAR. GAMMA employs the functions GLOG, EXPARG, and IIMACH. GRATIO

was written by A. H. Morris.

Reference. DiDonato, A. R. and Morris, A, H., “Computation of the Incomplete Gamma
Function Ratios and their Inverse,” ACM Trans. Math Software 12 (1986).

45

., s
o
"»—5}.,:

INCOMPLETE BETA FUNCTION

For a,b > 0 and 0 < x < 1 the incomplete beta function is defined by
X
1
Iy(a,b) = ——f ta-1(1 — t)b-1dt
B(a,b) J,

where B(a,b) is the beta function. Then we note that 0 < [.(ab) < 1 and

lim [(a,b)=1 forx#20

a—>0 X

lim I _(a,b)=0 forx=#1.

b—=0 °
These limits permit IX (a,b) to be defined to be 1 when a= 0 and b # 0, x # 0, and for
I (a,b) to be defined to be O when b =0 and a # 0, x # 1. The subroutine BRATIO is
available for computing I (a,b) for arbitrary a,b > 0, and the subroutine ISUBX is available

for computing I (a,b) for the highly specialized case when a and b are integers or half-
integers.

CALL BRATIO(a,b,x,y,W,W1,IERR)

It is assumed that a2 0, b =20, 0<x < 1l,andy =1 — x. W, W], and IERR are
variables. If no input errors are detected then IERR is set to 0, W is assigned the value
I (a,b), and W1 is assigned the value 1 — I (a,b).

Error Rerurn. When an input error is detected, then W and W1 are assigned the value 0 and
IERR is set to one of the following values:

I[ERR=1 ifa<0orb<o

IERR =2 ifa=b=0

IERR=3 ifx<Qorx>1

IERR =4 ify<Qory>1

[ERR =5 ifx+y+#1

IERR =6 ifx=a=0

IERR =7 ify=b=0
The setting IERR = 5 occurs when X and y are not given to sufficient accuracy so that x +y
adequately approximates 1 in the floating point arithmetic being used.

Programming. BRATIO was formulated by A. R. DiDonato and A. H. Morris. BRATIO
employs the subroutines BGRAT and GRATI, and the functions ALGDIV, ALNRFEL,
BASYM, BCORR, BETALN, BFRAC, BPSER, BRCOMP, BUP, ERF, ERFC1, GAMLN,
GAMLNI1, GAMMA, GSUMLN, RCOMP, GAM1, and RLOG., Also GAMMA calls the

49

functions GLOG and EXPARG. These routines and functions were written by A. H. Morris.
The functions SPMPAR and 11MACH are also used.

CALL ISUBX(a,b,x,W,IERR,EPS)

It is assumed that a. b, and x satisfy the following restrictions:
(1) a>0.b>0,andx =0
2) az%,B<b<L70,andx< 1
(3) aand b are integers or half-integers
EPS specifies the (absolute) accuracy that is desired. W is a real variable and IERR an
integer variable, When ISUBX is called, if there are no input errors then W is assigned the
value L (a,b) and TERR is assigned the value 1.

Error Return. If an error is detected then IERR is assigned one of the following values:
IERR =2 if restrictions (1) are violated.
IERR =3 if restrictions (2) are violated or a is too large.
IERR =4 if restrictions (3) are violated.

Also W is assigned the value 0.

Remarks. ISUBX was designed for a maximum precision EPS=10 10

Programming. [SUBX employs the tunctions ALGDIV, ALNREL, BLND, I1IMACH, and
LOGAM. ISUBX was written by A. H. Morris.

Reference. DiDonato, A.R. and Jarnagin, M.P., ““The Efficient Calculation of the Incom-

plete Beta-function Ratio for Half-Integer Values of the parameters a, b,”” Math. Comp. 21
(1967), pp. 652-662.

50

BESSEL FUNCTION J (z)

If v is complex then J (z) is defined by

o= (_l)k(z/z)v+2k
L@ = 2 etk r D)

for any z # 0 in the complex plane cut along the negative real axis. J,(z) is analytic in the
region |arg(z)| < m, and J,(z) is an entire function of » for any fixed z. If v is an integer
then J,(z) is also defined at O and is an entire function of z. The following subroutines
are available for computing J, (z).

CALL CBSSLJ(z,v,w)

The arguments z and v are complex numbers and w is a complex variable. It is assumed
that |arg(z)l <w. When CBSSLJ is called, w is assigned the value J (z).

Precision. CBSSLJ is accurate to within 4+10-13 for real 0 < z < 35 and 0 <v< 1.
Nore. CBSSLJ employs the subroutine CGAMMA.
Programmer. A.V. Hershey

Reference. Hershey, A. V., Computation of Special Functions, Technical Report TR-3788,
Naval Surface Weapons Center, Dahlgren, Virginia, 1978.

CALL BSSLJ (z,n,w)

The argument z is a complex number, n is an integer, and w is a complex variable.
When BSSLJ is called, w is assigned the value J, (z).

Precision. BSSLJ is accurate to within 5 +10-14 forreal 0 <z<35andn=0,1.
Programmer. A.V.Hershey

Reference. Hershey, A.V., Computation of Special Functions, Technical Report TR-3788,
Naval Surface Weapons Center, Dahlgren, Virginia, 1978.

CALL BESJ (x,0,n,W,k)

The arguments x and « are nonnegative real numbers, n is a positive integer, and W is
an array of dimension n or larger. When BESJ is called J, ,;_;(x) is computed and stored in
W(@) fori=1,...,n.

51

The argument k is an integer variable that is set by the routine. If all J,,;_(x) are
successfully computed then k is set to 0. Otherwise, k is assigned one of the following
values:

k = =1 The argument x is negative.

k = =2 The argument « is negative.

k = =3 The requirement n 2 1 is violated.

k>0 The last k components of W have been set to 0 because of underflow.

Precision. For 0 < x <35 and 0 <a < 1, BESJ is accurate to within 8+10713.

Programming. BESJ calls the subroutines ASJY and JAIRY, and the functions GAMLN,
SPMPAR, and I1IMACH. The subroutines were written by Donald E. Amos, Sharon L.
Daniel, and M. Katherine Weston (Sandia Laboratories).

References

(1) Amos, D.E., Daniel, S.L., and Weston, M.K., CDC 6600 Subroutines for Bessel
Functions J (x), x 2 0, v = 0 and Airy Functions A;(x), Aj(x), —o00 <x <o, Report
SAND 75-0147, Sandia Laboratories, Albuquerque, New Mexico, 1975.

2 __, “CDC 6600 Subroutines IBESS and JBESS for Bessel Functions
I,(x) and J,(x),x =0, v = 0,” ACM Trans. Math Software 3 (1977), pp. 76-92.

52

BESSEL FUNCTION Y ,(z)
If v is any complex number not an integer, then Y, (z) can be defined by

J,(z) cosvm — J_,(2)
sin v

Y,(2) =

for any z # 0 in the complex plane cut along the negative real axis. For any integer n we
can also define Y,(z) = lim Y,(z). Then for any complex v, Y,(z) is analytic in the region
larg(z)I <w. Also, Y, (z)vi_s> an entire function of » for any fixed z. The following subroutine
is available for computing Y,(z) when » is an integer.

CALL BSSLY(z,n,w)

The argument z is a complex number, n is an integer, and w is a complex variable.
It is assumed that [arg(z)| <w. When BSSLY is called, w is assigned the value Y, (z).

Precision. If .005 < x < .785 then Y,(x) and Y;(x) are accurate to within 3 units of the
14th significant digit. Otherwise, if x > .785 then Y(x) and Y;(x) are accurate to within
4-10-14,

Programmer. A.V. Hershey

Reference. Hershey, A. V., Computation of Special Functions, Technical Report TR-3788,
Naval Surface Weapons Center, Dahlgren, Virginia, 1978.

53

)

MODIFIED BESSEL FUNCTION I, (z)

If v is complex then I (z) is defined by

o) 2 v+2k
IV(Z) = 3 '(—Z/)__.
k=0 kKIT'(w+k+1)

for any z # 0 in the complex plane cut along the negative real axis. I,(z) is analytic in the
region |arg(z)| <, and I,(z) is an entire function of » for any fixed z. If » is an integer
then I,(z) is also defined at O and is an entire function of z. The following subroutines are
available for computing I,,(z).

CALL BSSLI(MO,z,n,w)

MO is an integer, z a complex number, n an integer, and w a complex variable. If
MO # 0 then it is assumed that |arg(z)| < 7. When BSSLI is called, w is assigned the value
I,(z) if MO = 0 and the value eI, (z) if MO # 0.

Precision. BSSLI is accurate to within 5 units of the 13t significant digit forreal 0 < z < 35
andn=20,1, .., 40.

Programmer. A.V. Hershey

Reference. Hershey, A. V., Computation of Special Functions, Technical Report TR-3788,
Naval Surface Weapons Center, Dahlgren, Virginia, 1978.

CALL BESI(x,o,MO,n,W,k)

MO may be 1 or 2. The arguments x and « are nonnegative real numbers, n is a positive
integer, and W is an array of dimension n or larger. When BESI is called, if MO = 1 then
I,+i-1(x) is computed and stored in W@) for i = 1, ..., n. Otherwise, if MO = 2 then
e~*1,4;-1(x) is computed and stored in W(i).

The argument k is an integer variable that is set by the routine. If all I,+;-1(x) or
X[4;_1(x) are successfully computed then k is set to O. Otherwise, k is assigned one of
the following values:
k =-1 The argument x is negative.

k = =2 The argument « is negative.

k = =3 The requirement n = 1 is violated.

k=-4 MOisnot]or?2.

k = =5 The argument x is too large for MO = 1.

k>0 The last k components of W have been set to 0 because of underflow.

55

Precision. For0<x<35and0<a<1 (or0<x<35anda=1,2,...,40) Ia(x) is accurate
to within 2 units of the 12™ significant digit.

Programming. BESI calls the subroutine ASIK and the functions GAMLN, SPMPAR, and
IIMACH. BESI and ASIK were written by D.E. Amos and S. L. Daniel (Sandia Labo-
ratories).

References

(1) Amos, D. E. and Daniel, S. L., A CDC 6600 Subroutine for Bessel Functions Iy(x),
p = 0, x > 0. Report SAND 75-0152, Sandia Laboratories, Albuquerque, New
Mexico, 1975.

(2) Amos, D. E., Daniel, S. L., and Weston, M. K., “CDC 6600 Subroutines IBESS and
JBESS for Bessel Functions Iv(x) and Jv(x), x = 0, v =0, ACM Trans. Math
Software 3 (1977), pp. 76-92.

56

MODIFIED BESSEL FUNCTION K, (z)
If v is any complex number not an integer, then K (z) can be defined by

g L,@) - L2
K,(2) = 2 sinew

for any z # 0 in the complex plane cut along the negative real axis. For any integer n we
can also define K, (z) = lim K,(z). Then for any complex v, K, (z) is analytic in the region
larg(z)! < w. Also, KV(Effs an entire function of » for any fixed z. The following sub-
routines are available for computing K, (z).

CALL CBSSLK(z,r,w)

The argument z is a complex number, r is a real number, and w is a complex variable.
It is assumed that |arg(z)| <w. When CBSSLK is called, w is assigned the value K (z).

Programmer. A.V. Hershey

Reference. Hershey, A.V., Approximations of Functions by Sets of Poles, Technical
Report TR-2564, Naval Weapons Laboratory, Dahlgren, Virginia, 1971.

CALL BSSLK(MO,z,n,w)

MO is an integer, z a complex number, n an integer, and w a complex variable. It is
assumed that |arg(z)] < w. When BSSLK is called, w is assigned the value K, (z) if MO =0
and the value e?K, (z) if MO # 0.

Precision. BSSLK is accurate to within 6 units of the 14th significant digit for real z and
n=0,1.

Programmer. A.V. Hershey

Reference. Hershey, A. V., Computation of Special Functions, Technical Report TR-3788,
Naval Surface Weapons Center, Dahlgren, Virginia, 1978.

57

COMPLETE COMPLEX ELLIPTIC INTEGRALS OF THE
FIRST AND SECOND KINDS

If k is complex then the complete elliptic integrals of the first and second kinds can be
defined by

af2
K&)= f (1 — k2 sin2 t)" %2 dt
0

/2
Ek) = f (1 — k2 sin? t)"2 dt
0

for |arg(l — k2)] <. K(k) and E(k) can be extended to —n < arg(1 — k2) <a. For k| <1

KK)= = 3 ¢ k2n
2 n» °
1)
T k2n
Ek) = — =
== X a1
h @0 1 e, i 22 = 1 — K2 where |2 < 1 and —7 < arg®) <1, h
where ¢ @l . Also, i =1- where {2] < | and —7 < arg(R°) <, then
KK =1k@m-E _ 5 ¢ 5
o m 2 31 ® m=im@m-—1)

1 16 2n L g S
EK)==—[K@Q-E®Q}In—> -2 ¢ z + X c .
() =—[K& - E®) @ a3 "on_1 m1 m@2m—1) ns0 " (2n— 1)?

The function CK is available for computing K(k), and the subroutine CKE for computing
K&k) and E(k).

CK(k,%)

CK(k,?) = K(k) for any complex k and & where k2 + 22 = 1 and 2 # 0. CK is a complex
valued function which must be declared in the calling program to be of type COMPLEX.

Error Return. CK(&,2)=0 if 2=0 or k2 + 92 # 1.

59

Remarks
(1) CK(k,2) may underflow, yielding the value 0, when |k| is sufficiently large.
(2) CK and the subroutine CKE employ the same algorithm for K (k).

Precision. 1f k is teal and k| < 1 then the relative error of CK is less than 10713 Also,
if k is purely imaginary then the relative error is less than 10713, K(k) is real-valued for only
these values of k. Otherwise, let €, = 10712 if [k| < 0.8, €, =2-10-13 if 0.8 < |k| <2, and
€ = 10-13 if |k| > 2. Then the relative errors of the real and imaginary parts of CK are less
than €, except when underflow occurs, [k| <1 and |arg(xk)| < 107287, or [k| < 10% and
[m/2 — arg(xk)| < 107280, In the latter two cases the relative error of the real part of CK
isless than €, , but all relative accuracy for the imaginary part may be lost.

Programming. CK calls the subroutine KI. and functions ALNREL, CFLECT, KM, and
SPMPAR. CK, KL, and KM were written by Andrew H. van Tuyl (Naval Surface Weapons
Center) and modified by A. H. Morris.

CALL CKE(,%,K,E,IERR)

The arguments k and £ are complex numbers where k2 + €2 = 1 and 2+ 0, K and E are
complex variables, and IERR an integer variable. When CKE is called, if no errors are
detected then IERR s set to 0, K is assigned the value K(k), and E is assigned the value E(k).

Error Return. IERR = 1if £ = 0 and IERR =2 if k2 + 22 # 1. In these caées, K and E are
not defined.

Algorithm. Fork = 0 or —7/2 < arg(k) < /2, formulae (2) are-used if [2] < .55, (1) are used
if |2] > .55 and k| < .53, and approximations of the form

Kk)=2 3 —
(k)_ n=1 322+b§1 k2

N bnk 1bnk
Ek)=¢ nE=1 an[1+ 0 tan .]

)

are used if |2] > .55 and .55 < |k| < 1. (3) are obtained from integral representations for
K(k) and E(k) by numerical quadrature. If (] > .55, [k| > 1, and [k| < |2 then

Kk) =€, Kk,) k

“)
E(k)=E(k,)/%, g, =1/

60

are applied where the sign in k, is selected so that —n/2 < arg(k)) < #/2. Otherwise, if
2] > .55, [k| > 1, and k| > (2] let k, = 1/k and 521 = +i/k where the sign is selected so that
—n/2 <arg(?) < w/2. Then

KK)=k, [Kk,)) + isK®)]
)
Ea<)=kllu~:a<1) — 2Kk, — is BEQ) — k¥ K@)

are applied wheres=1if Im(k)>0and s =—1 if Im(k) < 0. If arg(k) > n/2 or arg(k) < —n/2,
then K(k)= K(—k) and E(k) = E(—k) are applied.

Precision. 1f k is real and |k| < 1, or k is purely imaginary, then the relative error of E isless
than 10713, E(k) is real-valued for only these values of k. Otherwise, let ¢, = 10712 if
k| <2and € = 10-13 if |k| > 2. Then the relative errors of the real and imaginary parts
of E are less than ¢, except when underflow occurs, |k| < 1 and |arg(¢k)| < 10-280 or
k| < 1013 and j7/2 — arg(zk)| < 10280, [n the latter two cases the relative error of the
real part of E is less than € but all relative accuracy for the imaginary part may be lost.

Programming. CKE calls the subroutines EKL and EKM, and the functions ALNREL, ATN,

CFLECT, and SPMPAR. CKE was written by Andrew H. van Tuyl (Naval Surface Weapons
Center).

61

REAL ELLIPTIC INTEGRALS OF THE FIRST AND SECOND KINDS

If 0 < ¢ < 7/2, then the elliptic integrals of the first and second kinds are defined by

¢
F@@k) = f (1 — k2 sin2 t)~%dt
0

¢
E@k) = f (1 — k2 sin? ty*dt
0

for any real k where k? < 1 and |k sin ¢| # 1. If ¢ = n/2 then the integrals are said to be
complete. Otherwise, if ¢ # /2 then the integrals are said to be incomplete. The following
subroutine is available for.computing F(¢,k) and E(¢.k).

CALL ELLPI(¢,¢.k,2,F,E,IERR)

The arguments ¢, ¥, k, £ are real numbers which satisfy ¢ =0, ¢y =2 0,0+ ¢ = /2, and
k2 + 22 = 1. Also, if ¢ = 0 then it is further assumed that £+ 0. F, E, and IERR are
variables. When ELLPI is called, if no input errors are detected then IERR is assigned the
value 0, F is assigned the value F(¢,k), and E is assigned the value E(¢,k).

Error Return. If an input error is detected then IERR is set as follows:
IERR=1 ¢<0ory <0
IERR=2 |k|>1lor|2>1
[ERR=3 y=0and2=0

Precision. ELLPI maintains accuracy to within 5 units of the 14t? significant digit.

Programming. ELLPI calls the functions ALNREL and CPABS. ELLPI was written by
Allen V. Hershey and modified by A. H. Morris.

Reference. DiDonato, A. R. and Hershey, A. V., “New Formulas for Computing Incomplete
Elliptic Integrals of the First and Second Kind,” JACM 6 (October 1959), pp. 515-526.

63

REAL ELLIPTIC INTEGRALS OF THE THIRD KIND

For any 0 < ¢ < /2 the elliptic integral IT(¢,n k) is defined by

[0}
T(¢ n,k) =J (1-nsin?6)"! (1-k2 sin?6) * do
0

where n is any real number such that 1-n sin?¢ # 0, and k any real number such that
k2 <1 and 1 —-k? sin? ¢ #+ 0. Alternatively, for any r # 0 we may consider

RJ(a’b’CJ):%j (t+1! [(t+a) (t+b) (t+c)] " dt
0

where a,b,c are nonnegative and at most one¢ of them is 0. If a<b < cand a<c then

)]
-¥2

RJ (aabacsr) = [H(¢>nsk) '» F(¢sk)]

n sin’ ¢

where F(¢,k) is the elliptic integral of the first kind and cos? ¢ = a/c, k? = (c-b)/(c—-a),
n = (c~1)/(c—a). If ¢ = m/2 then the elliptic integral I1(¢,n k) is said to be complete. Other-
wise, if ¢ < w/2 then the integral is said to be incomplete. The subroutine EPI is available
for computing I1(¢,n k), and the function RJ is available for computing R;(a,b,cn).

CALL EPI(¢,m/2—¢ k% ,1-k% n,1-n,p JERR)

The arguments ¢,n,k? are real numbers which satisfy 0 < ¢ < #/2, |n| <1, and k? < 1.
Also, if ¢ =7/2 then it is further assumed that n # 1 and k2 # 1. IERR and p are variables.
When EPI is called, if no input errors are detected then IERR is assigned the value 0 and p is
assigned the value II(¢,n k).

Remark. 1f ¢ <.79 then the argument w/2- ¢ is not employed in the calculation of
II(¢,n k). Otherwise, if ¢ .79 then ¢ is not used.

Error Return. 1f an input error is detected then IERR is set as follows:

IERR =1 Either ¢ or the argument /2 — ¢ is negative.

IERR =2 In| > 1.

IERR=3 Eitherk?< 0 ork? > 1.

IERR =4 ¢ and n are too close to w/2 and 1, or ¢ and k? are too close to /2

and 1.

The arguments 1 —k? and 1 —n are not checked. If these arguments are improperly set then
IERR =4 may occur.

65

Precision. EPI is accurate to within 5 units of the 14 significant digit.
Programming. EPI employs the functions RF, RC, and RJ. These functions were written

by B.C. Carlson and Elaine M. Notis (Iowa State University). EPI was written by A. H.
Morris. The function SPMPAR is also used.

Reference. Carlson, B. C. and Notis, E. M., “Algorithm 577, Algorithms for Incomplete
Elliptic Integrals,”” ACM Trans. Math Software 7 (1981), pp. 398-403.

RI(a,b,c,r,7,JERR)

The arguments a,b,c are nonnegative and at most one of them is 0. It is also assumed
that r > 0. Then RJ(a,b,c,r,7 IERR) =R, (a,b,c,r).

The argument 7 is used for setting the desired precision. The relative error due to
truncation of the Taylor series expansion used in RJ is less than 378 /(1 - T) 2 Thus, de-

creasing 7 by a factor of 10 will yield six more digits of accuracy. For example:

Relative Truncation

T error less than
3.E-3 3.E-15
1.E-2 4E-12
3.E-2 3.E-9
1.E-1 . 4E-6

IERR is an integer variable that is set by the routine. If R, (a,b,c,r) is successfully
computed then IERR is assigned the value 0. Otherwise, IERR =1 when one of the follow-
ing situations occurs:

(1) At least one of the arguments a,b,c is negative.

(2) At least one of the values a+b,a+c,b+c,r is too small. On the CDC 6000-

7000 series computers this normally occurs when one of these values is less than
.25E-97.
(3) At least one of the arguments a,b,c,r is too large. On the CDC 6000-7000 series
computers this occurs when one of the arguments is greater than 4E + 107.
If IERR =1 then the value of RJ is meaningless.

Programming. RJ calls the function RC. These functions were written by B. C. Carlson and
Elaine M. Notis (Iowa State University). The function SPMPAR is also used.

66

References

(1) Carlson, B. C., “Computing Elliptic Integrals by Duplication,” Numerische Mathe-
matik 33 (1979), pp. 1-16.

(2) and Notis, E. M., “Algorithm 577, Algorithms for Incomplete Elliptic
Integrals,” ACM Trans. Math Software 7 (1981), pp. 398-403.

67

™

JACOBIAN ELLIPTIC FUNCTIONS

For |k| < 1 consider the upper limit ¢ of the integral

¢
- e
h V1 —k”sin®t

as a function of u. Then for any real u the elliptic functions sn(u,k), cn(u,k), and dn(u.,k)
may be defined by

sn{u,k) = sin ¢
cn(uk)=cos¢p
dn(uk) =\/1 — k2 sin? ¢ = El%

For |k|=1 sn(u,1)=tanhu
cn(u,1)=1/coshu
dn(u,1)=cn(u,1).

Otherwise, for |k| < 1 we have
sn(—u,k)= —sn(,k)
cn(—uk) = cn(u,k)
dn(—u,k) = dn(u,k)
sn(u + 2K, k) = —sn(u,k)
cn(u + 2K,k) = —cn(u.k)
dn(u + 2K ,k) = dn(u,k)

where K = K(k) is the complete elliptic integral of the first kind. The following subroutine
is available for computing sn(u,k), cn(u,k), and dn(u,k).

CALL ELLPF (uk,2,S,C,D,IERR)

It is assumed that k and 2 are real numbers where k2 + 82 = 1. S, C, and D are
variables. When ELLPF is called, S, C, and D are assigned the values S = sn(u,k), C = cn(u.k),
and D= dn(u,k).

IERR is a variable that reports the status of the results. When the routine terminates,
IERR has one of the following values:

IERR=0 The elliptic functions were computed.

IERR=1 (Inputerror) k2 + &2 +# 1

IERR =2 uis too large for k.
When IERR = 1, no computation is performed.

69

Precision. For |k| <.99995 the relative errors of sn(u,k) and dn(u,k) are less than 10°'? when
0 <u< K, and the relative error of cn(u,k) is less than 1012 when 0 < u<.97K.

Algorithm. For 0 <u <<K/2 (when £+ 0), the Maclaurin expansion
213 2 4 14y,5
snuk)=u— (1+k*)u + 1+ 14k___+_k__)1:1__ _
3! 5!
is employed when u < .01. Otherwise, if u > .01 let K’'=K(®), q = exp (—7K’/K), and
r = exp (—mK/K’). Then

n+¥% £]!
sn(u,k)=21 z - sin 2n+ 1ymu
kK n>0 1—g2n*! 2K

isused when k < € and

2n
sn(u,k)= T |:tanh—7TLL +43 CLE sinh 2”}
2kK’ 2K’ n»1 1+ 10 K’

is used when k > £. The funétions cn(u,k) and dn(u,k) are obtained from

sn(w,k)? + cnw,k)? =1
dn@,k)? +k? sn(u,k)? = 1.

For K/2 <u < K the identities
sn(u,k) = cn(v,k)/dn(v,k)
cn(u,k) = || sn(v,k)/dn(v,k)
dn(u,k) = |2]/dn(v k)
are applied. Herev=K — u.
Programming. ELLPF employs the subroutines SCD, SCDF, SCDJ, SCDM, ELLPI, SNHCSH

and functions ALNREL, CPABS, SPMPAR, [IMACH. ELLPF-was written by Andrew H.
van Tuyl and modified by A. H. Morris.

70

WEIERSTRASS ELLIPTIC FUNCTION FOR THE EQUIANHARMONIC
AND LEMNISCATIC CASES

Let w and w' be complex numbers where Im(w'/w) > 0, and let w,,,, = 2mw + 2nw’ for
all integers m,n. Then for any complex z, the Weierstrass elliptic function Pz;w,w') can
be defined by

Saww) =L+ 3| L
z (Z— Wpy Winn

where X' denotes the sum for all m,n = 0, =1, £2,... except m=n=0. If w = rel® and
w' = r'ei® where ¢' = ¢ + 8 for 0 <@ < 2, then the restriction Im(w'/w) > 0 is equivalent
to assuming that 0 < 0 < m. .2(z;w,w') is analytic everywhere except at the points w,,
which are poles, and

Pz +2w;w,w) = Az, w,w")

Pz + 2w w,w) =Az;w,w')
for all z. The relations

Pz, w, W) =Az;w,w')

PO AWAW) =X 2P(z; w,w') AF0
also hold. A somewhat surprising fact is that only the values g, = 60 2’ wit and g5 =
140 =’ w,’mﬁn are needed for computing 2(z;w,w') at a point z. Hence, A(z;w,w") is fre-
quently denoted by #(z;g,,83). ForA#0

g Aw,Aw) = X~4g, (w,w')

g3 Aw,Aw") = X-6g; (w,w')
also hold. We now consider the following cases:

(1) Equianharmonic (g, = 0 and g5 is a positive real number)

(2) Lemniscatic (g, is a positive real number and g3 = 0)
(1) occurs when 2w = 1/2 — g i and 2w’ =%+ @i, and (2) occurs when 2w = 1 and
2w' =i. The following subroutines are available for computing #(z;w,w") and its deviative
#'(z;w,w') for these two choices of (w,w").

CALL PEQ(z,e,IERR)

The argument z is a complex number, e is a complex variable, and IERR is an integer

1_V3 1.V3

variable. It is assumed that the periods are 2w = 53 i and 2w’ =5 +—2— i. When

PEQ is called, if z is not a pole then IERR is assigned the value O and e is assigned the
value . A(z; w,w').

Error Return. If z = w,, for some m,n then IERR is assigned the value 1 and e = 0.

Precision. If |-2(z;w,w")| < 1 then the absolute error is less than 7 *+ 1013, Otherwise, the
relative error is less than 7 = 10-13,

71

Programming. Written by Ulrich Eckhardt (University of Hamburg, West Germany). Modi-
fied by A. H. Morris.

References

(1) Eckhardt, Ulrich, “Algorithm 549, Weierstrass’ Elliptic Functions,” ACM Trans. Math
Software 4 (1980), pp. 112-120.

(2) _________, “A Rational Approximation to Weierstrass’ #-Function,” Mathematics
of Computation 30 (1976), pp. 818-826.

CALL PEQI(z,¢,IERR)

The argument z is a complex number, e is a complex variable, and IERR is an integer

V3

variable. It is assumed that the periods are 2w =%—T i and 2w’ =% +—\/§—3—i. When PEQ1

is called, if z is not a pole then IERR is assigned the value 0 and e is assigned the value
P (z;w,w').

Error Return. If z = w,,,, for some m,n then IERR is assigned the value 1 and e = 0.

Precision. 1f | #'(z;w,w')| < 1 then the absolute error is less than 7 * 10-13. Otherwise, the
relative error is less than 7 * 10-13.

Programming. Written by Ulrich Eckhardt (University of Hamburg, West Germany). Modi-
fied by A. H. Morris.

References
(1) Eckhardt, Ulrich, “Algorithm 549, Weierstrass’ Elliptic Functions,” ACM Trans. Math
Sofrware 4 (1980), pp. 112-120.

(2) . “A Rational Approximation to Weierstrass’.#-Function,” Mathematics
of Computation 30 (1976), pp. 818-826.

CALL PLEM(z,e,IERR)

The argument z is a complex number, e is a complex variable, and IERR is an integer
variable. Tt is assumed that the periods are 2w = 1 and 2w’ = i. When PLEM is called, if z
is not a pole then IERR is assigned the value 0 and e is assigned the value Pz, w,w).

Error Return. If z= w,,,, for some m,n then IERR is assigned the value 1 and e = 0.
Precision. If | #(z;w,w")] < 1 then the absolute error is less than 6+ 10-13. Otherwise,

the relative error is less than 6 = 10-13.

72

Programming. Written by Ulrich Eckhardt (University of Hamburg, West Germany). Modi-
fied by A. H. Morris.

References

(1) Eckhardt, Ulrich, “Algorithm 549, Weierstrass’ Elliptic Functions,” ACM Trans. Math
Software 4 (1980), pp. 112-120.

() _____, *“A Rational Approximation to Weierstrass’ .#-Function. II: The
Lemniscatic Case,”” Computing (Arch. Elektron. Rechnen) 18 (1977), pp. 341-349.

CALL PLEMI(z,e,IERR)

The argument z is a complex number, e is a complex variable, and IERR is an integer
variable. It is assumed that the periods are 2w = 1 and 2w’ =1i. When PLEMI is called, if z
is not a pole then IERR is assigned the value 0 and e is assigned the value . #'(z; w,w").

Error Return. 1f z = w,,, for some m,n then IERR is assigned the value 1 and e = 0.

Precision. 1f | #'(z; w,w')| < 1 then the absolute error is less than 6 « 10~13. Otherwise, the
relative error is less than 6 + 10-13.

Programming. Written by Ulrich Eckhardt (University of Hamburg, West Germany). Modi-
fied by A. H. Morris.

References

(1) Eckhardt, Ulrich, “Algorithm 549, Weierstrass’ Elliptic Functions,” ACM Trans. Math
Software 4 (1980), pp. 112-120.

(2) _________, “A Rational Approximation to Weierstrass’ #-Function. II: The
Lemniscatic Case,” Computing (Arch. Elektron. Rechnen) 18 (1977), pp. 341-349.

73

INTEGRAL OF THE BIVARIATE DENSITY FUNCTION OVER
'ARBITRARY POLYGONS AND SEMI-INFINITE
. ANGULAR REGIONS

Given a sequence of points », = (x,.y;) (i=1,..,n+1) where n=>3 and S S
Let 7 denote the polygon whose boundary 07 is a polygonal line which begins at poi_nt 2
traverses the points v, in the order that they are indexed, and is the straight line segment
connecting-v, to v, for each i=1,...,n where », #»,,,. Then the subroutine VALR2 is
available for computing the integral

Pr)= 5= [fexp [+y?)/2] dx dy

and the associated function A(7) ?{f dx dy. If the boundary 07 is a simple positively (nega-
tively) oriented closed curve, then P(r).and A(7) are positive (negative) and |A(7)| = the area
of 7. However, o7 need not be simple. It may be self-intersecting or have overlapping line
segments. If AGi is the angle between the vectors v, = V4 ‘and Vig 7Y (where vy = vn),
then it may occur that Ag, =m for some i, in which case a portion of the polygon may be
degenerate. In general, -7 < A@i < 7 foreach i where the sign of the angle is positive (nega-

tive)-if the angle is measured in a counterclockwise (clockwise) direction from v, — v, ; to
S

1

Viep ~ Y- VALR?2 also computes the value k(1) = o3 'Zl AOi, which is an integer. If the
1:

i+l
boundary is a simple closed curve, _theh k(7) is the winding number of the curve around any
interior point of the polygon 7.

Alternatively, assume that we are given three points v, = (xi,yi) (i=1,2,3) and let A6
denote the angle between the vectors v, —v; and v; —», . In this case, assume that the
angle Af is measgre_d 'in a counterclock\yise direction from vy —v; to vy —v;, 80 that
0<AIKL 21’2 Let £ denote the s_traight line beginning at point »; and passing through point
v,, and let £ denote the straight line beginning at », and passing through v, .- Then the sub-
routine VALR2 is also available for computing P(r) when 7 is the semi-infinite angular
region bounded: by 2 and i, and having the angle Af. 0 < P(7) < 1 for any angular region 7,
and P(7) > 1 when A0 = 27. »

Angular region 7

CALL VALR2(X,Y,n,P . IOP A ,IND k)

‘The argument n is either 1 or the number of points involved in defining a polygon.
If n=1 then it is assumed that 7 is a semi-infinite angular region defined by the points

75

v, = (xy;) 1=1,2,3), and that X and Y are arrays containing x,,X,,X; and y;,y,.¥;.
Otherwise, if n#1 then it is assumed that 7 is a polygon defined by the points v, = (X,,¥;)
(i=1, ..,n+1) where n> 3 and Yie1=V;- In this case, X and Y are arrays containing the
abscissae X, .., X, 4 and ordinates y,,...,¥, ;- Since v_ ., =v»,, the values x_ and Vot
need not be supplied by the user. The routine automatically stores X, and y, 1n X(n+1)
and Y(n+1).

P, A, and k are variables. If n=1 then P is assigned the value P(7) for the angular
region 7 and A is assigned the value 0. In this case, k is not defined. Otherwise, if n >3
then P is assigned the value P(7), A is assigned the value A(r), and k is assigned the value k()
for the polygon 7.

IOP is an input argument which specifies the (relative) precision to which P(7) is to be
computed. IOP is set to 1, 2, or 3 for 3, 6, or 9 decimal digit accuracy.

IND is a variable that reports the status of the results. The routine assigns IND one of
the following values:
IND=0 The desired values were obtained.
IND=1 (Input error) Point », is either equal to », or »;, or is too close to v, or
v, to compute P(7) for the angular region 7.
IND=2 The desired values were obtained. If n=1 then |Af8 — 7| <e whereeisa
tolerance whose value depends on the value for IOP. Otherwise, if n =3
then |A0i| > 7 —¢ for some i.
IND=3 (Input error) Eithern <1 orn = 2.
When IND = 1 occurs, P is assigned the value 5.

Remarks: VALR2 can be used for computing the integral of the general bivariate density
function over an arbitrary polygon or semi-infinite angular region 7. Consider

A (w-u)z-p) [z-pY
A - w —-M,, w Z z
P(r) = 21r0 o, _[[’2(1 07 |:< > 2p oo, +< 2) :”dw dz

where (uw,yz) is the mean, o, and o, are the (nonzero) variances, and p is the correlation
coefficient satisfying |p | < 1. Consider also the transformation

 |w-n Z—-u
x=(1-p% [— - az]
W Z

Since this transformation maps str/\aight lines into straight lines, 7 is mapped onto a polygon
or angular region 7 and we obtain. P(T) P(7). Moreover, if 7 is a polygon then A(T) ff dwdz

=00, 1-p2 A(7).

76

Programming. VALR2 employs the functions ERF, ERFC1, and SPMPAR. VALR2 was
designed by Armido R. DiDonato and Richard K. Hageman, and modified by A. H. Morris.

Reference. DiDonato, A. R., and Hageman, R. K., Computation of the Integral of the Bi-

variate Normal Distribution over Arbitrary Polygons, Technical Report TR 80-166, Naval
Surface Weapons Center, Dahlgren, Virginia, 1980.

77

CIRCULAR COVERAGE FUNCTION

The subroutine CIRCV is available for computing the circular coverage function P(R,d)
and the generalized circular error function V(K,¢). V is the integral of an uncorrelated
elliptical Gaussian distribution with standard deviations 0, and o, Over a circle of radius
Ko, centered at the mean of the distribution. If o, = a, then

K ™ 2 .
VK = ~ J J exp{—% [1 #c2+(1- c?)cos 0]}r dr d6
T Jy 0 4c

where ¢ = oy/ o .Pis the integral of a circular Gaussian distribution with common standard
deviation ¢ over a circle of radius Ro whose center is offset a distance do from the mean of
the distribution.

R 27
1 1
P(Rd) = P _[f exp JL_ 3 [(d +1 cos 0) + 12 sin? 6]}r dr do
o Yo

CALL CIRCV (x,a,i,w,IERR)

The argument i may be any integer. If i = O then the arguments x and a are assumed to
have the values x =K and a=c where K> 0 and 0 < c< 1. Otherwise, ifi#=0thenx=R
and a=d where R>0and d > 0.

IERR and w are variables. When CIRCYV is called, if no input errors are detected then
IERR is assigned the value 0. Also, w = V(K,c)ifi=0and w = P(R, Q) ifi# 0.

FError Return. 1f an input error is detected then IERR is set as follows:
JERR=1 x>0 is not satisfied.
IERR=2 0<c<1lord=>0isnot satisfied.

When either of these errors is detected, w is assigned the value —1.

Precision. CIRCV is accurate to within 1076
Note. If o, < oy then reverse the roles of x and y.

Programming. CIRCV calls these functions ERFO and ERFCO. The routine is an adaptation
by A. H. Morris of the BASIC program CIRCV given in reference (1).

References

(1) DiDonato, A. R., Five Statistical Programs in BASIC for Desktop Computers, Techni-
cal Report NSWC TR 83-13, Naval Surface Weapons Center, Dahlgren, Virginia, 1982.

2) and Jarnagin, M. P., A Method for Computing the Generalized
Circular Error Function and the Circular Coverage Function, NWL Report 1768,
Naval Weapons Laboratory, Dahlgren, Virginia, 1962.

79

COPYING POLYNOMIALS

m~—1 .
If px)= §0 3 %} and the coefficients a are stored in an array A, then the following

subroutines are available for copying the first n coefficients 3 into an array B.

CALL PLCOPY (A ka,m,B,kb,n)
CALL DPCOPY (A,ka,m,B,kb,n)

A and B are arrays. PLCOPY is used if A and B are single precision real arrays, and
DPCOPY is used if A and B are double precision arrays.

The arguments m, n, ka, kb are positive integers. The coefficients 3, are assumed to be
stored in A where A(1 + jxka) = a forj = 0,1,..,m — 1. The routine stores the first
n coefficients a in B where B(1 + jxkb) = 3 forj=0,1,...,n — L

Note. 1f n > m then B(l + j*kb) = O for j > m.

Programmer. A. H, Morris

83

ADDITION OF POLYNOMIALS

If p(x) = Z 3 x) and q(x) = E b xi then the following subroutines are available for
i=0
computing the flrst n coefficients of the polynom1a1 px)+qx)= 2 c; xJ,

CALL PADD (A,k4,2,B,kb,m,C,kc,n)
CALL DPADD(Aka,2,B,kb,m,C.kc,n)

A, B, C are arrays, PADD is used if A, B, C are single precision real arrays and DPADD
isused if A, B, C are double precision arrays.

The arguments £, m, n, ka, kb, kc are positive integers. The coefficients a, and b. are
assumed to be stored in A and B where
A(1+j*ka)—aj G=0,1,...,2-1)
B(1 + j*kb) = b G=0,1,..m— 1)
The routine stores the ﬁrst n coefﬁcwnts ; of p(x) + qx) in C where C(1 +j*kc) = ; for
=0,1,..,n— 1.

Remarks. The array C may begin in the same location as A or B. If C begins in the same
location as A then it is assumed that kc = ka. In this case, the result C will overwrite the
input data A. Similarly, if C begins in the same location as B then it is assumed that k¢ = kb.
Otherwise, if C does not begin in the same location as A or B, then it is assumed that the
array C does not overlap with the arrays A and B.

Programmer. A. H. Mortris

85

SUBTRACTION OF POLYNOMIALS

. -1 .
If px)= _@0 aij and q(x) = rr.1§0 bjxl then the following subroutines are available for

computing the first n coefficients of the polynomial p(x) — q(x)= chjxi.

CALL PSUBT(A,ka,%,B,kb,m,C,kc,n)
CALL DPSUBT(A ka,%,B,kb,m,Ckc,n)

A, B, C are arrays. PSUBT is used if A, B, C are single precision real arrays and
DPSUBT is used if A, B, C are double precision arrays.

The arguments £, m, n, ka, kb, kc are positive integers. The coefficients a and bj are
assumed to be stored in A and B where
A(l +jxka)= a G=0,1,...,8 -1
B(+jxkb)= bj G=0,1,....m— 1)
The routine stores the first n coefficients ¢ of p(x) — q(x) in C where C(1 +jxkc) = ¢ for
i=0,1,...,n— 1.

Remarks. The array C may begin in the same location as A or B. If C begins in the same
location as A then it is assumed that kc = ka. In this case, the result C will overwrite the
input data A. Similarly, if C begins in the same location as B then it is assumed that kc = kb.
Otherwise, if C does not begin in the same location as A or B, then it is assumed that the
array C does not overlap with the arrays A and B.

Programmer. A. H. Morris

87

MULTIPLICATION OF POLYNOMIALS

If px) = E aJxJ and q(x) = Z b % then the following subroutines are available for

computing the f1rst n coefficients of the polynom1al px)g(x)= 2 ¢ xJ,

CALL PMULT(A,ka,%, B,kb,m,C,kc,n)
CALL DPMULT(Aka,%,B,kb,m,C.kc,n)

A, B, C are arrays, PMULT is used if A, B, C are single precision real arrays and
DPMULT is used if A, B, C are double precision arrays.

The arguments £, m, n, ka, kb, kc are positive integers. The coefficients 3 and bj are
assumed to be stored in A and B where
A(l+j=1<ka)=aJ G=01,.,2—-1)
B(1 +j*kb)= b G=0,1,...m— 1)
The routine stores the ﬁrst n coefflclents ¢ of p(x)q(x) in C where C(1 + jxkc) = ¢ for
i=0,1,..,n— 1

Remarks. It is assumed that the array C does not overlap with the arrays A and B.

Programmer. A. H. Morris

89

DIVISION OF POLYNOMIALS

-1
Ifpx)= ;0 a]xj and q(x) = E b xJ where b, # 0, then the following subroutines

i
are available for computing the first n coeffments of the Taylor series 2-(-)-(-) = Z xJ

q(x)

CALL PDIV(A,ka,?,B,kb,m,C,kc,n,JERR)
CALL DPDIV (A ka,%,B.kb,m,Ckc,n,IERR)

A, B, C are arrays, PDIV is used if A, B, C are single precision real arrays and DPDIV
isused if A, B, C are double precision arrays.

The arguments €, m, n, ka, kb, kc are positive integers. The coefficients a, and bj are
assumed to be stored in A and B where
A(l +jxka)= 3 G=01,...,8-1)
B(1+jxkb)= bj G=0,1,...m— 1)
IERR is a variable. When the routine is called, if b0 # 0 then IERR is assigned the value O
and the first n coefficients ; of p(x)/q(x) are stored in C where C(1 + jxkc) = C; for
=0,1,..,n — 1

Error Return. TERR =1 if b0 = 0. In this case, no computation is performed.
Remark. It is assumed that the array C does not overiap with the arrays A and B.

Programmer. A. H. Morris

91

REAL POWERS OF POLYNOMIALS

m-—1 .
If risrealand p(x)= ;0 ajxJ where a, > 0, then the following subroutines are available

for computing the first n coefficients of the Taylor series p(x) = E‘j bj xJ,

CALL PLPWR(1,A,ka,m,B,kb,n,JIERR)
CALL DPLPWR(r, A ka,m,B,kb,n,IERR)

A and B are arrays. PLPWR is used if A and B are single precision real arrays andr a
real number, and DPLPWR is used if A and B are double precision arrays and r a double pre-
cision number.

The arguments m, n, ka, kb are positive integers. The coefficients a, are assumed to be
stored in A where A(l + jxka) = 3 forj=0,1,....m — 1. IERR is a variable. When the
routine is called, if a, > 0 then IERR is assigned the value O and the first n coefficients
bj of p(x) are stored in B where B(1 + jxkb)= bj forj=0,1,...n— 1.

Error Return. IERR = 1 if a, < 0. In this case, no computation is performed.
Remark. 1t is assumed that the arrays A and B do not overlap.
Algorithm. If q = p' then pq’'= rqp’ where p’ and q” are the derivatives of p and q.

i
Consequently, b, =L 2 (riti—j)ab, . isused forj= 1. Alsob, = al.
] jao i=1 17)-1 0 0

Programmer. A. H. Morris

93

DERIVATIVES AND INTEGRALS OF POLYNOMIALS

-1 N
Let f(x) = Z)O ax' be a polynomial with real coefficients a,. The polynomial can be

n
i=
differentiated and integrated by the following subroutine:

CALL MPLNMV(MO,x4,n,A,Y)

A is an array containing the coefficients a, where A() = a_; fori = 1,...,n. The
argument x,, is an arbitrary real number and Y is a variable. MO may have the values -1, 0,

1, 2. When MPLNMYV is called Y is assigned the value:

fox° fix)dx if MO

v - f(xo) if MO =
f(x,) if MO

f'(x,) if MO

|
B = O -

Programmer. A.V.Hershey

95

LAGRANGE POLYNOMIALS
Let a ,...,a, be n distinct real numbers. Then the i" Lagrange polynomial is defined by

(x- ag)(x - ay) *** (x- a1)X - aq) 0 (X- a,)
(3~ a Xay - ay) orr (ay-a_ g - a,) (g - a)

$,(x) =

for i = 1,2,..,n. The Lagrange polynomials have the property that ¢.(a,) = 1, (bi(aj) =0
n

forj # i, and p(x) = _El p(ai)spi(x) for any polynomial of degree n- 1. For convenience,
i= :

di = (- a;)(a; - aé) (e)y -)t (- ay)

is called the normalization divisor of ¢,(x). The following subroutines are available for com-
puting the Lagrange polynomials and their normalization divisors.

CALL LGRNGN(A n.D)

A and D are arrays of dimension n. The arguments a_,...,a are given in the array A.
The normalization divisors d, ,....d, are computed by the routine and stored in D.

Programmer. A.V.Hershey

CALL LGRNGV(MO, n, x4, A, D, F, DF, DDF)

A and D are arrays of dimension n. The arguments a, ,...,a_ are given in A and the

normalization divisors d, ,...,d are given in D. The argument x, is an arbitrary real number
and F,DF,DDF are arrays of dimension n.

The argument MO may take the values 0,1,2. If MO = 0 then the polynomials cpi(x)
are evaluated and stored in the array F. If MO = 1 then both the function cj)i(x) and its
derivative ¢(x) are computed at X = x,. In this case ¢,(x,) is stored in F(i) and ¢i(x,) is
stored in DF(i) fori = 1,..,n. Similarly, if MO = 2 then the function ¢.(x) and its first and
second derivatives are computed at x,. The values ¢;(x,) are stored in F, the first deriva-
tives are stored in DF, and the second derivatives are stored in DDF.

Note. If MO = 0 then the variables DF and DDF can be ignored and we can write:
'CALL LGRNGV(0, n, x4, A, D, F)
Similarly, if MO = 1 then DDF can be ignored.

Programmer, A.V.Hershey

97

CALL LGRNGX(A,n,C)

A is an array of dimension n and C is an array of dimension n X (n + 1). The arguments

a,,...,a_ are given in A. The purpose of the routine is to compute the coefficients C; of each
Lagrange polynomial

n-

1
— k
p.(x) = X ¢ Xt
] k=0 k+1,j

When the routine is called, the coefficients of ¢j(x) are stored in the j™ column of
C forj <n. Also, the first n coefficients of the polynomial

g(x) = (x-a;) " (x-a))
are stored in the (n + 1)-st column of C.

Programmer. A.V.Hershey

98

ORTHOGONAL POLYNOMIALS ON FINITE SETS

Let u;,...,u, ben dlstmct real numbers. For any real-valued functions f,g defined on
the points u, let (f,g) = Z f(u)g(u) Then (f,g) is an inner product when f and g are

regarded as functions deﬁned only on u,. Thus, an orthonormal set of polynomials
{¢>0, Gy n-l} exists where the degree of ¢ is j for j <n. The polynomials ¢ are defined

recursively by

L - vpp,00- 210,)

3
where 3, (¢1+1’ u¢) and b = (qu, u¢j). Here it is assumed that ¢, =a, = 0 and
$o(u) = 1/3/n. The followmg subroutines are available for computing these polynomials.

CALL ORTHOS(U,m P.n,R)

U is an array containing the values u,,...,u; and m is an integer such that | <m <n.
P is an array of dimension n X m and R an array of dimension 2m - 2. When ORTHOS is
called, ¢ 1(u) is computed and stored in P(i,j) for i<n and j <m. Also the coefficients

a,,b,,a b .a b are stored in R.

0°"1° m-2°"m-2

Programmer. A.V.Hershey.

CALL ORTHOV(MO.n.u,.R.m F.DF DDF)

The argument u is a real number and m an integer such that 1 <m <n. R is an array
containing the coefficients a, NoJg: PR J b__, and F.DF .DDF are arrays of dimen-
sion m.

m2’

MO may take the vatues 0,1,2. If MO = O then ¢.,0,,....¢_ _, are evaluated at u and
stored in F. If MO = 1 then both d)J and its derivative QSJ' are computed at point u. In
this case ¢ 1(u) is stored in F(j) and ¢ , (u) is stored in DF(_]) forj = 1,..,m. Similarly, if
MO = 2 then ¢ , and its first and second derivatives are evaluted at u. The function values
qb] 1(u) are stored 1n F, the first derivatives are stored in DF, and the second derivatives are
stored in DDF.

Note. If MO = 0 then DF and DDF can be ignored and we can write:
CALL ORTHOV(O,n,u,R,m,F)
Similarly, if MO = 1 then DDF can be ignored.

Programmer. A.V.Hershey

99

CALL ORTHOX (n,R,m.C)

The argument m is an integer such that 1 < m <n. R is an array containing the coef-

ficients a;,b,,a;,b; ,....a, ,,b , and C an array of dimension m X m. The purpose of the

routine is to compute the coefficients ¢ of each polynomial
m-1 K .
91 = Ty ut (= Lom),

When ORTHOX is called, the coefficients of qu_l are stored in the j™® column of C.

Programmer. A.V.Hershey

100

ZEROS OF CONTINUOUS FUNCTIONS

Let F(x) be a continuous real-valued function defined for a < x < b, and assume that
F(a) and F(b) have opposite signs. Then the following function is available for finding a
point x in the interval [a,b] for which F(x) = 0.

ZEROIN (F.a.b,AERR ,RERR)

The arguments AERR and RERR are the absolute and relative error tolerances that are
to be satisfied (AERR 2= 0 and RERR = 0). ZEROIN returns a value x in the interval [a,b]
for which F(x) = 0. The result x is accurate to within max {RERR, 4¢} - |x|+ AERR where
e is the smallest number for which 1 +e>1 (e = 2747 for the CDC 6000-7000 series com-

puters).
Note. The function F must be declared in the calling program to be of type EXTERNAL.

Programming. ZEROIN is a slightly modified translation of the ALGOL 60 procedure
ZERO given in reference (1). The code was distributed by G. E. Forsythe, M. A. Malcolm,
and C. B. Moler (University of New Mexico), and modified by A. H. Morris. The function
SPMPAR is called.

References

(1) Brent, Richard, Algorithms for Minimization without Derivatives, Prentice-Hall, 1973.

(2) Forsythe, G. E., Malcolm, M. A., and Moler, C. B., Computer Methods for Mathematical
Computations, Prentice-Hall, 1977.

101

SOLUTION OF SYSTEMS OF NONLINEAR EQUATIONS

Let fi(x) = 0@ = 1,..,n) denote a system of n equations in n unknowns where
X = (X{,..-,Xp). Assume that each fj(x) is differentiable and that an initial guess a = (ag,...,a,)
to a solution of the equations is given. Then the following subroutine is available for
solving the equations to within a specified tolerance.

CALL HBRD(F,n,X,FVEC,EPS,TOL,INFO,WK, %)

X and FVEC are arrays of dimension n or larger. On input X contains the starting
point a = (aj,...,a,). When HBRD terminates, X contains the final estimate x =
(X1,...,Xp) of the solution vector and FVEC contains the values of the functions fy,...,f,; at
the output point in X.

The argument F is the name of a user defined subroutine that has the format:
CALL F(n, X,FVEC,IFLAG)

Here X and FVEC are arrays of dimension n and IFLAG is an integer variable. The array X
contains a point x = (x4,...,x,). Normally F will evaluate the functions fj,...,f;, at this
point and store the results in FVEC. However, if x does not lie in the domain of fy,...,f;
then this cannot be done. In this case, the argument IFLAG (which will have been assigned
a nonnegative value by HBRD) should be reset by F to a negative value. This will signal
HBRD to terminate. F must be declared in the calling program to be of type EXTERNAL.

EPS is an input argument which specifies the relative accuracy of F. If it is estimated
that the subroutine F produces results accurate to k significant decimal digits then one may
set EPS = 107k, It is required that EPS = 0. If EPS = 0 then it is assumed that F produces
results accurate to machine precision.

TOL is an input argument which specifies the desired accuracy of the solution. The
Euclidean norm ||x]| = v/ Z;x? is employed. If X denotes an actual solution of the equations,
then HBRD terminates when an iterate x is generated for which it is estimated that
Ix — %Il < TOL - ||X[| is satisfied. It is required that TOL = 0. In order for the convergence
test to work properly, it is recommended that TOL always be smaller than 10-5.

WK is an array of dimension % that is used for a work space. It is assumed that the
argument ¢ is greater than or equal to n(3n + 13)/2.

INFO is an integer variable that reports the status of the results. When HBRD termi-
nates, INFO will have one of the following values:
INFO <0 This occurs when the user terminates the execution of HBRD by resetting
the argument IFLAG in the subroutine F to a negative value. Then
INFO = the negative value of IFLAG.

103

INFO = 0 (Input Error) Either n > 1, EPS > 0, TOL > 0, or £ > n(3n + 13)/2 is
violated.
INFO =1 A solution having the desired accuracy was obtained.
INFO =2 The number of calls to the subroutine F has reached or exceeded
200(n + 1).
INFO =3 TOL is too small. No further improvement in the accuracy of x is
possible.
INFO = 4 The routine is making very poor progress.
When HBRD terminates, if INFO # 0 then X contains the final iterate that was generated.
Also, if INFO > 1 then FVEC contains the values of the functions fi,...,f; at this iterate.
If INFO = 2 then it may be helpful to continue the procedure by recalling HBRD with the
current point in X as the new starting point. However, this is not advisable when INFO = 4.
This setting can arise when x = 0 is a solution or when entrapment occurs. HBRD searches
for a solution to the equations by minimizing ; fi(x)z. In doing this, it can become trapped
in a region where the minimum does not correspond to a solution of the equations. This is
what occurs when the equations have no solution. When entrapment occurs and the equa-
tions are known to have a solution, then it is recommended that the user try a different
starting point.

Scaling. If the convergence criterion [|x — X|| < TOL - [IX|| is satisfied and TOL = 107k, then
the larger components of the final iterate x may be accurate to k significant digits but not
the smaller components. For example, if TOL = 10~3 and x = (1.2, .34E-4), then 1.2 may
be accurate to 5 significant digits while .34E-4 is accurate to only 1 significant digit. If it
is suspected that the smaller components do not have acceptable accuracy, then it is recom-
mended that the variables in the original problem be rescaled and the problem rerun.

Algorithm. A modified form of the hybrid Powell procedure is employed.

Programming. HBRD is a slightly modified version of the MINPACK-1 subroutine HYBRDI.
The MINPACK-1 subroutines HYBRD, SPMPAR, ENORM, DOGLEG, FDJAC1, QFORM,
QRFAC, RIMPYQ, and RI1UPDT are employed. The subroutines were written by Jorge J.
More, Burton S. Garbow, and Kenneth E. Hillstrom (Argonne National Laboratory).

References

(1) More, 1.J., Garbow, B.S., and Hillstrom, K. E., User Guide for MINPACK-1, Argonne
National Laboratory Report ANL-80-74, Argonne, lllinois, 1980.

(2) Powell, M. J.D., “A Hybrid Method for Nonlinear Equations,”” Numerical Methods for
Nonlinear Algebraic Equations, P. Rabinowitz (ed.), Gordon and Breach, London,
1970.

104

SOLUTIONS OF QUADRATIC, CUBIC, AND QUARTIC EQUATIONS

Given a polynomial a, +a;z+ -0t a z" with real coefficients where a # 0 and
n = 2,3, or 4. The following subroutines are available for computing the roots z ...,z of
the polynomial,

CALL QDCRT(A,Z)
CALL CBCRT(A,Z)
CALL QTCRT(A,Z)

QDCRT is used if n = 2, CBCRT is used if n= 3, and QTCRT is used if n=4. A isthe
array of coefficients where A(k) = a fork=1,2,..,n+ 1, and Z is a complex array of
dimension n or larger. When the appropriate subroutine is called, the roots z,,...,z are
computed and stored in Z. The real roots precede the complex roots. The real roots are
ordered so that | <z, 1.

Algoritims. CBCRT employs the Tartaglia procedure and QTCRT employs the Ferrari
procedure,

Programming. QTCRT calls the subroutines CBCRT and AORD, and CBCRT calls the

subroutine QDCRT and function CBRT. The routines were written by A. H. Morris.
The function SPMPAR is also used.

105

DOUBLE PRECISION ROOTS OF A REAL POLYNOMIAL
Given a polynomial a; tajz+-:++a 2" of degree n=> 1 with real coefficients in
double precision. The subroutine RPOLY computes the roots z ...z, of the polynomial

in double precision.

CALL RPOLY (A, N, ZR, ZI, FAIL)

A is a double precision array of dimension n + 1, N is an integer variable, and ZR and
Z1 are double precision arrays of dimension n. It is assumed that A(j) = a n-j+1 for
j = L..n+l and that N = n where 1 <n < 100. When RPOLY is called, if all the roots
zy,..,2, are found then N = n on output. Also, the real parts of the roots are stored in
ZR(1),...,ZR(n) and the imaginary parts are stored in ZI(1),...,ZI(n). The roots are unordered
except that complex conjugate pairs of roots appear consecutively with the positive
imaginary part being first.

Error Return. FAIL is a logical variable. If n roots are found then FAIL is set to. FALSE.
Otherwise, if the leading coefficient a is 0 or RPOLY cannot find all the roots, then FAIL
is set to .TRUE.If a, = O then N is reset to 0. Otherwise, if a_ # 0 and RPOLY finds m

TOOtS Z; ,..sZp, , then N is reset to m. In this case, if m > 0 then the m roots are stored in the
ZR and ZI arrays.

Programming. RPOLY employs the subroutines FXSHFR, QUADIT, REALIT, CALCSC,
NEXTK, NEWEST, QUADSD, and QUADPL. These routines exchange information in a
labeled common block named GLOBAL. The routines were written by M. A. Jenkins

(Queen’s University, Kingston, Ontario). The functions SPMPAR, DPMPAR, and I1IMACH
are also used.

References

(1) Jenkins, M. A., “Zeros of a Real Polynomial,” ACM Trans. Math Software 1 (1975),
pp. 178-189.

(2) Jenkins, M. A. and Traub, J. F., “A Three-Stage Algorithm for Real Polynomials using
Quadratic Iterations,” SIAM J. Numerical Analysis 7 (1970), pp. 545-566.

107

ACCURACY OF THE ROOTS OF A REAL POLYNOMIAL

Given a polynomial p(z) = a,tajz+--ta z" of degree n = 1 with real coefficients.
Let Z s be approximations for the roots of p(z). Then for each Z, the subroutine
RBND obtains the radius I of a disk Di ={z: |z — zil < ri} centered at z, which contains a
true zero of the polynomial. The radius r, is an upper bound on the absolute error of the
approximation z,.

For each z,, RBND also computes the number k. of disks DJ. (including the disk D,)
which overlap with D,, The value k. is the number of roots of p(z) that are clustered near z..
If k =1 then z, approximates a simple root.

Example. In the figure
k, =1Lk, =3k, =2
and k, = 2. ;

CALL RBND(n,A,Z,RADIUS,RERR,KLUST,IERR)

Ais areal array containing the coefficients P PP I and Z a complex array containing
the approximate roots z,....z_. Itis assumed thatn > 1 and A(i)=4a,_, fori=1,...n+ L

IERR is an integer variable, RADIUS a real array of dimension n or larger, and KLUST
an integer array of dimension n or larger. When RBND is called, if no input errors are
detected then IERR is assigned the value 0, the radii IsenI, are computed and stored in
RADIUS, and the values k, ,...k ~are computed and stored in KLUST.

RERR is a real array of dimension n or larger. If z, = 0 then RERR() is set to —1 by
the routine. Otherwise, if z, # 0 then RERR() = the estimated maximum relative error of z,.

Error Return. IERR = 1 whenn <1 and IERR = 2 when a = 0. In these cases no compu-
tation is performed.

Programming. RBND employs the functions CPABS and SPMPAR. RBND was written by

Carl B. Bailey and modified by William R. Gavin (Sandia Laboratories). The format of the
routine was modified by A. H. Morris.

109

COPYING VECTORS

A copy of a vector X = (%, »-»X) can be made and stored in the array Y by the
following subroutines:

CALL SCOPY (n. X kx.Y kv)
CALL DCOPY (n.X.kx.Y ky)
CALL CCOPY (n, X, kx,Y,ky)

The input argument kx is an integer which specifies the interval between successive
components x; of the vector X. If kx = 0 then it is assumed that X, is stored in
X(1+(@{-1) = kx) fori = 1,..,n. Otherwise, if kx < 0 then it is assumed that X, is stored in
X(I1+(n-1i) = |kx|). Similarly, the input argument ky specifies the spacing of the
components of Y.

SCOPY is used if X and Y are single precision real arrays, DCOPY is used if X and Y
are double precision real arrays, and CCOPY is used if X and Y are complex arrays. When
any of these routines is called, if n < 0 then the routine immediately terminates. Otherwise,
if n>1 then the components x, of X are stored in Y according to the spacing specified by
the ky parameter.

Programming. These routines are part of the BLAS package of basic linear algebra
subroutines designed by C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. The
copy routines were coded by Jack Dongarra (Argonne National Laboratory).

Reference. Lawson, C. L., Hanson, R. J., Kincaid, D. R., and Krogh, F. T., Basic Linear

Algebra Subprograms for FORTRAN Usage. Report SAND 77-0898, Sandia Laboratories,
Albuquerque, New Mexico, 1977.

111

INTERCHANGING VECTORS

The components of two vectors X = (x1 ,...,xn) and Y = (y1 ,--,¥,) can be interchanged
by the following subroutines:

CALL SSWAP (n.X.kx.Y ky)
CALL DSWAP (n. X.kx,Y kv)
CALL CSWAP (n X kx.Y kv)

The input argument kx is an integer which specifies the interval between successive
components x; of the vector X. If kx = O then it is assumed that x, is stored in
X(1 +(-1)*kx) fori=1,...,n. Otherwise, if kx < 0 then it is assumed that X, is stored
in X(1 +(n-1i)*|kx|[). Similarly, the input argument ky specifies the spacing of the
components of Y.

SSWAP is used if X and Y are single precision real arrays, DSWAP is used if X and Y
are double precision real arrays, and CSWAP is used if X and Y are complex arrays. When
any of these routines is called, if n < O then the routine immediately terminates.
Otherwise, if n 2 1 then the components x; and y; are interchanged for i = 1,..,n. Thus,
when the routine terminates X = (yysy dand Y = (x1 ,...,xn).

Programming. These routines are part of the BLAS package of basic linear algebra
subroutines designed by C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. The
interchange routines were coded by Jack Dongarra (Argonne National Laboratory).

Reference. Lawson, C. L., Hanson, R. J., Kincaid, D. R., and Krogh, F. T., Basic Linear

Algebra Subprograms for FORTRAN Usage. Report SAND 77-0898, Sandia Laboratories,
Albuquerque, New Mexico, 1977.

113

PLANAR ROTATION OF VECTORS

Let X = (xq,...,Xy) and Y = (yy,...,¥,) be vectors and ¢ and s be real numbers such
that ¢2 +s2 = 1. X and Y can be replaced with ¢X + sY and —sX + cY by the following
subroutines:

CALL SROT (n,X,kx,Y ky,c,s)
CALL DROT (n,X,kx,Y ,ky,c,s)
CALL CSROT (n,X,kx,Y ky,c,s)

The input argument kx is an integer which specifies the interval between successive
components x, of the vector X. If kx = 0 then it is assumed that X, 1is stored in
X(1+(@{-1)*kx) fori=1, .., n Otherwise, if kx < 0 then it is assumed that X, is stored in
X(1+(n-1)*|kx|). Similarly, the input argument ky specifies the spacing of the
components of Y.

SROT is used if X and Y are single precision real arrays, DROT is used if X and Y are
double precision real arrays, and CSROT is used if X and Y are complex arrays. The
arguments ¢ and s are single precision real numbers when SROT and CSROT are used, and
are double precision real numbers when DROT is used. When any of these routines is called,
if n < 0 then the routine immediately terminates. Otherwise, if n = 1 then the
components x; and y, are replaced with cx; tsy, and -sx, tcy, fori =1, .., n.

Programming. These routines are part of the BLAS package of basic linear algebra
subroutines designed by C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. The
rotation routines were coded by Jack Dongarra (Argonne National Laboratory).

Reference. Lawson, C. L., Hanson, R. J., Kincaid, D. R., and Krough, F. T., Basic Linear

Algebra Subprograms for FORTRAN Usage. Report SAND 77-0898, Sandia Laboratories,
Albuquerque, New Mexico, 1977.

115

DOT PRODUCTS OF VECTORS

The following functions are available for computing the sums x,y, and)’Ziyi where
1
X= (x1 ,...,xn) and Y = (y1 ,...,yn) are real or complex vectors. '

SDOT (n.X.kx.Y kv)
DDOT (n. X kx.Y ky)
CDOTC (n. X kx.Y kv)
CDOTU (n. X .kx.Y kv)

The input argument kx is an integer which specifies the interval between successive
components x, of the vector X. If kx = 0 then it is assumed that x; is stored in
X(1+(i- 1) #kx) fori = 1,..,n. Otherwise, if kx < O then it is assumed that x; is stored
in X(1+(n-1i)*|kx|). Similarly, the input argument ky specifies the spacing of the
components of Y.

SDOT is used if X and Y are single precision real arrays, and DDOT is used if X and Y
are double precision real arrays. SDOT is a single precision real function and DDOT is a
double precision real function. When either of these two functions is called, if n << 0 then
the function is assigned the value 0. Otherwise, if n 2 1 then the function is assigned the

n
value £ xy..
i=1 1

CDOTC and CDOTU are used if X and Y are complex arrays. CDOTC and CDOTU are
complex functions. When either of these two functions is called, if n < O then the function
is assigned the value 0. Otherwise, if n 2 1 then CDOTC (n,X,kx,Y ,ky) is assigned the value

121)1 ')'(iyi and CDOTU (n,X,kx,Y ky) is assigned the value % XY
i= i=1

Remarks

(1) It should be noted that the mapping (X,Y) > Z. x,y. computed by CDOTU is not an
inner product. However, the mapping is a symmetric bilinear form.

(2) In SDOT, CDOTC, CDOTU alt calculations are performed in single precision.

Programming. These functions are part of the BLAS package of basic linear algebra
subroutines designed by C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. The
dot product functions were coded by Jack Dongarra (Argonne National Laboratory).

Reference. Lawson, C. L., Hanson, R. J., Kincaid, D. R., and Krogh, F. T., Basic Linear

Algebra Subprograms for FORTRAN Usage. Report SAND 77-0898, Sandia Laboratories,
Albuquerque, New Mexico, 1977.

117

SCALING VECTORS

If a is a real or complex number and X = (x1 ,...,xn) a vector, then the vector X can be
replaced with the vector aX by the following subroutines:

CALL SSCAL (n,a,. X kx)
CALL DSCAL (n.a. X kx)
CALL CSCAL (n,a, X .kx)
CALL CSSCAL (n.a. X kx)

The input argument kx is a positive integer. It is assumed that the component X; 18
stored in X(1 +(i-1) * kx) fori = 1,..,n.

SSCAL is used if a is a single precision real number and X is a single precision real
array, DSCAL is used if a is a double precision real number and X is a double precision real
array, CSCAL is used if a is a complex number and X is a complex array, and CSSCAL is
used if a is a single precision real number and X is a complex array. When any of these
routines is called, if n << O then the routine immediately terminates. Otherwise, if n = 1
then each X, is replaced with ax;. Thus when the routine terminates X = (axy,...,ax,).

Programming. These routines are part of the BLAS package of basic linear algebra
subroutines designed by C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. The
scaling routines were coded by Jack Dongarra (Argonne National Laboratory).

Reference. Lawson, C. L., Hanson, R. J., Kincaid, D. R., and Krogh, F. T., Basic Linear

Algebra Subprograms for FORTRAN Usage. Report SAND 77-0898, Sandia Laboratories,
Albuquerque, New Mexico, 1977.

119

ICI

"LL6] ‘001X maN ‘enbionbnqpy

‘SOLI0IBIOQET BIPUBS ‘R680-LL (ANVS Moday "a8psp NVILNOA 10§ swpidoidgng piqasyy
402117 21svg 1] ‘YSOIY pue Y " ‘Pmoury ' M ‘Uosury “T D ‘UOSMET 20Uy

‘(A10721I0QET [RUONIEN SuUuOSIY) BLESUO(] YoB[AQ PIPOD 9I9M SAUTINOI UOTIIPPE
oy, "ySory "L " pue ‘preoury ‘Y ' ‘UosueH °f Y ‘uosme] T D Aq paudisep saurnoIrqns
viqagS[e Ieaur] oiseq jo ofeyoed gyIg oy Jo ired ore saupnnol JSoYJ, SupupiSoly

(UK + "xeeTLp Txe) = A sejeuruue)
QUTINOI Y USYM SN[, ‘U] = 110] 'A + 'xe M paoerdor st ‘A Usy) [< U JI “OSIMIOIQ
"S9IBUTWLIS) A[QJBIPOWIWI QUIINOI 9} USY}) = B IO S U JI ‘PA[[Ed SI SAUMINOI 3saYf) JO Aue
uayp\ ‘sAelre xo[dwoo a1k X ‘X PUE Joquinu xd[dwod B ST B JT posn ST X JX V) PU® ‘SAeLIe [ea1
uorsard J[qnop are & ‘Y pue Jequinu [gaI uolstoard 3[qnop e st € JT pasn St A XV ‘sAelie
[ea1 uoistoard o8urs a1 § ‘Y PUB IOqUINU [BAI UOISAId S[3uls e SI ' JT pasn ST XJXVS

" X 103034 91 JO
sjuauodwoo oy Jo Juroeds oy sarjroads Ay jusuindie ay) ‘Apenung (|xy | = (I -u) + [)X Ul
PaI0)S ST 'X JRY) PAWINSSE ST 1T USYY O > X JT ‘OSIMIdYPO U] = 110§ (01 * (1 -D+ DX
Ul paI0ls ST 'X JBY] PIWNSSE SI)1 UdY) 0 < XY JI X 10109A 2y} Jo 'x sjusuodwoo
QAISSAOONS UJIM)AQ [BAIIUT Y} soytoads Yorym 103ojur ue st xy juswndre jndui oy

(A A XX BU) AIXVD TTVD
(A A X U) AIXVA TIVD
(A A XU AIXVS TIVO

:saunnoIqns JUTMor[o] a1 Aq X + XEB 101234 3y} Yiim paode(dar aq ued (PR 5= X
10309A Aue usy) ‘10199A B (Ux“'x) = ¥ pue 1aqumnu xo[dwod IO [BAI B SI B JJ

NOILIAAV YOLDdA

L, NORM OF A VECTOR

The following functions are available for computing the L, norm of a real vector or a
modified L, norm of a complex vector.

SASUM (n, X kx)
DASUM (n.X kx)
SCASUM (n, X kx)

X = (X)X o) is a vector and the input argument kx is a positive integer. It is assumed
that X; isstored in X(1 +(i-1) *kx) fori = 1,..,n.

SASUM is used if X is a single precision real array and DASUM is used if X is a double
precision real array. SASUM is a single precision real function and DASUM is a double
precision real function. When either of these two functions is called, if n < O then the

function is assigned the value 0. Otherwise, if n > 1 then the function is assigned the value
n

= Ixil.

i=1
SCASUM is used if X is a complex array. SCASUM is a single precision real function.

When SCASUM is called, if n < 0 then the function is assigned the value 0. Otherwise, if
n

n =2 1 then SCASUM (n,X,kx) is assigned the value '21 [IRe(x,) | +1IM(x)) |].
1= '

Note. SCASUM (n,X,kx) is the norm of the complex vector X = (x; ,...,xn) when X is

regarded as a real vector of dimension 2n. This norm is frequently preferred over the
n

standard L, norm. X |x]| since it takes less time to compute.

i=1

Programming. These functions are part of the BLAS package of basic linear algebra
subroutines designed by C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. The
L, Norm functions were coded by Jack Dongarra (Argonne National Laboratory).

Reference. Lawson, C. L., Hanson, R. J., Kincaid, D. R., and Krogh, F. T., Basic Linear

Algebra Subprograms for FORTRAN Usage. Report SAND 77-0898, Sandia Laboratories,
Albuquerque, New Mexico, 1977.

123

L, NORM OF A VECTOR

The following functions are available for computing the L, norm of a real or complex
vector.

SNRM2 (n, X ,kx)
DNRM2 (n,X,kx)
SCNRM2 (n,X,kx)

X = (X;,--X,) is a vector and kx is a positive integer. It is assumed that the
component x; is stored in X(1+G-1)*kx) fori = 1,...,n.

SNRM?2 is used if X is a single precision real array, DNRM2 is used if X is a double
precision real array, and SCNRM2 is used if X is a complex array. SNRM2 and SCNRM2 are
single precision real functions, and DNRM2 is a double precision real function. When any of
these functions is called, if n < O then the function is assigned the value 0. Otherwise, if

n -
n 2 1 then the function is assigned the value [.El Ixilz] .
l:
Programming. These routines are part of the BLAS package of basic linear algebra

subroutines designed by C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. The
L, norm functions were coded by Charles Lawson (Jet Propulsion Laboratory).

Reference. Lawson, C. L., Hanson, R. J., Kincaid, D. R., and Krogh, F. T., Basic Linear
Algebra Subprograms for FORTRAN Usage. Report SAND 77-0898, Sandia Laboratories,
Albuquerque, New Mexico, 1977.

125

L.. NORM OF A VECTOR

The following functions are available for finding the largest component x; of a vector
X =(Xy 50e0sX_)
129%n

ISAMAX (n. X kx)
IDAMAX (n,X.kx)
ICAMAX (n, X kx)

The input argument kx is a positive integer. It is assumed that the component X is
stored in X(1 +(i-1) * kx) fori = 1I,...n.

ISAMAX is used if X is a single precision real array and IDAMAX is used if X is a
double precision real array. ISAMAX and IDAMAX are integer functions. When either of
these two functions is called, if n < O then the function is assigned the value 0. Otherwise,
if n 2 | then the function is assigned the value i where i is the smallest index such that
Ixil = max{lxj.l:j = l,...,n}.

ICAMAX is also an integer function. It is used when X is a complex array. If n < 0
then ICAMAX(n,X,kx) is assigned the value 0. Otherwise, if n = 1 then the function is
assigned the value i where i is the smallest index such that |Re(x,)I+]Im(x,)| =
max{lRe(xj)I + IIm(xj)I :j = L..,n}.

Note. The mapping X = max {IRe(xj)l+|Im(xj)l 1y = 1,...,n} is the L, norm of the
complex vector X = (xl,...,xn) when X is regarded as a real n X 2 matrix. This norm is
frequently preferred over the standard L norm max { | X |15 = 1,...,n} since it takes less
time to compute.

Programming. These functions are part of the BLAS package of basic linear algebra
subroutines designed by C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. The
L., Norm functions were coded by Jack Dongarra (Argonne National Laboratory).

Reference. Lawson, C. L., Hanson, R. J., Kincaid, D. R., and Krogh, F. T., Basic Linear

Algebra Subprograms for FORTRAN Usage. Report SAND 77-0898, Sandia Laboratories,
Albuquerque, New Mexico, 1977.

127

PACKING AND UNPACKING SYMMETRIC MATRICES

An n X n symmetric matrix A = (aij) can be represented by either its lower triangular
elements
41 32 3
41 %3 3
331 %3 43

3 . .

or its upper triangular elements. If the lower triangular elements are used, then the packed
form for the matrix is an array of dimension n(n+ 1)/2 containing the elements
a),85,8y,85,85,8,4 ... Similarly, if the upper triangular elements are used then the
packed form for the matrix is an array containing)18y 88518y, By e Currently
the lower triangular elements are used for packing symmetric matrices. The following
subroutines are available for packing and unpacking real symmetric matrices.

CALL MCVFS (A ka,n,B)
CALL DMCVFS (A ka,n,B)

A is an n X n symmetric matrix and B an array whose dimension is equal to or greater
than n(n + 1)/2. The routines store the packed form of A in B. MCVFS is used if A and B
are single precision real arrays and DMCVEFS is used if A and B are double precision real
arrays. The input argument ka has the following value:

ka = the number of rows in the dimension statement for A in the calling program
It is assumed that ka =2 n.

Note. A and B may begin in the same location.
Programmer. A. H. Morris

CALL MCVSF (A ka,n,B)
CALL DMCVSF (A ka,n,B)

B is an array containing the elements of a packed n X n symmetric matrix and A is an
array of dimension ka X n where ka =2 n. The routines unpack B and store the results in A.
MCVSF is used if A and B are single precision real arrays and DMCVSF is used if A and B
are double precision real arrays.

Note. The output matrix A may begin in the same location as the array B.

Programmer. A. H. Morris
129

CONVERSION OF REAL MATRICES TO AND FROM DOUBLE PRECISION FORM

The subroutines MCVRD and MCVDR are available for converting real matrices to and
from double precision form.

CALL MCVRD (m,n, A, ka,B,kb)

A is a real single precision m X n matrix and B a double precision array. MCVRD
stores the matrix in double precision form in the array B. The input arguments ka and kb
have the following values:

ka = the number of rows in the dimension statement for A in the calling program

kb = the number of rows in the dimension statement for B in the calling program
It is assumed that ka =2 m and kb =2 m.

Programmer. A.H. Morris

CALL MCVDR (m,n, A, ka, B,kb)

A is a double precision m Xn matrix and B a real single precision array. MCVDR
stores the matrix in single precision form in the array B. The input arguments ka and kb
have the following values:

ka = the number of rows in the dimension statement for A in the calling program

kb = the number of rows in the dimension statement for B in the calling program
It is assumed that ka 2 m and kb > m.

Programmer. A.H. Morris

131

THE REAL AND IMAGINARY PORTIONS OF A COMPLEX MATRIX
If A= (aij) is a complex matrix then let Re(A) = (Re(aij)) and Im(A) = (Im(aij)) denote
the real and imaginary portions of A. The following subroutines are available for obtaining

Re(A) and Im(A).

CALL CMREAL (m.n A ka B kb)

A is a complex m X n matrix and B a real array. CMREAL obtains Re(A) and stores it
in B. The input arguments ka and kb have the following values:

ka = the number of rows in the dimension statement for A in the calling program

kb = the number of rows in the dimension statement for B in the calling program
It is assumed that ka 2 m and kb = m.

Programmer. A. H. Morris

CALL CMIMAG (m.n.A ka.B.kb)

A is a complex m X n matrix and B a real array. CMIMAG obtains Im(A) and stores it
in B. The input arguments ka and kb have the following values:

ka = the number of rows in the dimension statement for A in the calling program

kb = the number of rows in the dimension statement for B in the calling program
It is assumed that ka = m and kb 2 m.

Programmer. A. H. Morris

135

COPYING MATRICES
A copy of the matrix A can be made and inserted into B by the following subroutines:

CALL MCOPY(m.n.A ka.Bkb)

A is a real m X n matrix and B a real array. MCOPY makes a copy of the matrix A and
stores it in B. The input arguments ka and kb have the following values:

ka = the number of rows in the dimension statement for A in the calling program

kb = the number of rows in the dimension statement for B in the calling program
It is assumed that ka 2 m and kb = m.

Programmer. A.H. Morris

CALL SMCOPY (n,A,B)

A is a real packed n X n symmetric matrix and B is a real array whose dimension is
equal to or greater than n(n + 1)/2. SMCOPY makes a copy of the packed symmetric matrix
A and stores it in B.

Programmer. A.H. Morris

CALL DMCOPY(m,n,A, ka,B,kb)

A is a double precision m X n matrix and B a double precision array. DMCOPY makes
a copy of the matrix A and stores it in B. The input arguments ka and kb have the following
values:

ka = the number of rows in the dimension statement for A in the calling program

kb = the number of rows in the dimension statement for B in the calling program
It is assumed that ka 2 m and kb > m.

Programmer. A.H. Morris

CALL CMCOPY(m,n, A, ka,B,kb)

A is a complex m X n matrix and B a complex array. CMCOPY makes a copy of the
matrix A and stores it in B. The input arguments ka and kb have the following values:

ka = the number of rows in the dimension statement for A in the calling program

kb = the number of rows in the dimension statement for B in the calling program
It is assumed that ka > m and kb > m.

Programmer. A.H. Morris

137

COMPUTATION OF THE CONJUGATE OF A COMPLEX MATRIX

If A=(y)isa complex matrix then let A= (Eij) denote the conjugate of A. The
following subroutine is available for computing the conjugate matrix A.

CALL CMCONJ (m,n,A ka,B,kb)

A is a complex m X n matrix and B is a complex array. CMCONJ computes A and

stores the results in B. The input arguments ka and kb have the following values:
ka = the number of rows in the dimension statement for A in the calling program
kb = the number of rows in the dimension statement for B in the calling program

It is assumed that ka 2 m and kb =2 m.

Programmer. A. H. Morris

139

TRANSPOSING MATRICES

The subroutines TPOSE, DTPOSE, CTPOSE and TIP, DTIP, CTIP are available for
transposing a matrix A. TPOSE, DTPOSE, and CTPOSE are used if the results are to be
stored in a separate storage area B. TIP, DTIP, and CTIP are used if the results are to be
stored in A (i.e., if the transposition is to be done in place).

CALL TPOSE (m,n, A, ka, B, kb)
CALL DTPOSE (m,n, A, ka, B, kb)
CALL CTPOSE (m,n,A, ka, B,kb)

TPOSE is called if A is a single precision real matrix and B a single precision real array,
DTPOSE is called if A is a double precision real matrix and B a double precision real array,
and CTPOSE is called if A is a complex matrix and B a complex array.

A is a matrix having m rows and n columns. The routine transposes A and stores the
results in B. The input arguments ka and kb have the following values:

ka = the number of rows in the dimension statement for A in the calling program

kb = the number of rows in the dimension statement for B in the calling program
It is assumed that ka = m and kb = n.

Programmer. A.H. Morris
CALL TIP(A,m,n,MOVE, k,MDIM)

CALL DTIP(A,m,n,MOVE, k, MDIM)
CALL CTIP(A,m,n,MOVE, k, MDIM)

TIP is called if A is a single precision real array, DTIP is called if A is a double precision
real array, and CTIP is called if A is a complex array.

A is an array of dimension mn which contains an m X n matrix to be transposed. The
routine transposes the matrix and stores the results in A. If m =n then the arguments

MOVE, k, MDIM are ignored.

If m #* n then k may be any integer. If k < 0 then MOVE is ignored. Otherwise, if
k =2 1 then MOVE is assumed to be an array of dimension k., MOVE is a storage area for
saving information that may help speed up the transposition process. If no information is
saved then TIP, DTIP, and CTIP may run 2-10 times slower than TPOSE, DTPOSE, and
CTPOSE. However, the use of a storage area may or may not actually speed up the
transposition process, This depends entirely on the values of m and n. If m # n then

141

MDIM is a variable that is set by the routine. After the routine terminates, MDIM will be
the estimated optimum setting for k for the current values of m and n.

Programming. The routines TIP, DTIP, and CTIP employ the subroutine INFCTR. The
routines were written by Norman Brenner (Dept. of Earth and Planetary Sciences, Massa-
chusetts Institute of Technology), and modified by A. H. Morris.

Reference. Brenner, Norman, “Algorithm 467. Matrix Transposition in Place,” Communi-
cations ACM 16 (November, 1973), pp. 692-694.

142

COMPUTING ADJOINTS OF COMPLEX MATRICES

If A= (a;;) then let A* = (ﬁj ;) denote the adjoint of A, The following subroutines are
available for computing A*,

CALL CMAD]J (m,n,A ka,B,kb)

A is a complex m X n matrix and B is a complex array. CMADJ computes A* and
stores the results in B. The input arguments ka and kb have the following values:

ka = the number of rows in the dimension statement for A in the calling program

kb = the number of rows in the dimension statement for B in the calling program
It is assumed that ka = m and kb > n.

Remarks. CMADJ combines the following operations:
CALL CTPOSE (m,n,A ka,B ,kb)
CALL CMCONJ (n,m,B,kb,B,kb)

It is assumed that A and B are different storage areas.

Programmer. A. H. Morris

CALL CTRANS(a,n,A)

A is a complex array of dimension ka X n which contains an n X n matrix, CTRANS
computes the adjoint of the matrix and stores the results in A, It is assumed that ka > n,

Programmer. George J, Davis (Georgia State University)

143

MATRIX ADDITION
The matrix sum C = A + B can be computed by the following subroutines:

CALL MADD(m,n,A ka,B,kb,C kc)

A and B are real m X n matrices and C is a real array. MADD computes A + B and
stores the results in C. The input arguments ka, kb, kc have the following values:

ka = the number of rows in the dimension statement for A in the calling program

kb = the number of rows in the dimension statement for B in the calling program

kc = the number of rows in the dimension statement for C in the calling program
It is assumed that ka 2 m, kb 2 m, kc =2 m.

The array C may begin in the same location as A or B. If C begins in the same location
as A then it is assumed that kc = ka. In this case, the result C will overwrite the input data
A. Similarly, if C begins in the same location as B then it is assumed that kc = kb.
Otherwise, if C does not begin in the same location as A or B, then it is assumed that the
storage area for C does not overlap with the storage areas for A and B. In this case there is
no restriction on kc (other than the customary restriction that ke = m).

Programmer. A. H. Morris

CALL SMADD(n,A,B,C)

A and B are real packed n X n symmetric matrices and C is a real array whose
dimension is equal to or greater than n(n + 1)/2. SMADD computes A + B, which is also a
symmetric matrix, and stores the results in packed form in C.

The array C may begin in the same location as A or B. If C begins in the same location
as A then the result C will overwrite the input data A. Similarly, B will be overwritten if C
begins in the same location as B. Otherwise, if C does not begin in the same location as A or
B, then it is assumed that the storage area for C does not overlap with the storage areas for
A and B.

Programmer. A.H. Morris

CALL DMADD (m,n,A,ka,B,kb,C, kc)

A and B are double precision m X n matrices and C is a double precision array.
DMADD computes A + B and stores the results in C. The arguments ka, kb, kc have the
following values:

145

ka = the number of rows in the dimension statement for A in the calling program

kb the number of rows in the dimension statement for B in the calling program

kc the number of rows in the dimension statement for C in the calling program
It is assumed that ka 2 m, kb 2 m, kc 2 m.

The array C may begin in the same location as A or B. If C begins in the same location
as A then it is assumed that k¢ = ka. In this case, the result C will overwrite the input data
A. Similarly, if C begins in the same location as B then it is assumed that kc=kb. Otherwise,
if C does not begin in the same location as A or B, then it is assumed that the storage area
for C does not overlap with the storage areas for A and B. In this case there is no restriction
on kc (other than the customary restriction that kc =2 m).

Programmer. A.H. Morris

CALL CMADD(m,n, A, ka,B,kb,C,kC)

A and B are complex m X n matrices and C is a complex array. CMADD computes
A + B and stores the results in C. The arguments ka, kb, kc have the following values:

ka the number of rows in the dimension statement for A in the calling program

kb = the number of rows in the dimension statement for B in the calling program

kc = the number of rows in the dimension statement for C in the calling program
It is assumed that ka 2 m, kb 2 m, kc 2 m.

The array C may begin in the same location as A or B. If C begins in the same location
as A then it is assumed that kc = ka. In this case, the result C will overwrite the input data
A. Similarly, if C begins in the same location as B then it is assumed that kc = kb. Otherwise,
if C does not begin in the same location as A or B, then it is assumed that the storage arca
for C does not overlap with the storage areas for A and B. In this case there is no restiction
on kc (other than the customary restriction that kc 2 m).

Programmer. A.H. Morris

146

MATRIX SUBTRACTION
The matrix difference C = A - B can be computed by the following subroutines:

CALL MSUBT(m,n,A ka,B,kb,C.kc)

A and B are real m X n matrices and C is a real array. MSUBT computes A - B and
stores the results in C. The input arguments ka, kb, kc have the following values:

ka = the number of rows in the dimension statement for A in the calling program

kb = the number of rows in the dimension statement for B in the calling program

kc = the number of rows in the dimension statement for C in the calling program

It is assumed that ka 2 m, kb 2 m,kc =2 m.

The array C may begin in the same location as A or B. If C begins in the same location
as A then it is assumed that k¢ = ka. In this case, the result C will overwrite the input data
A. Similarly, if C begins in the same location as B then it is assumed that k¢ = kb.
Otherwise, if C does not begin in the same location as A or B, then it is assumed that the
storage area for C does not overlap with the storage areas for A and B. In this case there is
no restriction on kc-(other than the customary restriction that kc 2 m).

Programmer. A. H. Morris

CALL SMSUBT (n,A,B,C)

A and B are real packed n X n symmetric matrices and C is a real array whose
dimension is equal to or greater than n(n + 1)/2. SMSUBT computes A—B, which is also a
symmetric matrix, and stores the results in packed form in C.

The array C may begin in the same location as A or B. If C begins in the same location
as A then the result C will overwrite the input data A. Similarly, B will be overwritten if C
begins in the same location as B. Otherwise, if C does not begin in the same location as A or
B, then it is assumed that the storage area for C does not overlap with the storage areas for
A and B.

Programmer. A.H. Morris

CALL DMSUBT (m,n,A, ka, B, kb,C,kc)

A and B are double precision m X n matrices and C is a double precision array.
DMSUBT computes A—B and stores the results in C. The arguments ka, kb, kc have the
following values:

147

ka = the number of rows in the dimension statement for A in the calling program

kb = the number of rows in the dimension statement for B in the calling program

kc the number of rows in the dimension statement for C in the calling program
It is assumed that ka 2 m, kb 2 m, kc = m.

The array C may begin in the same location as A or B. If C begins in the same location
as A then it is assumed that kc = ka. In this case, the result C will overwrite the input data
A. Similarly, if C begins in the same location as B then it is assumed that kc=kb. Otherwise,
if C does not begin in the same location as A or B, then it is assumed that the storage area
for C does not overlap with the storage areas for A and B. In this case there is no restriction
on kc (other than the customary restriction that kc =2 m).

Programmer. A.H. Morris

%LL CMSUBT(m,n,A,ka,B,kb,C,kc)

A and B are complex m X n matrices and C is a complex array. CMSUBT computes
A~-B and stores the results in C. The input arguments ka, kb, kc have the following values:

ka = the number of rows in the dimension statement for A in the calling program
kb = the number of rows in the dimension statement for B in the calling program
kc = the number of rows in the dimension statement for C in the calling program

It is assumed that ka=2m, kb>m, kc > m.

The array C may begin in the same location as A or B. If C begins in the same location
as A then it is assumed that kc = ka. In this case, the result C will overwrite the input data
A. Similarly, if C begins in the same location as B then it is assumed that k¢ = kb. Otherwise,
if C does not begin in the same location as A or B, then it is assumed that the storage area
for C does not overlap with the storage areas for A and B. In this case there is no restiction
on kc (other than the customary restriction that kc =2 m).

Programmer. A. H. Morris

148

MATRIX MULTIPLICATION
The matrix product C = AB can be computed by the following subroutines:
CALL MPROD(m,n,%,A,ka,B, kb, C,kc,WK)

CALL DMPROD(m,n, ¢, A, ka,B, kb,C, kc,WK)
CALL CMPROD(m,n,%,A,ka,B,kb,C,kc,WK)

MPROD is called if A and B are single precision real matrices and C and WK are single
precision real arrays, DMPROD is called if A and B are double precision real matrices and
C and WK are double precision real arrays, and CMPROD is called if A and B are complex
matrices and C and WK are complex arrays.

A is a matrix having m rows and n columns, and B is a matrix having n rows and £
columns. The routine computes the product AB and stores the results in C. The input
arguments ka, kb, kc have the following values:

ka = the number of rows in the dimension statement for A in the calling program
kb = the number of rows in the dimension statement for B in the calling program
kc = the number of rows in the dimension statement for C in the calling program

It is assumed that ka 2 m, kb > n, kc 2 m.

WK is an array that serves as a temporary storage area. The matrix C may begin in the
same location as A or B. If C begins in the same location as A, then it is assumed that
kc = ka and that the dimension of WK is equal to or greater than &. In this case, the result
C will overwrite the input data A. Similarly, if C begins in the same location as B then it is
assumed that k¢ = kb and that the dimension of WK is equal to or greater than m. Other-
wise, if C does not begin in the same location as A or B, then it is assumed that the storage
area for C does not overlap with the storage areas for A and B. In this case, the array WK
is not referenced.

Notes.
(1) If C begins in the same location as A or B, then it is assumed that the storage areas for
A and B do not overlap.

(2) All inner products £, a, bkj are computed by MPROD in double precision.

Programming. MPROD employs the subroutines RLOC and YCHG, DMPROD employs the
subroutines DLOC and DYCHG, and CMPROD employs the subroutines CLOC and CYCHG.
The routines were written by A. H. Morris.

149

PRODUCT OF A PACKED SYMMETRIC MATRIX AND A VECTOR

Let A denote a packed symmetric matrix of order n and x a column vector of
dimension n where n2 1. Then the following subroutines are available for computing the
product Ax.

CALL SVPRD(A n x,y)
CALL DSVPRD(A)n,x,y)

The argument y is an array of dimension n. SVPRD is called when A x,y are single
precision real arrays, and DSVPRD is called when A x,y are double precision real arrays.
When either of these routines is called, Ax is computed and stored in y.

Programmer. A.H. Morris

151

TRANSPOSE MATRIX PRODUCTS

If A' denotes the transpose of A, then the matrix product C = A'B can be computed
by the following subroutine:

CALL TMPROD(m,n,%,A ka,B,kb,C.kc)

A is a real matrix having m rows and n columns, B is a real matrix having m rows and £
columns, and C is a real array. TMPROD computes A'B and stores the results in C. The
input arguments ka, kb, kc have the following values:

ka = the number of rows in the dimension statement for A in the calling program

kb = the number of rows in the dimension statement for B in the calling program

kc = the number of rows in the dimension statement for C in the calling program
Here it is assumed that ka =2 m, kb 2 m, k¢ =2 n. Also it is assumed that the storage area
for C does not overlap with the storage areas for A and B.

1l

Note. All inner products %(Iakibkj are computed in double precision and the results
stored in single precision.

Programmer. A. H. Morris

153

SYMMETRIC MATRIX PRODUCTS

If At denotes the transpose of A, then the matrix product A'A can be computed and
its packed form inserted into the array B by the following subroutine:

CALL SMPROD(mn.A ka,B)

A is a real m X n matrix and B a real array whose dimension is equal to or greater than
n(n+ 1)/2. SMPROD computes A'A and stores its packed form in B. The input argument
ka has the following value:

ka = the number of rows in the dimension statement for A in the calling program

It is assumed that ka =2 m.

Note. All inner products %{)akiakj are computed in double precision and the results
stored in single precision.

Programmer. A. H. Morris

155

KRONECKER PRODUCT OF MATRICES

If A isan m X n matrix and B a k X matrix, then the Kronecker product A ® B is
defined by

A®B=

From this definition we obtain:

(1) (Transpose Equality) (A ® B) = A! ® B'.

2) A®BY® E=A® (B @ E) for any matrix E.

3) (A ® B) (C ® D) = (AC) ® (BD) if C is a matrix having n rows and D a matrix having
2 rows.

If A and B are complex square matrices of orders m and k respectively, then from the

Jordan canonical forms of A and B the determinant equality det (A ® B)= (det A)* (det B)™

can be verified. Also, if A and B are nonsingular then (A® B) ™! = A~! ® B! from (3).

The following subroutines are available for computing C = A ® B.
CALL KPROD(A ka,m,n,B,kb,k,2,C kc)

CALL DKPROD(Aka,m,n,B,kb,k,?,C.kc)
CALL CKPROD(A ka,m,n,B,kb k,%,C,kc)

It is assumed that A is an m X n matrix, B a k X € matrix, and C a 2-dimensional array.
KPROD is used if A, B, C are single precision real arrays, DKPROD is used if A, B, C are
double precision arrays, and CKPROD is used if A, B, C are complex arrays. When the
routine is called, A ® B is computed and stored in C.

The arguments ka, kb, and kc have the following values:
ka = the number of rows in the dimension statement for A in the calling program
kb= the number of rows in the dimension statement for B in the calling program
kc = the number of rows in the dimension statement for C in the calling program
It is assumed that ka 2> m, kb =k, k¢ = mk, and that C contains at least n{ columns.

Remark. It is assumed that the array C does not overlap with A or B.

Programmer. A. H. Morris

157

INVERTING GENERAL REAL MATRICES AND SOLVING
"~ GENERAL SYSTEMS OF REAL LINEAR EQUATIONS

The subroutines CROUT, KROUT, MSLV, NPIVOT, and DMSLV are available for
inverting real matrices A and solving systems of real linear equations AX =B. CROUT,
KROUT, MSLV, and NPIVOT solve single precision problems, and DMSLV solves double
precision problems.

All the routines except NPIVOT are general-purpose, employing partial pivot Gauss
elimination. NPIVOT can only occasionally be used since it uses Gauss-Jordan elimination
with no pivot search. Normally, CROUT and KROUT produce the same results, which will
be of equal or greater accuracy than the results produced by MSLV. However, since many
of the calculations are performed in double precision in CROUT and KROUT, whereas only
single precision is used in MSLV, MSLV may run 2-3 times faster than CROUT and
KROUT.

CALL CROUT(MO,n,m,A ka,B kb,D INDEX, TEMP)

A is a single precision real matrix of order n where n 2 1. If MO = Q then the inverse
of A is computed and stored in A. If MO # 0 then the inverse is not computed.

The argument m is an integer. If m 2 1 then B is a single precision real matrix having
n rows and m columns. In this case the matrix equation AX = B is solved and the solution
X is stored in B. If m < 0 then there are no equations to be solved. In this case the argu-
ment B is ignored.

The argument ka is the number of rows in the dimension statement for A in the calling
program, and kb the number of rows in the dimension statement for B in the calling pro-
gram. If m < 0 then the argument kb is ignored.

D is a single precision real variable. When CROUT is called, D is assigned the value
det(A) where det(A) is the determinant of A. If D is found to have the value O then the

routine immediately terminates.

INDEX is an array of dimension n = 1 or larger that is used by the routine for keeping
track of the row interchanges that are made. If MO # O then this array is not needed.

TEMP is a single precision real array of dimension n or larger that is a work space for
the routine. If MO # 0 then this array is not needed.

159

Remarks
(1) KROUT should be used instead of CROUT when the determinant D is not needed.
Underflow or overflow in the calculation of D may cause CROUT to terminate pre-
maturely.
(2) If MO # 0 then one may write:
CALL CROUT(MO,n,m,A ka,B kb,D)
In this case, even though the inverse of A is not computed, the matrix A is destroyed.

Algorithm. The Crout procedure is used. All inner products are computed in double preci-
sion and the results returned in single precision. Partial pivoting is performed.

Programming. CROUT calls the subroutine CROUTO. These routines were written by
A. H. Morris.

CALL KROUT(MO,n,m,A ka,B.kb,JERR,INDEX , TEMP)

A is a single precision real matrix of order n where n 2 1. If MO = 0 then the inverse
of A is computed and stored in A. If MO # O then the inverse is not computed.

The argument m is an integer. If m> 1 then B is a single precision real matrix having
n rows and m columns. In this case the matrix equation AX = B is solved and the solution
X is stored in B. If m < 0 then there are no equations to be solved. In this case the argu-
ment B is ignored.

The argument ka is the number of rows in the dimension statement for A in the calling
program, and kb the number of rows in the dimension statement for B in the calling pro-
gram. If m < 0 then the argument kb is ignored.

INDEX is an array of dimension n — 1 or larger that is used by the routine for keeping
track of the row interchanges that are made. If MO # 0 then this array is not needed.

TEMP is a single precision real array of dimension n or lérger that is a work space for
the routine. If MO # O then this array is not needed.

Error Return. IERR is a variable that reports the status of the results. When the routine
terminates IERR will have one of the following values:
IERR =0 The requested results were successfully obtained.
IERR =-1 Either n, ka, or kb is incorrect. In this case A and B have not been
modified.
IERR =k The k™ column of A has been reduced to a column containing only
ZEros.
When an error is detected, the routine immediately terminates.

160

Remark. 1f MO # 0 then one may write:
CALL KROUT(MO,n,m, A ka,B,kb,IERR)
In this case, even though the inverse of A is not computed, the matrix A is destroyed.

Algorithm. The CROUT procedure is used. All inner products are computed in double pre-
cision and the results returned in single precision. Partial pivoting is performed.

Programming. KROUT calls the subroutine KROUTO. These routines were written by
A. H. Morris.

CALL NPIVOT(n.m,A ka,B.,kb,D,IERR)

A is a single precision real matrix of order n where n 2 1. When NPIVOT is called the
inverse of A is computed and stored in A.

The argument m is an integer. If m > 1 then B is a single precision real matrix having
n rows and m columns. In this case the matrix equation AX = B is solved and the solution
X is stored in B. If m < 0 then there are no equations to be solved. In this case the argu-
ment B is ignored.

The argument ka is the number of rows in the dimension statement for A in the calling
program, and kb the number of rows in the dimension statement for B in the calling pro-
gram. If m < 0 then kb is ignored.

D is a single precision real variable. On input D must be assigned a value by the user.
If the input value is 7, then when NPIVOT terminates D = 7d where d is the determinant

of A.

Error Return. 1ERR is an integer variable. If inversion is successful then IERR is assigned
the value 0. Otherwise, IERR =1 if NPIVOT cannot invert the matrix.

Algorithm. The Gauss-Jordan procedure is used. However, no pivot searching is done.
NPIVOT terminates (with IERR set to 1) whenever a zero pivot element is encountered.

Remarks. Since pivot search is frequently needed to invert a matrix, and since pivot search
is normally required to obtain accurate results, NPIVOT should not be used except on those

occasions when pivot search is known to be superfluous.

Programmer. A. H. Morris

161

CALL MSLV(MO,n,m,A ka,B.kb,D,RCOND,IERR,IPVT ,WK)
CALL DMSLV(MO,n,m A ka,B kb,D,RCOND,IERR IPVT,WK)

A is matrix of order n where n = 1. If MO = 0 then the inverse of A is computed and
stored in A. If MO # 0 then the inverse is not computed.

The argument m is an integer. If m = 1 then B is a matrix having n rows and m
columns. In this case the matrix equation AX = B is solved and the solution X is stored in
B. If m < 0 then there are no equations to be solved. In this case the argument B is ignored.

The argument ka is the number of rows in the dimension statement for A in the calling
program, and kb the number of rows in the dimension statement for B in the calling pro-
gram, If m <0 then the argument kb is ignored.

D is an array of dimension 2. When either routine is called the determinant det(A) of
the matrix A is computed. If det(A) = d-10% where 1 <|d| < 10 and k an integer, then d is
stored in D(1) and the exponent k is stored in floating point form in D(2).

RCOND is a variable. When either routine is called, the routine makes an estimate ¢ of
the condition number of the matrix A (relative to the L1 norm). RCOND is assigned the
value 1/c.

IPVT is an integer array of dimension n or larger that is used by the routines for
keeping track of the row interchanges that are made. WK is an array of dimension n or larger
that is used as a work space.

Remarks

(1) If MSLYV is called then it is assumed that A and B are single precision real matrices, D
and WK are single precision real arrays, and RCOND is a single precision real variable.
Otherwise, if DMSLYV is called then it is assumed that A and B are double precision real
matrices, D and WK are double precision real arrays, and RCOND is a double precision
real variable.

(2) RCOND satisifies 0 < RCOND < 1. If RCOND ~ 10~ ¥ then one can expect the results
to have approximately k fewer significant digits of accuracy than the elements of A.
For example, if MSLV is used to invert a matrix in the 14 digit CDC single precision
arithmetic and RCOND = .4E-3, then the computed coefficients of the inverse matrix
should normally be accurate to about 11 digits. In general, RCOND characterizes how
well or poorly conditioned the problem is. If RCOND = | then one should expect the
results to be almost as accurate as the original data A. However, if RCOND ~ 0O then
one should expect the results to be nonsense.

(3) The matrix A is always destroyed.

162

Error Return. IERR is an integer variable. If RCOND is sufficiently large so that
1+RCOND > 1, then IERR is set to O and the problem is solved. Otherwise, if
1+ RCOND = 1 then IERR is set to 1 and the routine terminates. In this case, A will have
been destroyed but B will not have been modified. Also the determinant will not have been
computed.

Algorithm. The partial pivot Gauss elimination procedure is used.

Programming. MSLV and DMSLV are driver routines for the LINPACK subroutines
SGECO, SGEFA, SGESL, SGEDI and DGECO, DGEFA, DGESL, DGEDI. The subroutines
were coded by Cleve Moler (University of New Mexico). The subroutines employ the vector
routines SSWAP, SDOT, SSCAL, SAXPY, SASUM, ISAMAX and DSWAP, DDOT, DSCAL,
DAXPY, DASUM, IDAMAX.

References

(1) Dongarra, J. I., Bunch, J. R., Moler, C. B., and Stewart, G. W., LINPACK Users’ Guide,
Society for Industrial and Applied Mathematics, Philadelphia, 1979.

(2) Cline, A. K., Moler, C. B., Stewart, G. W., and Wilkinson, J. H., “An Estimate for the
Condition Number of a Matrix,” SIAM Journal of Numerical Analysis 16 (1979), pp.
368-375.

163

SOLUTION OF REAL EQUATIONS WITH ITERATIVE IMPROVEMENT

Given a real n X n matrix A and a real column vector b. The following routine is avail-
able for solving the equation Ax =b. Iterative improvement is performed to compute the
solution x to machine accuracy.

CALL SLVMP(MO,n,A ka,b,X,WK,IWK ,IERR)

MO is an input argument which specifies if SLVMP is being called for the first time.
On an initial call, MO = 0 and we have the following setup:

A is a 2-dimensional real array of dimension ka X n containing the matrix A, b a real
vector of dimension n, and X a real array of dimension n. When SLVMP is called, Ax=Db
is solved and the solution stored in X. A and b are not modified by the routine.

WK is a real array of dimension n? + n or larger, and IWK an integer array of dimen-
sion n or larger. These arrays are for internal use by the routine. On an initial call to
SLVMP, an LU decomposition is obtained for A and stored in WK and IWK. Then the
equation Ax = b is solved.

IERR is an integer variable that reports the status of the results. On an initial call to
SLVMP. when the routine terminates IERR has one of the following values:

IERR=0 The solution X was obtained to machine accuracy.

IERR =1 X was obtained, but not to machine accuracy.

IERR = -k The k'™ column of A was reduced to a column containing only zeros.
When IERR = -k, no solution is obtained.

After an initial call to SLVMP, if IERR =0 or 1 on output, then the routine may be
called to solve a new set of equations Ax = b without having to redecompose the matrix A.
In this case, the input argument MO may be set to any nonzero value. When MO # 0 it
is assumed that only b has been modified. The routine employs the LU decomposition
obtained on the initial call to SLVMP to solve the new set of equations Ax =b. On output
X will contain the solution to the new set of equations. As before, A and b are not mod-
ified by the routine.

If SLVMP is recalled with MO = 0, then when the routine terminates IERR will have
one of the following values:

IERR=0 The solution X was obtained to machine accuracy.

IERR =1 X was obtained, but not to machine accuracy.

Programming. SLVMP calls the subroutine LUIMP. These routines were written by A. H.
Morris. The subroutines MCOPY, SGEFA, SGESL, SSCAL, SAXPY and functions SPMPAR,
SDOT, ISAMAX are also employed.

165

SOLUTION OF ALMOST BLOCK DIAGONAL SYSTEMS OF LINEAR EQUATIONS

Consider a system Ax= b of linear equations where A is an n X n matrix having the
block structure

A

Here it is assumed that A, is an 1; X ¢, matrix for i i = 1,...,m, and that A, and A,
have 6, =0 columns in common for i < m. Thus E r,=n and block A, begins in column
Z (e, — 6) + 1 fori= 2. Itis also assumed that three successive blocks A1—1 s Ay Ay

do not have columns in common. Thus §, |, + 8, <c, fori=2,..m — 1. If m > 2 then
the following subroutines are available for solving Ax b.

CALL ARCECO(n,S,MTR,m,IWK,b,X,IERR"

m
S is an array of dimension '21 LC; or larger. On input S contains the blocks AlsnAy
=

of the matrix A. The blocks are stored in sequence. A, is stored in the first r, ¢, locations
of S, A, is stored in the nextr,c, locations, etc, For each A, the columns of A, are stored
in sequence in S.

Example.
a, a, 3;|0 0
3y 8y a,(0 0
If A= 0 aj, A3y Ay 0
0 |a, a; a,| 0

55

thenn =5, m=3,6,=2,and 6,=0. Also, S is an array containing the data a;,, a,,, a,,

Ayyy 8135 g3y 39y By, a3, Ayq, Ay, By, gy
167

MTR is an integer matrix of dimension 3 X m containing the block information of the
matrix A:
MTR(L,i)=r, i=1,...m)
MTR(2,i)= ¢, Ga=1,..,m)
MTR(@3,i) = §; i=1,..m-1)
For convenience, the routine sets MTR(3,m)= 0.

X is an array of dimension n or larger, When ARCECO is called, A is decomposed and
then the equations Ax = b are solved, The decomposition of A is stored in S, overwriting
the initial input data A, and the solution x is stored in X, The vector b is destroyed by the
routine.

IWK is an array of dimension n or larger for intemnal use by the routine, The pivot
indices involved in the decomposition of A are stored in IWK.

IERR is a variable that reports the status of the results. When ARCECO terminates,
IERR has one of the following values:

IERR = 0 The system of equations was solved.

IERR =1 (Input Error) Either n, m, or MTR is incorrect, or three successive blocks
Ai_ 1 Ai, }gﬂ of A have columns in common,

IERR = —1 A s asingular matrix, The equations cannot be solved.

Usage. After a call to ARCECQ, if IERR = 0 on output then the subroutine ARCESL (see
below) may be called to solve a new set of equations Ax = b without having to redecompose
the matrix A. ARCESL employs the decomposition of A obtained by ARCECO.

Algorithm. A modification of the alternate row and column elimination procedure by
Varah is used,

Programming. ARCECO employs the subroutines ARCEDC, ARCEPR, ARCEPC, ARCESL,
ARCEFS, ARCEFM, ARCEFE, ARCEBS, ARCEBM, and ARCEBE. These routines were
developed by J. C. Diaz (Mobil Research and Development Corp., Farmers Branch, Texas),
G. Fairweather(University of Kentucky), and P. Keast (University of Toronto).

Reference. Diaz, J, C., Fairweather, G. and Keast, P., “FORTRAN Packages for Solving
Certain Almost Block Diagonal Linear Systems by Modified Alternate Row and Column
Elimination,” ACM Trans. Math Software 9 (1983), pp. 358-375.

CALL ARCESL(S,MTR,m,IWK,b,X)

The argument m is the number of blocks Al ""’Am in the matrix A, ARCESL may
be used only when IERR = 0 on output from ARCECQO. In this case, S contains the
decomposition of A obtained by ARCECO and IWK contains the pivot indices of the

168

decomposition. The argument b is a vector of dimension n, and X an array of dimension n
or larger. When ARCESL is called, the equations Ax = b are solved and the solution stored
in X. The vector b is destroyed by the routine.

Programming. ARCESL calls the subroutines ARCEFS, ARCEFM, ARCEFE, ARCEBS,
ARCEBM, and ARCEBE. These routines were developed by I. C. Diaz (Mobil Research
and Development Corp., Farmers Branch, Texas), G. Fairweather (University of Kentucky),
and P. Keast (University of Toronto).

169

SOLUTION OF ALMOST BLOCK TRIDIAGONAL SYSTEMS
OF LINEAR EQUATIONS

Consider a system Tx = b of linear equations where T is a square matrix having the
block structure

AI Bl C1
C, A, B, 0
C3 A3 B3
- ...
0

Cn—l An-l Bn-l
B, C, A,

n

Here it is assumed that A, Bk, Ck (k=1,...,n) are m X m matrices, and that b is a column
vector of dimension mn. If n> 4 then the following subroutine is available for solving
Tx=b.

CALL BTSLV(MO,m,n,A,B,C,X,IP,IERR)

MO is an input argument which specifies if BTSLV is being called for the first time, or
if it is being recalled to solve another set of equations Tx = b where T is the same coefficient
matrix but b has been modified. On an initial call to the routine, MO = 0 and we have the
following setup:

A, B, C are 3-dimensional arrays of dimension m X m X n where the (i,j)-th elements of
the matrices A, , B, C, are stored in A(i,j k), B(ij.k), C(ij.k) for k=1,..,n. A, B,C are
modified by the routine.

X is an array of dimension mn or larger. On input, the vector b is stored in X. When
BTSLYV is called, if a solution x is obtained for Tx = b then the solution is stored in X.

IP is an array of dimension mn or larger that is used by the routine for listing the row
interchanges that are made.

On an initial call to the routine, a block LU decomposition is performed on T, the
results of which are stored in A, B, C. This decomposition involves row interchanges only
within the diagonal blocks A, ; i.e., no row interchanges are performed between rows of
different blocks A, and A, Thus it may occur that the decomposition of a nonsingular
matrix T cannot be completed. IERR is a variable that reports the status of the results.
When BTSLV terminates, then IERR will have one of the following values:

171

IERR =0 T was successfully decomposed and the equations Tx = b solved.

IERR =-1 (Input Error) Either m < 1 or n< 4,

IERR =k The decomposition process failed in the k™! diagonal block. The routine
cannot solve the equations in their present form.

After an initial call to BTSLV, if IERR =0 then the routine may be recalled with
MO # 0 and a new b. When MO # 0, then it is assumed that A, B, C, and IP have not been
modified and that X contains the new b. The routine retrieves from A, B, C, and IP the
block decomposition that was obtained on the initial call to BTSLV, and solves the new
system of equations Tx =b. The solution is stored in X. In this case, IERR is not refer-
enced by the routine.

Programming. BTSLV employs the subroutines DECBT, SOLBT, DEC, and SOL. These
subroutines were written by Alan C. Hindmarsh (Lawrence Livermore Laboratory).

Reference. Hindmarsh, A. C., Solution of Block-Tridiagonal Systems of Linear Algebraic
Equations, Report UCID-30150, Lawrence Livermore Laboratory, 1977.

172

INVERTING SYMMETRIC REAL MATRICES AND SOLVING
SYMMETRIC SYSTEMS OF REAL LINEAR EQUATIONS

The subroutines SMSLV and DSMSLV are available for inverting symmetric real
matrices A and solving systems of real linear equations AX = B. SMSLV handles single
precision problems and DSMSLV handles double precision problems. It is assumed that the
matrix A is in packed form. If the inverse of A is computed, then the inverse is a symmetric
matrix which will be stored in packed form,

Note. All eigenvalues of a real symmetric matrix A are real. The inertia of A is the ordered
triple (m, v, {) where 7 is the number of positive eigenvalues of A, v the number of negative
eigenvalues of A, and ¢ the number of zero eigenvalues of A. Thus, if n is the order of A
then # + v+ ¢ = n. Also A is positive definite (positive semi-definite, negative definite,
negative semi-definite) if7# = n(» = 0,» = n, 7 = 0).

CALL SMSLV (MO,n.m A B kb.D RCOND INERT IERR.IPVT WK)
CALL DSMSLV (MO.n,m.A B.kb.D.RCOND,INERT.,IERR ,IPVT . WK)

A is an array of dimension n(n+ 1)/2 containing the elements of a packed n X n
symmetric matrix where n= 1. If MO = 0 then the inverse of A is computed and stored in
A in packed form. If MO # 0 then the inverse of A is not computed.

The argument m is an integer., If m > 1 then B is a matrix having n rows and m
columns. In this case AX = B is solved and the solution X is stored in B. If m < 0 then
there are no equations to be solved. In this case B is ignored.

The argument kb is the number of rows in the dimension statement for B in the calling
program. If m < 0 then kb is ignored.

D is an array of dimension 2. When either routine is called the determinant det(A) of
the matrix A is computed. If det(A) = d- 10¥ where 1 < |d| < 10 and k an integer, then d
is stored in D(1) and the exponent k is stored in floating point form in D(2).

RCOND is a variable. When either routine is called, the routine makes an estimate ¢ of
the condition number of the matrix A (relative to the L1 norm). RCOND is assigned the

value 1/c.

INERT is an integer array of dimension 3. When either routine is called the inertia of
the matrix A is computed. INERT(1) is set to the number of positive eigenvalues of A,

173

INERT(2) is set to the number of negative eigenvalues, and INERT(3) is set to the number
of zero eigenvalues.

IPVT is an integer array of dimension n or larger that is used by the routines for
keeping track of the row and column interchanges that are made. WK is an array of
dimension n or larger that is used as a work space.

Remniarks

(1) If SMSLYV is called then it is assumed that A and B are single precision real matrices, D
and WK are single precision real arrays, and RCOND is a single precision real variable.
Otherwise, if DSMSLYV is called then it is assumed that A and B are double precision
real matrices, D and WK are double precision real arrays, and RCOND is a double
precision real variable.

(2) RCOND satisifies 0 << RCOND < 1. If RCOND = 10~k then one can expect the results
to have approximately k fewer significant digits of accuracy than the elements of A.
For example, if SMSLV is used to invert a matrix in the 14 digit CDC single precision
arithemetic and RCOND = .4E-3, then the computed coefficients of the inverse
matrix should normally be accurate to about 11 digits. In general, RCOND
characterizes how well or poorly conditioned the problem is. If RCOND & 1 then one
should expect the results to be almost as accurate as the original data A. However, if
RCOND = 0 then one should expect the results to be nonsense.

(3) The data in A is always destroyed.

Error Return. IERR is an integer variable. If RCOND is sufficiently large so that
I+ RCOND > 1, then IERR is set to O and the problem is solved. Otherwise, if
1 + RCOND = 1 then IERR is set to | and the routine terminates. In this case, A will have
been destroyed but B will not have been modified. Also the determinant and inertia will not
have been computed.

Algorithm. The diagonal pivoting factorization procedure is used. Partial pivoting is
employed.

Precision. SMSLV and the more general routine MSLV have approximately the same
accuracy, and DSMSLV and DMSLYV have approximately the same accuracy.

Efficiency. Even though SMSLV performs approximately half the number of multipli-
cations and divisions as MSLV, normally one can expect SMSLV to take about 70-80% of
the time required by MSLV. However, for sparse matrices SMSLV may be 20-30% slower
than MSLV. Similar comments hold for DSMSLV and DMSLV.

174

Programming. SMSLV and DSMSLV are driver routines for the LINPACK subroutines
SSPCO, SSPFA, SSPSL, SSPDI and DSPCO, DSPFA, DSPSL, DSPDI. SSPCO and DSPCQO
were written by Cleve Moler (University of New Mexico). The remaining LINPACK
subroutines were written ©y James Bunch (University of California, San Diego). The
subroutines employ the vector routines SCOPY, SSWAP, SDOT, SSCAL, SAXPY, SASUM,
ISAMAX and DSWAP, DDOT, DSCAL, DAXPY, DASUM, IDAMAX.

References

(1) Bunch, J. R. and Parlett, B. N., “Direct Methods for Solving Symmetric Indefinitc
Systems of Linear Equations,” SIAM J. Numerical Analysis 8 (1971), pp. 639-655.

(2) Bunch, J. R., “Analysis of the Diagonal Pivoting Method,” SIAM J. Numerical Analysis
8 (1971), pp. 656-680. .

(3) Bunch, J. R., Kaufman, L., and Parlett, B. N., “Decomposition of a Symmetric
Matrix,” Numerische Mathematik 27 (1976), pp. 95-109.

(4) Bunch, J., and Kaufman, L., “Some Stable Methods for Calculating Inertia and Solving
Symmetric Linear Systems,”” Math. Comp. 31 (1977), pp. 163-179.

(5) Cline, A. K., Moler, C. B., Stewart, G. W., and Wilkinson, J. H., ““An Estimate for the
Condition Number of a Matrix,” SIAM Numerical Analysis 16 (1979), pp. 368-375.

(6) Dongarra, J. J., Bunch, J. R., Moler, C. B., and Stewart, G. W., LINPACK Users’ Guide,
Society for Industrial and Applied Mathematics, Philadelphia, 1979.

175

INVERTING POSITIVE DEFINITE SYMMETRIC MATRICES AND SOLVING
POSITIVE DEFINITE SYMMETRIC SYSTEMS OF LINEAR EQUATIONS

The subroutines PCHOL and DPCHOL are available for inverting positive definite
symmetric real matrices A and solving systems of real linear equations AX = B. PCHOL
handles single precision problems and DPCHOL handles double precision problems, It is
assumed that the matrix A is in packed form. If the inverse of A is computed then the
inverse is a symmetric matrix which will be stored in packed form.

CALL PCHOL(MO,n,m,A,B,kb,IERR)
CALL DPCHOL(MO,n,m,A,B,kb,JERR)

A is an array of dimension n(n + 1)/2 or larger containing the elements of a packed
n X n positive definite symmetric matrix where n = 1, If MO = 0 then the inverse of A is
computed and stored in A in packed form. If MO # 0 then the inverse is not computed.

The argument m is an integer, If m = 1 then B is a matrix having n rows and m
columns, In this case AX = B is solved and the solution X is stored in B. If m < 0 then
there are no equations to be solved, In this case B is ignored.

The argument kb is the number of rows in the dimension statement for B in the calling
program, If m < 0 then kb is ignored.

Remarks

(1) If PCHOL is called then it is assumed that A and B are single precision real arrays, and
if DPCHOL is called then it is assumed that A and B are double precision arrays,

(2) The datain A is destroyed.

Error Return. IERR is an integer variable, If A is positive definite then IERR is set to 0
and the problem is solved. Otherwise, IERR = k if the leading k X k submatrix of A is not
positive definite.

Algorithm. The Cholesky procedure is used,

Precision. The results obtained by PCHOL and DPCHOL are occasionally less accurate (up
to 1 significant digit) than the results obtained by SMSLV and DSMSLV.

Programming, PCHOL and DPCHOL are driver routines for the LINPACK subroutines
SPPFA, SPPSL, SPPDI and DPPFA, DPPSL, DPPDI. These subroutines were written by

177

Cleve Moler (University of New Mexico). The functions SDOT, DDOT and subroutines
SAXPY, SSCAL, DAXPY, DSCAL are also used.

Reference. Dongarra, J. J., Bunch. J. R., Moler, C. B., and Stewart, G. W., LINPACK
Users’ Guide, Society for Industrial and Applied Mathematics, Philadelphia, 1979,

178

INVERTING GENERAL COMPLEX MATRICES AND SOLVING
GENERAL SYSTEMS OF COMPLEX LINEAR EQUATIONS

The following subroutine is available for inverting arbitrary complex matrices A and
solving arbitrary systems of complex linear equations AX = B.

CALL CMSLV(MO.n,m.A ka.B kb.D. RCOND.IERR.IPVT WK)

A is a complex matrix of order n where n= 1. If MO = 0 then the inverse of A is
computed and stored in A. If MO = 0O then the inverse is not computed.

The argument m is an integer. If m = 1 then B is a complex matrix having n rows and
m columns. In this case the matrix equation AX = B is solved and the solution X is stored
in B. If m < 0 then there are no equations to be solved. In this case the argument B is
ignored.

The argument ka is the number of rows in the dimension statement for A in the calling
program, and the argument kb is the number of rows in the dimension statement for B in
the calling program. If m < O then the argument kb is ignored.

D is a complex array of dimension 2. When CMSLYV is called the determinant det(A) of
the matrix A is computed. If det(A) = .d'IOk where 1 < |Re(d)| + [Im(d)| < 10 and k an
integer, then d is stored in D(1) and the exponent k is stored as a complex number in D(2).

RCOND is a single precision real variable. When CMSLYV is called, the routine makes an
estimate ¢ of the condition number of the matrix A (relative to the modified L1 norm
where each absolute value |z} is replaced with |Re(z)| + |Im(z)|). RCOND is assigned the
value 1/c.

IPVT is an integer array of dimension n or larger that is used by the routine for keeping
track of the row interchanges that are made. WK is a complex array of dimension n or larger
that is used as a work space.

Remarks

(1) RCOND satisfies 0 << RCOND < 1. If RCOND = 10"k then one can expect the
results to have approximately k fewer significant digits of accuracy than the elements
of A. For example, if CMSLV is used to invert a matrix in the 14 digit CDC single
precision arithmetic and RCOND = .4E-3, then the computed coefficients of the
inverse matrix should normally be accurate to about 11 digits. In general, RCOND
characterizes how well or poorly conditioned the problem is. If RCOND = 1 then one
should expect the results to be almost as accurate as the original data A. However, if
RCOND = 0 then one should expect the results to be nonsense.

179

(2) The matrix A is always destroyed.

Error Return. IERR is an integer variable. If RCOND is sufficiently large so that
1 + RCOND > 1, then IERR is set to O and the problem is solved. Otherwise, if
1 + RCOND = 1 then IERR is set to 1 and the routine terminates. In this case, A will have
been destroyed but B will not have been modified. Also the determinant will not have been
computed.

Algorithm. The partial pivot Gauss elimination procedure is used. The pivots a,; are
selected so that IRe(akj)I + |Im(ay;)| = max {IRe(aij)I + iIm(aij)I: i =j,...,n'} rather than

lay;l = max {Iaijl: i =J,...,n}.

Programming. CMSLYV is a driver routine for the LINPACK subroutines CGECO, CGEFA,
CGESL, CGEDLI The subroutines were coded by Cleve Moler (University of New Mexico).
The subroutines employ the vector routines CSWAP, CDOTC, CSCAL, CSSCAL, CAXPY,
SCASUM, ICAMAX.

References

(1) Dongarra, J. J., Bunch, J. R., Moler, C. B., and Stewart, G. W., LINPACK Users’ Guide,
Society for Industrial and Applied Mathematics, Philadelphia, 1979.

(2) Cline, A. K., Moler, C. B., Stewart, G. W., and Wilkinson, J. H., “An Estimate for the
Condition Number of a Matrix,” SIAM Journal of Numerical Analysis 16 (1979), pp.
368-375.

180

SOLUTION OF COMPLEX EQUATIONS WITH ITERATIVE IMPROVEMENT

Given a complex n X n matrix A and a complex column vector b, The following routine
is available for solving the equation Ax = b. Iterative improvement is performed to compute
the solution x to machine accuracy.

CALL CSLVMP(MO,n,A ka,b,X,WK,IWK ,IERR)

MO is an input argument which specifies if CSLVMP is being called for the first time.
On an initial call, MO = 0 and we have the following setup:

A is a 2-dimensional complex array of dimension ka X n containing the matrix A,
b a complex vector of dimension n, and X a complex array of dimension n. When CSLVMP
is called, Ax =D is solved and the solution stored in X. A and b are not modified by the
routine.

WK is a complex array of dimension n? +n or larger, and IWK an integer array of
dimension n or larger. These arrays are for internal use by the routine. On an initial call to
CSLVMP, an LU decomposition is obtained for A and stored in WK and IWK. Then the
equation Ax = b is solved.

IERR is an integer variable that reports the status of the results. On an initial call to
CSLVMP, when the routine terminates IERR will have one of the following values:

IERR=0 The solution X was obtained to machine accuracy.

IERR =1 X was obtained, but not to machine accuracy.

IERR = -k The k™ column of A was reduced to a column containing only zeros.
When IERR = -k, no solution is obtained.

After an initial call to CSLVMP, if IERR = 0 or 1 on output, then the routine may be
called to solve a new set of equations Ax =B without having to redecompose the matrix A.
In this case, the input argument MO may be set to any nonzero value. When MO % 0 it
is assumed that only b has been modified. The routine employs the LU decomposition
obtained on the initial call to CSLVMP to solve the new set of equations Ax =b. On output
X will contain the solution to the new set of equations. As before, A and b are not mod-
ified by the routine.

If CSLVMP is recalled with MO # 0, then when the routine terminates IERR will have
one of the following values:

IERR =0 The solution X was obtained to machine accuracy.

IERR =1 X was obtained, but not to machine accuracy.

181

Programming. CSLVMP calls the subroutine CLUIMP. These routines were written by
A. H. Morris. The subroutines CMCOPY, CGEFA, CGESL, CSCAL, CAXPY and functions
SPMPAR, CDOTC, ICAMAX are also employed.

182

SINGULAR VALUE DECOMPOSITION OF A MATRIX

If A is a complex m X n matrix then there exists an m X m unitary matrix U and an
n X n unitary matrix V such that D = U*AV is a diagonal matrix'. Let d_,..,d, be the
diagonal elements of D where k = min {m,n}. Then U and V can be selected so that the
diagonal elements are real numbers and d, = d, =+ > d, = 0. The nonnegative
diagonal elements d, are unique. However, a variety of selections can be made for Uand V.
In particular, if A is a real matrix then U and V can be chosen to be real orthogonal
matrices. The decomposition D = U*AV is called the singular value decomposition of A.
The elements d, ,...,d, are the singular values of A, the columns of U are left singular
vectors, and the columns of V are right singular vectors.

Remark. Form > n, D = (]?]1) where D, = diag (d,,...,d,). Consequently, if U is parti-
tioned into U = (U; U,) where U; has n columns, then it follows that A=UDV*=Uj D, V*,
The decomposition A = U; D, V* is frequently also called the singular value decomposition,
and in many applications it suffices.

The following subroutines are available for finding the singular value decomposition
D = U*AV of a matrix A.

CALL SSVDC(A ka,m.,n.D.E. U ku.V kv WORK,JOB.INFO)
CALL DSVDC(A ka,m.,n,D.E.Uku,V kv WORK,JOB,INFO)
CALL CSVDC(A ka,m.,n.D E . Uku.V.kv WORK.JOB.INFO)

A is a 2-dimensional array of dimension ka X n containing the m X n matrix whose
singular value decomposition is to be computed. D is an array of dimension min { m+1l,n } ;
When any of the routines is called, the singular values of A are computed and stored in
descending order of magnitude in D(1),...,D(k) where kK = min {m, n } .

JOB is an iriteger that controls the computation of the singular vectors. It is assumed
that JOB = ['10+J when1,J = 0, 1,...,9. I and J have the following meaning.
=0 Do not compute the left singular vectors.
=1 Compute all m left singular vectors.
> 1 Compute the first min {m, n} left singular vectors.
(Here we compute the decomposition A = U, D, V*)
J=20 Do not compute the right singular vectors.

J > 0 Compute the right singular vectors.

L B I e B |

U is a 2-dimensional array which contains the left singular vectors that are requested,
and ku is the number of rows in the dimension statement for U in the calling program. It is

' U#* denotes the adjoint matrix of U.

183

assumed that ku = m. If no left singular vectors are requested (i.e., if JOB < 10) then U is
ignored by the routines. Otherwise, U must be of dimension ku X m if all m left singular
vectors are requested, and U must be of dimension ku X min { m, n} if the first min {m, n }
left singular vectors are requested.

V is a 2-dimensional array which contains the right singular vectors that are requested,
and kv is the number of rows in the dimension statement for V in the calling program. It is
assumed that kv 2 n. If no right singular vectors are requested then V is ignored by the
routines. Otherwise, V must be of dimension kv X n if the right singular vectors are
requested.

E is an array of dimension n or larger, and WORK is an array of dimension m or larger.
E and WORK are storage areas for the routines.

Remarks

(1) If SSVDC is called then it is assumed that the arrays A,D,E,U,V,WORK are single
precision real arrays. [f DSVDC is called then it is assumed that the arrays are double
precision real arrays, and if CSVDC is called then it is assumed that the arrays are
complex arrays.

(2) The contents of A are destroyed by the routines. If left singular vectors are requested
and there is sufficient storage in A to hold the vectors (there will be sufficient storage
if m < n or JOB = 20), then one may set U = A. Similarly, if right singular vectors
are requested and m =2 n then one may set V = A. However, only one of the two
arrays U and V may be identified with A.

Error Return. INFO is an integer variable. If all the singular values are found then INFO
will be set to 0 and the array E will contain zeros. However, if the j! singular value cannot
be found then INFO is set to j. In this case, if j < k where k = min {m, n } then the
singular values dj+1""’dk will have been computed and stored in D. A will have been
reduced to an upper bidiagonal matrix B with D as its diagonal and E its super diagonal. If U

and V have been requested then B = U*AV will be satisfied.

Programming. SSVDC, DSVDC, and CSVDC are part of the LINPACK package of matrix
subroutines released by Argonne National Laboratory. The routines were coded by G. W,
Stewart (University of Maryland). The routines employ the vector subroutines SSWAP,
SROT, SDOT, SSCAL, SAXPY, SNRM2, DSWAP, DROT, DDOT, DSCAL, DAXPY,
DNRM2, and CSWAP, CSROT, CDOTC, CSCAL, CAXPY, SCNRM2. Also the subroutines
SROTG and DROTG are called.

Reference. Dongarra, J. J., Bunch, J.R., Moler, C.B., and Stewart, G. W., LINPACK Users’
Guide, Society for Industrial and Applied Mathematics, Philadelphia, 1979.

184

EVALUATION OF THE CHARACTERISTIC POLYNOMIAL OF A MATRIX

The following functions are available for computing the determinant of A — xI where
A is an n X n matrix, x a number, and I the n X n identity matrix.

DET(A,ka,n,x)
DPDET(A, ka,n,x)
CDET(A,ka,n,x)

DET is a real function that is used when A is a single precision real matrix and x is a
single precision real number, DPDET is a double precision function that is used when A is
a double precision real matrix and x is a double precision real number, and CDET is a
complex function that is used when A is a complex matrix and x is a complex number.

The value of the appropriate function is the determinant of the matrix A — xI. The
argument ka has the value:

ka = the numper of rows in the dimension statement for A in the calling program
It is assumed thatka=>n = 1.
Note. A is destroyed during computation.
Algorithm. Gauss partial pivoting is performed to reduce A - xI to upper triangular form.
In CDET the pivots ay; are selected so that IRe(akj)I + [Im (akj)l = Max {I Re(aij)l + IIm(aij)I -

i=j,...,n} rather than |ay;| = max{l a1 =j,...,n}.

Programmer. A.H. Morris

185

SOLUTION OF THE MATRIX EQUATION AX + XB = C

Given an m X m matrix A, n X n matrix B, and m X n matrix C. The subroutines
ABSLV and DABSLV are available for obtaining the m X n matrix X which solves the
equation AX + XB = C. ABSLV yields single precision results and DABSLYV yields double
precision results.

CALL ABSLV(MO,m,n,Aka,B,kb,C.,kc, WK,IERR)
CALL DABSLV (MO,m,n, A ka,B,kb,C,kc, WK,JERR)

If ABSLV is called then it is assumed that A, B, C, and WK are single precision real
arrays. Otherwise, if DABSLYV is called then it is assumed that A, B, C, and WK are double
precision arrays.

Itis assumed that m > | and n > 1. The input arguments ka, kb, kc have the following
values:

ka = the number of rows in the dimension statement for A in the calling program

kb= the number of rows in the dimension statement for B in the calling program

kc = the number of rows in the dimension statement for C in the calling program
It is required that ka 2> m, kb > n, ke =2 m.

WK is an array of dimension m? + n? + 2k or larger where k = max {m,n}. WK is
a general storage area for the routine.

MO is an input argument which specifies if the routine is being called for the first time.
On an initial call MO = 0. In this case, A is reduced to lower real Schur form, B is reduced
to upper real Schur form, and then the transformed system of equations is solved.

IERR is a variable that reports the status of the results. When the routine terminates,
IERR has one of the following values:

IERR= 0 The solution was obtained and stored in C.

IERR= 1 The equations are inconsistent for A and B.

IERR = —1 A could not be reduced to lower Schur form,

IERR = -2 B could not be reduced to upper Schur form.
If IERR # 0 then no solution is obtained.

When IERR = 0, A contains the lower Schur form of the matrix A, B contains the upper
Schur form of the matrix B, and WK contains the orthogonal matrices involved in the
decompositions of A and B. This information can be reused to solve a new set of equations.
The following options are available:

187

MO =1 New matrices A and C are given. The data for B is reused in solving the
new set of equations.
MO=2 New matrices B and C are given. The data for A is reused in solving the
new set of equations.
MO+#0, 1,2 A new matrix C is given, The data for A and B is reused in solving the
new set of equations.
When the routine is recalled, it is assumed that m, n, and WK have not been modified.

Programming. ABSLV employs the subroutines ABSLV 1, ORTHES, ORTRN1, SCHUR,
SHRSLV, SLV, and DABSLV employs the subroutines DABSV1, DORTH, DRTRNI,
DSCHUR, DSHSLV, DPSLV. ABSLV and DABSLV are adaptations by A. H. Morris of the
subroutine AXPXB written by R. H. Bartels and G. W. Stewart (University of Texas at
Austin).

Reference. Bartels, R. H, and Stewart, G. W., “Algorithm 432, Solution of the Matrix
Equation AX + XB = C,” Comm. ACM 15 (1972), pp. 820 - 826.

188

SOLUTION OF THE MATRIX EQUATION A'X + XA = C WHEN C IS SYMMETRIC

Given matrices A and C of order n where C is symmetric, Then the subroutines TASLV
and DTASLV are available for obtaining the symmetric matrix X which solves the equation
AtX + XA = C. TASLV vyields single precision results and DTASLYV yields double precision
results,

CALL TASLV(MO,n, A ka,C,kc,WK,IERR)
CALL DTASLV(MO,n, A ka,C,kc,WK,IERR)

If TASLYV is called then it is assumed that A, C, and WK are single precision real arrays.
Otherwise, if DTASLYV is called then it is assumed that A, C, and WK are double precision
arrays.

It is assumed that n > 1. The input arguments ka and kc have the following values:
ka = the number of rows in the dimension statement for A in the calling program
kc = the number of rows in the dimension statement for C in the calling program

It is required that ka > n and kc = n,

WK is an array of dimension n? + 2n or larger that is a general storage area for the
routine,

MO is an input argument which specifies if the routine is being called for the first time.
On an initial call MO = 0. In this case, A is reduced to upper real Schur form and then the
transformed system of equations is solved,

IERR is a variable that reports the status of the results, When the routine terminates,
IERR has one of the following values:

IERR=0 The solution was obtained and stored in C.

JERR=1 The equations are inconsistent.

IERR = —1 A could not be reduced to upper Schur form,
If IERR # 0 then no solution is obtained,

When IERR = 0, A contains the upper Schur form of the matrix A and WK contains
the orthogonal matrix involved in the decomposition of A. This data can be reused to solve
a new set of equations A'X + XA = C. In this case, MO can be set to any nonzero value,
When MO # 0 it is assumed that only C has been modified. When the routine terminates,
the solution for the new set of equations is stored in C.

189

Programming. TASLV employs the subroutines TASLV 1, ORTHES, ORTRN1, SCHUR,
SYMSLV, SLV and DTASLV employs the subroutines DTASV1, DORTH, DRTRNI,
DSCHUR, DSYMSV, DPSLV. TASLV and DTASLV are adaptations by A. H. Morris of the

subroutine ATXPXA written by R. H. Bartels and G. W. Stewart (University of Texas at
Austin).

Reference. Bartels, R, H. and Stewart, G. W., “Algorithm 432, Solution of the Matrix
Equation AX + XB = C,” Comm. ACM 15 (1972), pp. 820- 826.

190

SOLUTION OF THE MATRIX EQUATION AX? + BX+C=0

Given complex n X n matrices A, B, and C. The following subroutine is available for
obtaining a complex n X n matrix X which solves the equation AX2 + BX+ C=0,

CALL SQUINT(m,n,A,B,C,IND,X,WK,£,7,MAX,IERR)

Tt is assumed that A, B, C, and X are 2-dimensional complex arrays of dimensionm X n
where m > n, When SQUINT is called, the n X n complex matrix solution obtained for
AX? + BX + C = 0 is stored in X, A, B, and C are modified by the routine,

IND is an integer variable, On input, if IND # O then it is assumed that an initial
approximation for the desired solution is provided in X by the user. Otherwise, if IND=0
then the routine providesits own initial approximation. Then Newton iteration is performed.
On output, IERR = the number of iterations that were performed to compute X,

WK is acomplex array of dimension £ that is a work space for the routine, It is assumed
that ¢ > 7n% + n, When SQUINT terminates, WK(1) is a complex number whose real part
is the norm 1AX? + BX + Cll _,

The argument 7 is a real number, If 7 < 0 then X is computed to machine precision,
Otherwise, if 7> O then iteration terminates when IAX? + BX + Cll < 7.

MAX is avariable, If MAX > 0, then MAX is the maximum number of iterations that
may be performed. If MAX < 0 then it is reset by the routine to 30, the default maximum
number of iterations,

Error Return. IERR is an integer variable that is set by the routine. If the desired solution
X is obtained, then IERR is assigned the value 0, Otherwise, IERR is set to one of the
following values:
IERR =1 MAX iterations were performed. More iterations are needed.
IERR = 2,3 Factorization of the equations could not be completed. X could
not be computed.
IERR = 10+n Newton iteration failed on iteration n, Possibly too much accuracy
was requested, X could not be computed.
IERR = 999 (Input Error) Either m = n > 1 is not satisfied or < 7n2 + n,

When IERR = 1 occurs, X contains the most recent value obtained for the solution and
WK(1) is a complex number whose real part is the latest value obtained for the norm
IAX? + BX + CH...

191

Programming. SQUINT employs the subroutines SQUIN2, CQZHES, CQZIT, TRISLV, and
CTRANS. These routines were designed by George J. Davis (Georgia State University,
Atlanta, Georgia). CQZHES and CQZIT are modifications of the EISPACK subroutines

QZHES and QZIT, developed at Argonne National Laboratory. The function SPMPAR
is also used.

References
(1) Davis, G. J., “Algorithm 598. An Algorithm to Compute Solvents of the Matrix
Equation AX2 + BX + C = 0,” ACM Trans. Math Software 9 (1983), pp. 246-254.

(2) Garbow, B. S., et al.,, Matrix Eigensystems Routines — EISPACK Guide Extension,
Springer—Verlag, 1977,

192

"EXPONENTIAL OF A REAL MATRIX
Let A be a real matrix of order n = 1. Then the subroutines MEXP and DMEXP are

available for computing the exponential matrix e = ‘Eo Al/i!, MEXP yields single precision
P
results and DMEXP yields double precision results.

CALL MEXP(A,ka,n,Z,kz, WK, IERR)

A is a real matrix of order n > 1 and Z a real 2-dimensional array. MEXP computes e®
and stores the results in Z. The arguments ka and kz have the following values:

ka = the number of rows in the dimension statement for A in the calling program

kz = the number of rows in the dimension statement for Z in the calling program
It is assumed that ka > n, kz > n, and that A and Z are different storage areas. If n> 1 then
A is destroyed.

WK is a real array of dimension n(n + 8) or larger that is a work space for the routine,

IERR is a variable that reports the status of the results,. When MEXP terminates,
IERR is assigned one of the following values:

IERR = 0 The exponential was compted.

IERR =1 The norm ||A||l = maijiIaijl is too large. eA cannot be computed,

IERR = 2 The Pade denominator matrix is singular, (This should never occur.)

Algorithm. A is balanced, yielding a matrix B = D !PtAPD where D is a diagonal matrix,
P a permutation matrix, and IBl, < IIAII1 . Next m is set to the smallest nonnegative integer
such that min {IBIl,, IBI_} < 2™, and the 8th diagonal Pade approximation for e* is used
to compute exp(B/2™). Then eB = [exp(B/2™)I2" is obtained by m squarings, and
eA = PDeBD-1P! is applied.

Programming. MEXP calls the subroutines BALANC, BALINV, and SLV. The function
IIMACH is also used, MEXP was written by A. H. Morris,

Reference. Ward, Robert, C., “Numerical Computation of the Matrix Exponential with
Accuracy Estimate,” SIAM J. Numerical Analysis 14 (1977), pp. 600-610.

CALL DMEXP(Aka,n,Z,kz,WK,IERR)

A is a double precision matrix of order n = 1 and Z a double precision 2-dimensional
array. DMEXP computes e and stores the results in Z. The arguments ka and kz have the
following values:

193

ka = the number of rows in the dimension statement for A in the calling program

kz = the number of rows in the dimension statement for Z in the calling program
It is assumed that ka > n, kz > n, and that A and Z are different storage areas. If n > 1
then A is destroyed.

WK is a double precision array of dimension n(n + 12) or larger that is a work space
for the routine,

IERR is a variable that reports the status of the resultss. When DMEXP terminates,
IERR is assigned one of the following values:

IERR = 0 The exponential was computed.
IERR =1 The norm ||A||l is too large. eA cannot be computed.
IERR = 2 The Pade denominator matrix is singular. (This should never occur.)

Programming. DMEXP calls the subroutines DBAL, DBALNV, and DPSLV. The function
IIMACH is also used. DMEXP was written by A, H. Morris.

Reference. Ward, Robert C,, “Numerical Computation of the Matrix Exponential with
Accuracy Estimate,” SIAM J. Numerical Analysis 14 (1977), pp. 600- 610,

194

SOLVING SYSTEMS OF 200-400 LINEAR EQUATIONS

For n 2 1, let A denote an n X n matrix and b a column vector of dimension n. Then
the subroutines LE, DPLE, and CLE are available for solving the equations Ax =b where A
is not stored in-core. For large n, these routines require a work space of dimension = n?/4.
This permits the solution of systems of equations of double the order permitted by the
standard solution procedures.

CALL LE(ROWK,n,b, X, WK IWK ,IERR)
CALL DPLE(ROWK n,b, X, WK IWK ,IERR)
CALL CLE(ROWK n,b, X, WK, IWK,IERR)

X is an array of dimension n and IERR an integer variable. When the equations are
solved, then IERR is set to O and the solution is stored in X.

ROWK is the name of a user defined subroutine that has the format:
CALL ROWK(n,k,R)
R is an array of dimension n and k = 1,...,n. When ROWK is called, thek row of the matrix
A is stored in R, ROWK must be declared in the calling program to be of type EXTERNAL.

WK is an array of dimension [n?/4] + n+ 3 or larger,! and IWK is an integer array of
dimension max { I,n-1 } or larger. WK and IWK are work spaces for the routines.

Error Return. 1ERR = k when the first k rows of A are found to be linearly dependent.

Remarks

(1) When LE is called then it is assumed that b, X, WK and the array R in ROWK are
single precision real arrays. When DPLE is called then it is assumed that these arrays
are double precision real arrays, and when CLE is called then it is assumed that the
arrays are complex.

(2) When the equations are solved, ROWK is called to attach the first row of A, then the
second row, etc. Each row of A is attached only once.

(3) The array b is not modified by the routines.

Example. Consider a system of n = 300 real linear equations Ax = b where the rows of A
are stored, one row per logical record, in sequence in an unformatted file (say file 4). Then
the following code can be used to solve the equations:

! Here [n? /4] denotes the largest integer < n*/4.

195

REAL B(300), X(300), WK(22803)
INTEGER IWK(300)

EXTERNAL GETROW

DATA N/300/

REWI'ND 4
CALL LE(GETROW,N,B, X, WK ,IWK IERR)

Here GETROW may be defined by:

SUBROUTINE GETROW(N,I,R)
REAL R(N)

READ (4) (R(J),J=1,N)
RETURN

END

Algorithm. The partial pivot Henderson-Wassyng procedure is used.

Programming. LE, DPLE, and CLE are modified versions (by A. H. Morris) of the sub-

routine TE, written by A. Wassyng (University of the Witwatersrand, Johannesburg, South
Africa).

Reference. Wassyng, A., “Solving Ax =b: A Method with Reduced Storage Requirements,”
SIAM J. Numerical Analysis 19 (1982), pp. 197-204.

196

BAND MATRIX STORAGE

For an m X n matrix A = (aij)’ let m, be the number of diagonals below the main
diagonal containing nonzero elements, and m the number of diagonals above the main
diagonal containing nonzero elements. Then m, and m are called the lower and upper
band widths of A, and m, + m +1 the total band widrh of A. It is clear that 0<m,<m
and 0 < m_ <n, and that a,# 0 only when i-m,<j <i+ m, If the band width m +m_ +1
is sufficiently small, then it is also clear that a considerable savings in storage can occur
by storing only the nonzerc diagonals of A. The band storage scheme adopted by the
NSWC library is to store A as an m X (m, + m+ 1) matrix B=(b;,). The columns of B are the
nonzero diagonals of A. Specifically, for each nonzero N b, = q; wherek=j—i+m, + L.
The remaining b, ’s are zeros.

Example. Consider the matrix

a;; a, 3, 0 0 0 O

4y 8y Ay 3y, 0 0

0 a3, a3 a3 2353 0 0

A = 0 0 a5 3, 25 3, O
0 0 0 a, a5 ag ag

0 0 0 465 466 Y67

0O 0 0 o0 o0 oe Aqq

0 0 0 0 0 0 a

Remark. The first m, columns of B contain the nonzero diagonals of A below the main
diagonal, the (m, + 1)* column of B contains the main diagonal, and the last m, columns of
B contain the nonzero diagonals of A above the main diagonal.

197

CONVERSION OF BANDED MATRICES TO AND FROM THE STANDARD FORMAT

The following subroutines permit one to convert banded matrices to and from the
standard format,

CALL CVBR(Akam,n,m ,m ,B,kb)
CALL CVBC(A,ka,m,n,mg,m ,B,kb)

A is an m X n matrix stored in band form, m, the number of diagonals below the main
diagonal containing nonzero elements, and m, the number of diagonals above the main
diagonal containing nonzero elements, The argument ka is the number of rows in the
dimension statement for A in the calling program. It is assumed that 0<m,<m,0<m <n,
and ka 2z m,

B is a 2-dimensional array of dimension kb X n where kb > m. CVBR is used if
A and B are real arrays, and CVBC is used if A and B are complex arrays. When the routine
is called, the matrix A is stored in the array B in the standard format.

Remark. B may begin in the same location as A. If B begins in the same location then it is
assumed that kb =ka. In this case, the result B will overwrite the input data A. Otherwise,
if B does not begin in the same location as A, then it is assumed that the storage areas
A and B do not overlap.

Programmer. A. H. Morris

CALL CVRB(Akam,n,m ,m ,Bkb)
CALL CVCB(Akam,n,mg,m_ ,B.kb)

Ais an m X n matrix stored in the standard format, and m, and m are integers such
that 0<m, <m and 0<m <n. The argument ka is the number of rows in the dimension
statement for A in the calling program. It is assumed that ka>=m,

B is a 2-dimensional array of dimension kb X ¢ wherekb>m and 22 m,+m_ + 1
CVRB is used if A and B are real arrays, and CVCB is used if A and B are complex arrays.
When the routine is called, the m, diagonals of A immediately below the main diagonal,
the main diagonal, and the m, diagonals immediately above the main diagonal are stored in
band form in B,

199

Remarks

(1) Given a matrix A = (aij), then these routines may be used to convert A to band form
when the lower and upper bandwidths m, and m of A are known, If m, and m are
not known, then the subroutines CVRB1 and CVCB1 described below can be used to
convert A to band form.

(2) B may begin in the same location as A. If B begins in the same location then it is
assumed that kb = ka. In this case, the result B will overwrite the input data A.
Otherwise, if B does not begin in the same location as A, then it is assumed that the
storage areas A and B do not overlap.

Programmer. A. H. Morris

CALL CVRBI(Akam,n,my,m ,Bkb,¢,JERR)
CALL CVCBI1(AXkam,n,m,,m ,Bkb,2IERR)

A is an m X n matrix stored in the standard format. The argument ka is the number
of rows in the dimension statement for A in the calling program. It is assumed that A is to
be stored in band form in B. B is a 2-dimensional array of dimension kb X £ where kb > m,
The argument £ is an estimate of the maximum number of diagonals of A that will have to
be stored.

CVRBI is used if A and B are real arrays, and CVCBI is used if A and B are complex
arrays. IERR, m,, and m are integer variables, When the routine is called, if € specifies
sufficient storage for B then A is stored in band form in B. Also IERR is assigned the
value 0, my = the number of diagonals of A below the main diagonal containing nonzero
elements, and m = the number of diagonals above the main diagonal containing nonzero
elements,

Error Rerurn. 1f £ does not specify sufficient storage for B, then IERR is assigned the value
my+m + 1, Reset £ IERR.

Remarks. B may begin in the same location as A, If B begins in the same location then it is
assumed that kb = ka, In this case, the result B will overwrite the input data A. Otherwise,
if B does not begin in the same location as A, then it is assumed that the storage areas
A and B do not overlap,

Programming. CVRBI calls the subroutine CVRB, and CVCBI1 calls the subroutine CVCB.
These routines were written by A. H. Morris.

200

CONVERSION OF BANDED MATRICES TO AND FROM SPARSE FORM

The following subroutines permit one to convert banded matrices to and from sparse
form,

CALL MCVBS(A,ka,m,n,m,,m ,B,IB,JB,NUM,IERR)
CALL CMCVBS(Aka,m,n,m,,m ,B,IB,JB,NUM,IERR)

A is an m X n matrix stored in band form, m, the number of diagonals below the main
diagonal containing nonzero elements, and m, the number of diagonals above the main
diagonal containing nonzero elements, The argument ka is the number of rows in the
dimension statement for A in the calling program. It is assumed that 0<<my, <m, 0<m <n,
and ka = m,

It is assumed that A is to be stored in sparse form in the arrays B, IB, JB. NUM is the
estimated maximum number of elements that will appear in B and JB. It is assumed that B
and JB are of dimension max {I,NUM} and that IB is of dimension m + 1.

MCVRS is used if A and B are real arrays, and CMCVBS is used if A and B are complex
arrays. IERR is an integer variable. When the routine is called, if NUM specifies sufficient

storage for B and IB, then IERR is assigned the value 0 and A is stored in sparse form in
B, IB, IB.

Error Return. 1If there is not sufficient storage in B and JB for the ith row of A, then IERR
is set to i and the routine terminates, In this case, if i> 1 then the first i — 1 rows of A will
have been stored in B and JB. Also IB(1),...,IB(i) will contain the appropriate row locations.

Programmer. A. H. Morris

CALL MCVSB(A,IA,JA,m,n,Bkb,¢,m ,m ,IERR)
CALL CMCVSB(A,IA,JA,m,n,B,kb,¢,m,,m ,JERR)

A is an m X n sparse matrix stored in the arrays A, IA, JA. It is assumed that A is to be
stored in band form in B. B is a 2-dimensional array of dimension kb X £ where kb =2 m,
The argument ¢ is an estimate of the maximum number of diagonals of A that will have to
be stored.

MCVSB is used if A and B are real arrays, and CMCVSB is used if A and B are complex
arrays. IERR, m, and m are integer variables. When the routine is called, if £ specifies

201

sufficient storage for B then A is stored in band form in B, Also IERR is assigned the value
0, m, = the number of diagonals of A below the main diagonal containing nonzero elements,
and m = the number of diagonals above the main diagonal containing nonzero elements.

Error Return. If € does not specify sufficient storage for B, then IERR is assigned the value
m,+m + 1. Reset¢>IERR

Programmer, A. H. Morris

202

TRANSPOSING BANDED MATRICES
The following subroutines are available for transposing banded matrices.

CALL BPOSE(Aka,m,n,m,,m_ ,B,kb)
CALL CBPOSE(A,ka,m,n,m,,m ,B,kb)

A is an m X n matrix stored in band form, m, the number of diagonals below the main
diagonal containing nonzero elements, and m the number of diagonals above the main
diagonal containing nonzero elements, The argument ka is the number of rows in the
dimension statement for A in the calling program. It is assumed that 0<m,<m,0<m, <n,
and ka= m,

B is a 2-dimensional array of dimension kb X € where kb = n and {2 my+m + 1.
BPOSE is used if A and B are real arrays, and CPOSE is used if A and B are complex arrays.
When the routine is called, the transpose A! of A is stored in band form in B,

Nore. It is assumed that the storage areas A and B do not overlap,

Programmer. A.H. Morris

203

ADDITION OF BANDED MATRICES

Let A and B be m X n matrices stored in band form, The following subroutines are
available for computing the sum C = A + B.

CALL BADD(m,n,A ka,m,m ,Bkb,n,n, Cke, Qv v JERR)
CALL CBADD(m,n,Aka,my,m ,Bkb,ng,n ,Ckefv,,v, JERR)

A and B are m X n matrices stored in band form, m, the number of diagonals of A
below the main diagonal containing nonzero elements, m, the number of diagonals of A
above the main diagonal containing nonzero elements, n, the number of diagonals of B
below the main diagonal containing nonzero elements, and n, the number of diagonals
of B above the main diagonal containing nonzero elements. The argument ka is the number
of rows in the dimension statement for A in the calling program, and kb the number of rows
in the dimension statement for B in the calling program.

It is assumed that A + B is to be stored in band form in C. C is a 2-dimensional array of
dimension kc X € where kc>m. The input argument { is an estimate of the maximum num-
ber of diagonals of A + B which will have to be stored (£ <max {mQ,nQ} + max {mu ,nu} +1).
BADD is used if A and B are real arrays, and CBADD is used if A and B are complex arrays.
IERR, v,, and v are integer variables, When the routine is called, if € specifies sufficient
storage for C then A + B is computed and stored in band form in C. Also IERR is assigned
the value 0, v, = the number of diagonals of A + B below the main diagonal containing
nonzero elements, and v = the number of diagonals of A + B above the main diagonal

containing nonzero elements,

Error Return. 1f 2 does not specify sufficient storage for C, then IERR is assigned the value
» where v is an estimate of the number of columns needed for C. Reset L= v.

Remarks. If m, = n, then C may begin in the same location as A. If C begins in'the same
location as A, then it is assumed that kc =ka and that the arrays A and B do not overlap.
In this case, the result C will overwrite the input data A. Similarly, if m, <n, then C may
begin in the same location as B when kc = kb and A and B do not overlap. Otherwise, if C
does not begin in the same location as A or B, then it is assumed that the storage area for
C does not overlap with the storage areas for A and B. In this case there is no restriction
on k¢ (other than the customary restriction that kc =2 m),

Example. If B =—A then £ may be assigned any value > 1. In this case, C will contain only
the main diagonal of the zero matrix A + B, and v, =v = 0.

Programmer. A.H. Morris

205

My

SUBTRACTION OF BANDED MATRICES

Let A and B be m X n matrices stored in band form. The following subroutines are
available for computing the difference C = A — B.
CALL BSUBT(m,n,A ka,m,m Bkb,n n Ckecy v IERR)

CALL CBSUBT(m,n,Aka,m,,m_ ,Bkb,n ,n ,Cke,qy, v, JERR)

A and B are m X n matrices stored in band form, m, the number of diagonals of A
below the main diagonal containing nonzero elements, m the number of diagonals of A
above the main diagonal containing nonzero elements, n, the number of diagonals of B
below the main diagonal containing nonzero elements, and n the number of diagonals
of B above the main diagonal containing nonzero elements. The argument ka is the number
of rows in the dimension statement for A in the calling program, and kb the number of rows
in the dimension statement for B in the calling program.

It is assumed that A — B is to be stored in band form in C. C is a 2-dimensional array of
dimension k¢ X 2 where kc> m. The input argument £ is an estimate of the maximum num-
ber of diagonals of A—B which will have to be stored (8 <max {m,n,} + max {m_.n}+1).
BSUBTisused if A and B are real arrays, and CBSUBT is used if A and B are complex arrays.
IERR, v, and v are integer variables, When the routine is called, if & specifies sufficient
storage for C then A — B is computed and stored in band form in C. Also IERR is assigned
the value 0, », = the number of diagonals of A — B below the main diagonal containing
nonzero elements, and », = the number of diagonals of A — B above the main diagonal
containing nonzero elements,

Error Rerurn. If € does not specify sufficient storage for C, the IERR is assigned the value
v where v is an estimate of the number of columns needed for C. Reset £ = p.

Remarks. 1f m, > n, then C may begin in the same location as A. If C begins in the same
location as A, then it is assumed that kc = ka and that the arrays A and B do not overlap.
In this case, the result C will overwrite the input data A. Similarly, if m, <n, then C may
begin in the same location as B when kc = kb and A and B do not overlap. Otherwise, if C
does not begin in the same location as A or B, then it is assumed that the storage area for
C does not overlap with the storage areas for A and B. In this case there is no restriction
on kc (other than the customary restriction that kc 2 m).

Example. 1f B = A then € may be assigned any value = 1. In this case, C will contain only
the main diagonal of the zero matrix A — B, and v, =y = 0.

Programmer. A.H. Morris

207

MULTIPLICATION OF BANDED MATRICES

Let A and B be matrices stored in band form. The following subroutines are available
for computing the product C = AB.

CALL BPROD(m,n %, A ka,m, ,mu,B,kb,nQ,nu ,C,kc,nc,vQ,Vu,IERR)
CALL CBPROD(m,n,%,Aka,m,,m ,B,kb,n ,n ,C.ke,ne,p, v ,IERR)

A is an m X n matrix stored in band form, m, the number of diagonals of A below
the main diagonal containing nonzero elements, and m, the number of diagonals of A
above the main diagonal containing nonzero elements. B is an n X 2 matrix stored in band
form, n, the number of diagonals of B below the main diagonal containing nonzero ele-
ments, and n, the number of diagonals of B above the main diagonal containing nonzero
elements. The argument ka is the number of rows in the dimension statement for A in the
calling program, and kb the number of rows in the dimension statement for B in the calling
program. It is assumed that ka 2> m and kb = n.

It is assumed that AB is to be stored in band form in C. Cis a 2-dimensional array
of dimension k¢ X nc where ke > m. The input argument nc is an estimate of the max-
imum number of diagonals of AB which will have to be stored (nc < min {n -1,m, + ng}
+ min {Q - 1L,m +nx + 1). BPROD is used if A, B, and C are real arrays, and CBPROD
is used if A, B, and C are complex arrays, IERR, v, and v, are integer variables. When the
routine is called, if nc specifies sufficient storage for C then AB is computed and stored in
band form in C. Also, IERR is assigned the value 0, », = the number of diagonals of AB
below the main diagonal containing nonzero elements, and v, = the number of diagonals of
AB above the main diagonal containing nonzero elements.

Error Return. If nc does not specify sufficient storage for C, then IERR is assigned ‘the
value » where v is an estimate of the number of columns needed for C. Reset nc =v.

Note. It is assumed that the storage area for C does not overlap with the storage areas for
A and B.

Programmer. A. H. Morris

209

PRODUCT OF A REAL BANDED MATRIX AND VECTOR

Let A be a real m X n matrix stored in band form. Then the following subroutines are
available for multiplying A with a real vector.

CALL BVPRD(m,n A ka,m m_ X,Y)

A is an m X n matrix stored in band form, m, the number of diagonals below the main
diagonal containing nonzero elements, and m the number of diagonals above the main
diagonal containing nonzero elements. The argument ka is the number of rows in the dimen-
sion statement for A in the calling program. It is assumed that 0 <m,<m, 0<m, <n,
and ka =2 m.

The argument X is a column vector of dimension n and y an array of dimension m.
When BVPRD is called, the product Ax is computed and stored in y.

Remark. It is assumed that the arrays A, X, y do not overlap.
Programmer. A. H. Morris

CALL BVPRDI(m,n,Akam, m, X,Y)

A is an m X n matrix stored in band form, m, the number of diagonals below the main
diagonal containing nonzero elements, and m the number of diagonals above the main
diagonal containing nonzero elements. The argument ka is the number of rows in the dimen-
sion statement for A in the calling program. It is assumed that 0 <m <m, O0sm <n,
and ka 2 m.

The arguments x and y are column vectors of dimension n and m respectively, When
BVPRDI is called, Ax + y is computed and stored iny.

Remark. 1t is assumed that the arrays A, x, y do not overlap.
Programmer. A. H. Motris

CALL BTPRD(m,n A ka,m ,m_ ,X,Y)

A is an m X n matrix stored in band form, m, the number of diagonals below the main
diagonal containing nonzero elements, and m, the number of diagonals above the main
diagonal containing nonzero elements. The argument Ka is the number of rows in the dimen-
sion statement for A in the calling program. It is assumed that 0 <m,<m, 0<m <n,
and ka = m.

211

The argument x is a row vector of dimension m and y an array of dimension n. When
BTPRD is called, the product x A is computed and stored in vy,

Remark. 1tis assumed that the arrays A, x, v do not overlap.
Programmer. A. H. Morris

CALL BTPRDl(m,n,A,ka,mQ,mu ,X,¥)

A is an m X n matrix stored in band form, m, the number of diagonals below the main
diagonal containing nonzero elements, and m, the number of diagonals above the main
diagonal containing nonzero elements. The argument ka is the number of rows in the dimen-
sion statement for A in the calling program. It is assumed that 0 < m,<m, 0<m, <n,
and ka2 m.

The arguments x and y are row vectors of dimension m and n respectively, When
BTPRD1 is called, xA + y is computed and stored in y.

Remark, 1t is assumed that the arrays A, x, y do not overdap.

Programmer. A. H. Morris

212

PRODUCT OF A COMPLEX BANDED MATRIX AND VECTOR

Let A be a complex m X n matrix stored in band form. Then the following subroutines
are available for multiplying A with a complex vector.

CALL CBVPD(m,n,Aka,m,,m ,X,y)

A is an m X n matrix stored in band form, m, the number of diagonals below the main
diagonal containing nonzero elements, and m the number of diagonals above the main
diagonal containing nonzero elements. The argument ka is the number of rows in the dimen-
sion statement for A in the calling program. It is assumed that 0 < m, < m, 0< m, <n,
and ka = m.

The argument x is a column vector of dimension n and y an array of dimension m,
A, x, y are complex arrays, When CBVPD is called, Ax is computed and stored in y.

Remark. 1t is assumed that the arrays A, x, y do not overlap,
Programmer. A. H. Morris

CALL CBVPDI (m,n,A,ka,mQ ’mu ,X)Y)

A is an m X n matrix stored in band form, m, the number of diagonals below the main
diagonal containing nonzero elements, and m, the number of diagonals above the main
diagonal containing nonzero elements. The argument ka is the number of rows in the dimen-
sion statement for A in the calling program. It is assumed that 0 <m,<m, 0 <m, <n,

and ka =2 m.

The arguments x and y are column vectors of dimension n and m respectively. A, X,y
are complex arrays. When CBVPDI is called, Ax +y is computed and stored in y.

Remark. 1t is assumed that the arrays A, x, y do not overlap.

Programmer. A. H. Morris

CALL CBTPD(m,n,Aka,m,,m ,X,y)

A is an m X n matrix stored in band form, m, the number of diagonals below the main
diagonal containing nonzero elements, and m, the number of diagonals above the main
diagonal containing nonzero elements. The argument ka is the number of rows in the dimen-
sion statement for A in the calling program. It is assumed that 0 < m, <m, 0< m, <n,
and ka = m.

213

The argument x is a row vector of dimension m and y an array of dimension n. A, X,y
are complex arrays. When CBTPD is called, xA is computed and stored in y.

Remark. 1tis assumed that the arrays A, x, y do not overlap.
Programmer. A. H. Morris

CALL CBTPD1(m,n,Aka,mg,m ,X,y)

A is an m X n matrix stored in band form, m, the number of diagonals below the main
diagonal containing nonzero elements, and m the number of diagonals above the main
diagonal containing nonzero elements. The argument ka is the number of rows in the dimen-

sion statement for A in the calling program. [t is assumed that 0 < m, <m, 0< m, <n,
and ka =2 m.

The arguments x and y are row vectors of dimension m and n respectively. A, X,y
are complex arrays. When CBTPDI1 is called, xA + y is computed and stored in vy.

Remark. 1t is assumed that the arrays A, x, y do not overap.

Programmer. A. H. Morris

214

SOLUTION OF BANDED SYSTEMS OF REAL LINEAR EQUATIONS

Let A be a nonsingular n X n real matrix stored in band form and b a real column
vector of dimensionn. The subroutine BSLV is available for solving the system of equations
Ax = b, and the subroutine BSLV 1 is available for solving the transposed system of equations
Atx =b. On an initial call to either routine, partial pivot Gauss elimination is first employed
to obtain an LU decomposition of A, and then the equations are solved. BSLV and BSLV1
always generate the same LU decomposition of A. After the decomposition is obtained on
an initial call to BSLV or BSLV1, either routine may be called to solve a new system of
equations Ax =1 or Alx = r without having to redecompose the matrix A.

CALL BSLV(MO,A ka,nm,,m_X,JJWK IERR)
CALL BSLVI(MO,A ka,n,m_m_ X,IWK,IERR)

BSLV is called for solving Ax=b and BSLV1 is called for solving Alx =b. The argu-
ment m, is the number of diagonals below the main diagonal of A containing nonzero
elements and m the number of diagonals above the main diagonal containing nonzero
elements. It is assumed that n>1, 0<m, <n, and 0<m <n. MOisan input argument
which specifies if BSLV or BSLVI is bemg called for the first time. On an initial call,
MO = 0 and we have the following setup:

A is a 2-dimensional array of dimension ka X m where ka > nand m = 2m, +m_ + 1.
On input, the first m, +m_ + 1 columns of the array contain the matrix A in band form
When the routine termmates the array A will contain the upper triangular matrix U of the
LU decomposition and the multipliers which were used to obtain it.

X is an array of dimension n or larger. On input, X contains the vector b. On output,
X will contain the solution of the system of equations.

IWK is an array of dimension n or larger for internal use by the routine. The pivot
indices involved in the LU decomposition are stored in IWK.

On an initial call to BSLV or BSLV1, IERR is an integer variable that reports the
status of the results. When the routine terminates, IERR will have one of the following
values:

IERR =0 The system of equations was solved.

IERR=-1 Eithern<0Oorka<n.

IERR =-2 Eitherm, <0 ormg =n.

IERR =-3 Eitherm < Oorm =n.

IERR =k Column k of A has been reduced to a column containing only zeros.

215

After an initial call to BSLV or BSLV1, if IERR = 0 on output then either routine may
be called with MO # 0. When MO # 0 it is assumed that only b may have been modified.
BSLYV is called for solving the new set of equations Ax = b, and BSLV1 is called for solving
the new set of equations A'x = b. The routine employs the LU decomposition obtained on
the initial call to BSLV or BSLV1 to solve the new set of equations. On input, X contains
the new vector b. On output, X will contain the solution to the new set of equations. In
this case, IERR is not referenced by the routine.

Remark. Since the array A must contain at least 2m +m +1 columns in order that it
can hold the upper triangular matrix U and associated multipliers, if m % m then it is
clear that these routines will be more efficient when m, <m,.

Programming, BSLV and BSLV1 employ the subroutines SNBFA, SNBSL, SAXPY,SSCAL,
SSWAP and the functions ISAMAX and SDOT. SNBFA and SNBSL were written by E. A.

Voorhees (Los Alamos Scientific Laboratory) and modified by A. H. Morris. SNBFA and
SNBSL are distributed by the SLATEC library.

216

SOLUTION OF BANDED SYSTEMS OF COMPLEX LINEAR EQUATIONS

Let A be a nonsingular n X n complex matrix stored in band form and b a complex
column vector of dimension n, The subroutine CBSLV is available for solving the system
of equations Ax = b, and the subroutine CBSLV1 is available for solving the transposed
system of equations A'x = b. On an initial call to either routine, partial pivot Gauss
elimination is first employed to obtain an LU decomposition of A, and then the equations
are solved. CBSLV and CBSLV1 always generate the same LU decomposition of A. After
the decomposition is obtained on an initial call to CBSLV or CBSLV, either routine may
be called to solve a new system of equations Ax =r or Atx = r without having to redecom-

pose the matrix A.

CALL CBSLV(MO,A ka,n,m,,m ,X,IWK,JERR)
CALL CBSLV 1(MO,A.ka,nm,,m ,X,JWK,IERR)

CBSLYV is called for solving Ax = b and CBSLV1 is called for solving A'x =b. The
argument m, is the number of diagonals below the main diagonal of A containing nonzero
elements, and m, the number of diagonals above the main diagonal containing nonzero
elements. It is assumed thatn > 1,0<m,<n,and 0<sm < n, MO is an input argument
which specifies if CBSLV or CBSLV1 is being called for the first time. On an initial call,
MO = 0 and we have the following setup:

A is a 2-dimensional complex array of dimension ka X m where ka =>n and m > 2m, +
m + 1. On input, the firstm,+m_+ 1 columns of the array contain the matrix A in band
form When the routine termlnates the array A will contain the upper triangular matrix U
of the LU decomposition and the multipliers which were used to obtain it.

X is a complex array of dimension n or larger. On input, X contains the vector b. On
output, X will contain the solution of the system of equations.

IWK is an array of dimension n or larger for intemal use by the routine. The pivot
indices involved in the LU decomposition are stored in IWK.

On an initial call to CBSLV or CBSLV 1, IERR is an integer variable that reports the
status of the results. When the routine terminates, IERR will have one of the following
values:

217

IERR =0 The system of equations was solved.

IERR = —1 FEithern< 0 orka<{n,

IERR = -2 Eitherm, <0orm,=>n.

IERR = -3 Eitherm <Oorm, =>n

IERR =k Column k of A has been reduced to a column containing only zeros.

After an initial call to CBSLV or CBSLV 1, if IERR = 0 on output then either routine
may be called with MO # 0, When MO # 0 it is assumed that only b may have been
modified. CBSLYV is called for solving the new set of cquations Ax = b, and CBSLV liis called
for solving the new set of equations A'x = b. The routine employs the LU decomposition
obtained on the initial call to CBSLV or CBSLV1 to solve the new set of equations. On
input, X contains the new vector b, On output, X will contain the solution to the new set
of equations. In this case, IERR is not referenced by the routine.

Remark. Since the array A must contain at least 2m, + m + 1 columns in order that it
can hold the upper triangular matrix U and associated multipliers, if m; # m_ then it is
clear that these routines will be more efficient when m, < m, .

Programming. CBSLV and CBSLV 1 employ the subroutines CBFA, CBSL, CAXPY, CSCAL,
CSWAP and the functions ICAMAX and CDOTU. CBFA and CBSL are adaptations by
A. H. Morris of the subroutines SNBFA and SNBSL, written by E. A. Voorhees (Los Alamos
Scientific Laboratory). SNBFA and SNBSL are distributed by the SLATEC library.

STORAGE OF SPARSE MATRICES

A matrix is said to be sparse if it contains sufficiently many zero elements for it to
be worthwhile to use special techniques that avoid storing and operating with the zeros,
The scheme adopted by the NSWC library for storing a sparse m X n matrix (aij) requires
three 1-dimensional arrays A, IA, JA. The array A contains the non-zero elements of the
matrix, stored row by row. The array JA contains the column numbers of the correspond-
ing elements of the A array; i.e, if A(k) contains 3; then JA(k) =j. The elements of a row
of the matrix may be given in any order in A.

IA is an array containing m + 1 integers which specify where the rows of the matrix are
stored in A. For i < m, IA() is the index of the location in A where the i'" row
information begins. It is assumed that the rows are stored sequentially; i.e., that
IA(1) < ++» <TA(m). IA(m + 1) is set so that IA(m + 1) — [A(1) = the number of elements
stored in A. Fori < m, if IAG) < IAG + 1) then A(IA()) is the first entry of the i'? row
of the matrix in A. Otherwise, if IA(1) = IA(+ 1) then no entries for the ith row of the
matrix are stored in A. This can occur only if the ith row of the matrix consists entirely of
zeros. If this occurs then the ith row is called a null row of A. For any i<m,
IA(i + 1) - IA(i) is the number of entries for the ith row of the matrix that are stored in A.
For convenience, IA(i + 1) — [A(i) is called the length of the ith row.

Example. The matrix

a, 2, 0 o 0 0 a,
0 0o 0 o 0

0 0 0 0 ay, ay

a,, O 0o o0 0o 0

can be stored as follows:

A | an W'als |J apy

—

JA:

o |
s | 2 | 7] 8|3 |
|

1
IA: r 1 ‘ 4 | 4
. |
The storage of the elements a, | a;, 3,4 in the order a;; 8,5 3y, is perfectly satisfactory.
The elements of a row of the matrix may be given in any order desired.

Note. It isnot required that each a in A be non-zero.

219

CONVERSION OF SPARSE MATRICES TO AND FROM THE STANDARD FORMAT

The following subroutines permit one to convert sparse matrices to and from the
standard format,

CALL CVRS(Aka,m,n,B,IB,JB,NUM,IERR)
CALL CVCS(Aka,m,n,B,IB,JB,NUM,IERR)

A is an m X n matrix stored in the standard format. The argument ka is the number
of tows in the dimension statement for A in the calling program. It is assumed that A is
to be stored in sparse form in the arrays B, IB, JB. CVRS s used if A is a real matrix and
B a real array, and CVCS is used if A is a complex matrix and B a complex array.

The input argument NUM is the estimated maximum number of elements that will
appear in B and JB. It is assumed that B and JB are of dimension max {l,NUM} and that
IB is of dimension m + 1. IERR is an integer variable. When the routine is called, if NUM
specifies sufficient storage for B and JB, then A is stored in B, IB, JB and IERR is assigned
the value 0.

Error Rerurn. If it is found that there is not sufficient storage in B and JB for the ith row
of A, then IERR is set to i and the routine terminates. In this case, if i > 1 then the first
i — 1 rows of A will have been stored in B and JB, and IB(l),...,IB({) will contain the
appropriate row locations.

Remark. No zero elements of A are stored in B, and the elements of each row of B are
ordered so that the column indices of the elements of the row are in ascending order.

Example. If A is the m X n zero matrix then NUM can be set to 0. In this case the result
will be IB(1) =---=IB(m+1)= 1.

Note. 1t is assumed that the storage areas A and B do not overlap.

Programmer. A.H. Morris

CALL CVSR(A,IA,JA,Bkb,m,n)
CALL CVSC(A,IA,JA,Bkb,m,n)

A is an m X n sparse matrix stored in the arrays A, 1A, JA, and B is a 2-dimensional
array of dimension kb X n where kb > m, CVSR is used if A and B are real arrays, and
CVSC is used if A and B are complex arrays. When the routine is called, the matrix A is
stored in the array B in the standard format.

Note. It is assumed that the storage areas A and B do not overlap.

Programmer. A. H. Morris
221

COMPUTING CONJUGATES OF SPARSE COMPLEX MATRICES

If A=(3)isa complex matrix stored in sparse form, then the following subroutine
is available for computing the conjugate matrix A= (é_.lj).

CALL CSCONIJ(A,IA,JA,B,IB,JB,m)

It is assumed that the sparse complex matrix A is stored in the arrays A, IA, JA. If
A and JA contain k elements, then it is also assumed that B and JB are arrays of dimension k.
A and B are complex arrays. It is assumed that the matrix A hasm > 1 rows and that IB is
an array of dimension m + 1. When the routine is called, the conjugate matrix A is stored in

B, 1B, IB.
Remark. The user may let B= A, IB=1IA, and JB=JA.

Programmer. A. H. Morris

223

TRANSPOSING SPARSE REAL MATRICES

The subroutines RPOSE and RPOSE! are available for transposing a sparse m X n real
matrix A. RPOSE! is more general than RPOSE. For any permutation 7 = {igyerrip }
of {1,...,m} let P denote the corresponding m X m permutation matrix. Then RPOSE1
computes the matrix (PA).

CALL RPOSE(A,IA,JA,B,IB,JB,m,n)

It is assumed that the sparse matrix A is stored in the arrays AIAJA. If A and JA
contain k elements, then it is also assumed that B and JB are arrays of dimension k and
that IB is an array of dimension n + 1. When RPOSE is called, the transpose A' is stored
in B, IB, JB.

Remarks. RPOSE orders the elements of each row of At so that the column indices of the
elements of the row are in ascending order. However, it does no checking for zero elements

in A. If zero elements appear in the array A, then the zero elements will also appear in B.

Restriction. It is assumed that the storage areas B,IB,JB do not overlap with the storage
areas A, IA, JA.

Programmer. A.H. Morris

Reference. Gustavson, F.G., “Two Fast Algorithms for Sparse Matrices: Multiplication and
Permuted Transposition,” ACM Trans. Math Software 4 (1978), 3, pp. 250-269.

CALL RPOSE1(m,A,IA,JA,B,IB,JB,m,n)

It is assumed that = is an integer array of dimension m containing the data {i1, i}
and that the sparse matrix A is stored in the arrays A, IA,JA. If A and JA contain k ele-
ments, then it is also assumed that B and JB are arrays of dimension k and that IB is an
array of dimension n + 1. When RPOSE]1 is called, (PA)t is computed and the results stored
in B, 1B, JB.

Remarks. RPOSE1 orders the elements of each row of (PA)! so that the column indices of
the elements of the row are in ascending order. However, it does no checking for zero
clements in A. If zero elements appear in the array A, then the zero elements will also
appear in B.

Restriction. 1t is assumed that the storage areas B,1B,JB do not overlap with the storage
areas A, IA, JA.

225

Programmer, A.H. Morris

Reference. Gustavson, F.G., “Two Fast Algorithms for Sparse Matrices: Multiplication
and Permuted Transposition,” ACM Trans. Math Software 4 (1978), 3, pp. 250-269.

226

TRANSPOSING SPARSE COMPLEX MATRICES

The subroutines CPOSE and CPOSE! are available for transposing a sparse m X n
complex matrix A. CPOSE1 is more general than CPOSE. For any permutation 7 = {i1 ,...,im}
of {l,...,m} let P denote the corresponding m X m permutation matrix. Then CPOSE1
computes the matrix (PA)!.

CALL CPOSE(A,IA,JA,B,IB,JB,m,n)

It is assumed that the sparse matrix A is stored in the arrays A, IA, JA. A and B are
complex arrays. If A and JA contain k elements, then it is also assumed that B and JB
are arrays of dimension k and that IB is an array of dimension n + 1. When CPOSE is called,
the transpose A! is stored in B, IB, JB.

Remarks. CPOSE orders the elements of each row of A! so that the column indices of the
elements of the row are in ascending order. However, it does no checking for zero elements

in A. If zero elements appear in the array A, then the zero elements will also appear in B.

Restriction. 1t is assumed that the storage areas B, IB, JB do not overlap with the storage
areas A, IA, JA.

Programmer. A.H. Morris

Reference. Gustavson, F. G., “Two Fast Algorithms for Sparse Matrices: Multiplication and
Permuted Transposition,” ACM Trans. Math Software 4 (1978), 3, pp. 250-269.

CALL CPOSE1(w,A,JIA,JA,B,IB,JB,m,n)

It is assumed that 7 is an integer array of dimension m containing the data {i ,...,i_} ,
and that the sparse matrix A is stored in the arrays A, IA, JA. A and B are complex arrays.
If A and JA contain k elements, then it is also assumed that B and JB are arrays of
dimension k and that IB is an array of dimension n + 1. When CPOSEI1 is called, (PA)!
is computed and the results stored in B, IB, JB.

Remarks. CPOSE! orders the elements of each row of (PA)' so that the column indices of
the elements of the row are in ascending order. However, it does no checking for zero
elements in A. If zero elements appear in the array A, then the zero elements will also
appear in B.

Restriction. It is assumed that the storage areas B, IB, JB do not overlap with the storage
areas A, IA, JA.

Programmer. A.H. Morris

227

Reference. Gustavson, F. G., “Two Fast Algorithms for Sparse Matrices: Multiplication
and Permuted Transposition,” ACM Trans. Math Software 4 (1978), 3, pp. 250-269.

228

ADDITION OF SPARSE MATRICES

Let A and B be sparse m X n matrices stored in the arrays A, IA, JA and B, IB,JB. The
sum C = A + B can be computed by the following subroutines.

CALL RADD(A,IA,JA,B,IB,JB,C.IC,JC,m,n X,IX NUM,IERR)
CALL RADDI(A,IA,JA,B,IB,JB,C,IC,JC,m,n,X,IX,NUM.IERR)

It is assumed that A and B are real matrices, and that A + B is to be stored in the
arrays C, IC, JC. NUM is the estimated maximum number of elements that will appear in
C and JC. It is assumed that C and JC are of dimension max {I,NUM} and that IC is of
dimension m + 1.

X and IX are arrays of dimension n or larger. These arrays are work spaces for the
routines.

IERR is an integer variable. When RADD or RADDI is called, if NUM specifies
sufficient storage for C and JC, then A + B is computed and the results stored in C,IC,IC.
Also IERR is assigned the value 0.

Error Return. If there is not sufficient storage in C and JC for the ith row of A + B, then
IERR is set to i and the routine terminates. In this case, if i > 1 then the firsti — 1 rows
of A + B will have been computed and stored in C and JC. Also IC(1),...,IC(i) will contain
the appropriate row locations.

Remark. RADD and RADD1 differ in their storage operations. RADD makes certain that
no zero elements of A + B appear in C, and it orders the elements of each row of C so that
the column indices of the elements of the row are in ascending order. RADD1 does neither
of these things, and hence takes less time. However, RADD1 may require more storage.

Example. 1f A is a sparse m X m matrix and B =-A where A and B contain k elements,
then when RADDI is called, NUM must be assigned a value =k and the resulting sparse
matrix C will consist entirely of zeros. However, if RADD is called, then NUM can be set
to 0 and the result will be IC(1) =+ =IC(m+ 1) = 1 (the zero matrix).

Note. It is assumed that the storage areas C,IC,JC do not overlap with the storage areas
A,IA,JA and B,1B,JB.

Programmer. A.H. Morris

229

CALL CADD(A,IA,JA,B,IB,JB,C,IC,JC,mn,X,IX,NUM,IERR)
CALL CADDI1(A,IA,JA,B,IB,JB,C,IC,JC,m,n,X,IX,NUM,IERR)

It is assumed that A and B are complex matrices, and that A + B is to be stored in the
arrays C, IC, JC. A, B, and C are complex arrays and NUM is the estimated maximum
number of elements that will appear in C and JC. It is assumed that C and JC are of
dimension max {I,NUM} and that IC is of dimension m + 1.

X and IX are arrays of dimension n or larger. These arrays are work spaces for the
routines. X is a complex array.

IERR is an integer variable. When CADD or CADDI is called, if NUM specifies
sufficient storage for C and JC, then A + B is computed and the results stored in C, IC, JC.
Also IERR is assigned the value 0.

Error Return. 1f there is not sufficient storage in C and JC for the it? row of A + B, then
IERR is set to i and the routine terminates. In this case, if i > 1 then the first i — 1 rows
of A + B will have been computed and stored in C and JC. Also IC(1),...,1C(i) will contain
the appropriate row locations.

Remark. CADD and CADD1 differ in their storage operations. CADD makes certain that
no zero elements of A + B appear in C, and it orders the elements of each row of C so that
the column indices of the elements of the row are in ascending order. CADD1 does neither
of these things, and hence takes less time, However, CADD1 may require more storage.

Example. 1f A is a sparse m X m matrix and B = —A where A and B contain k elements,
then when CADDI1 is called, NUM must be assigned a value 2 k and the resulting sparse
matrix C will consist entirely of zeros. However, if CADD is called then NUM can be set
to 0 and the result will be IC(1) = --- = IC(m + 1) = 1 (the zero matrix).

Note. It is assumed that the storage areas C, IC, JC do not overlap with the storage areas
A, 1A, JA and B, IB, JB.

Programmer. A.H. Morris

230

SUBTRACTION OF SPARSE MATRICES

Let A and B be sparse m X n matrices stored in the arrays A, IA,JA and B, B, JB. The
difference C = A — B can be computed by the following subroutines.

CALL RSUB(A,IA,JA,B,IB,JB,C,IC,JC,m,n,X,IX,NUM,IERR)
CALL RSUBI(A,IA,JA,B,IB,JB,C,IC,JC,m,n,X,IX,NUM,IERR)

It is assumed that A and B are real matrices, and that A — B is to be stored in the
arrays C, IC, JC. NUM is the estimated maximum number of elements that will appear in
C and JC. It is assumed that C and JC are of dimension max {I,NUM} and that IC is of
dimension m + 1.

X and IX are arrays of dimension n or larger. These arrays are work spaces for the
routines.

IERR is an integer variable. When RSUB or RSUBI is called, if NUM specifies suf-
ficient storage for C and JC, then A-B is computed and the results stored in C,IC, JC.
Also IERR is assigned the value 0.

Error Return. 1f there is not sufficient storage in C and JC for the ith row of A — B, then
IERR is set to i and the routine terminates. In this case, if i > 1 then the firsti — 1 rows
of A — B will have been computed and stored in C and JC. Also IC(1),...,C(i) will contain
the appropriate row locations.

Remark. RSUB and RSUBI differ in their storage operations. RSUB makes certain that
no zero elements of A—- B appear in C, and it orders the elements of each row of C so that
the column indices of the elements of the row are in ascending order. RSUBI1 does neither
of these things, and hence takes less time. However, RSUB1 may require more storage.

Example. If A is a sparse m X n matrix containing k elements and B = A, then when RSUBI
is called, NUM must be assigned a value >k and the resulting sparse matrix C will consist
entirely of zeros. However, if RSUB is called then NUM can be set to 0 and the result will
be IC(1)=--=IC(m+ 1) =1 (the zero matrix).

Norte. It is assumed that the storage areas C,IC, JC do not overlap with the storage areas
A,IA,JA and B, 1B, JB.

Programmer. A.H. Morris

CALL CSUB(A,IA,JA,B,IB,JB,C,IC,JC,m,n, X,IX,NUM,IERR)
CALL CSUB1(A,IA,JA,B,IB,JB,C,IC JC,mn X ,IX,NUM,IERR)

It is assumed that A and B are complex matrices, and that A — B is to be stored in the
arrays C, IC, JC. A, B, and C are complex arrays and NUM is the estimated maximum
number of elements that will appear in C and JC. It is assumed that C and JC are of
dimension max {!,NUM} and that IC is of dimension m + 1.

X and IX are arrays of dimension n or larger. These arrays are work spaces for the
routines. X is a complex array.

IERR is an integer variable. When CSUB or CSUBI is called, if NUM specifies suf-
ficient storage for C and JC, then A — B is computed and the results stored in C, IC, JC.
Also IERR is assigned the value 0.

Error Return. 1If there is not sufficient storage in C and JC for the ith row of A — B, then
IERR is set to i and the routine terminates. In this case, if i > 1 then the firsti — 1 rows
of A — B will have been computed and stored in C and JC. Also IC(1),...,JC(i) will contain
the appropriate row locations.

Remark. CSUB and CSUBI differ in their storage operations. CSUB makes certain that
no zero elements of A — B appear in C, and it orders the elements of each row of C so that
the column indices of the elements of the row are in ascending order. CSUBI1 does neither
of these things, and hence takes less time. However, CSUBI may require more storage.

Example. If A is a sparse m X n matrix containing k elements and B = A, then when CSUBI1
is called, NUM must be assigned a value = k and the resulting sparse matrix C will consist
entirely of zeros. However, if CSUB is called then NUM can be set to 0 and the result will
be IC(1) =+ =IC(m + 1) = 1 (the zero matrix).

Note. It is assumed that the storage areas C, IC, JC do not overlap with the storage areas
A, IA, JA and B, IB, JB.

Programmer. A.H. Morris

232

MULTIPLICATION OF SPARSE MATRICES

Let A be a sparse £ X m matrix stored in the arrays A, IA, JA and B a sparse m X n
matrix stored in the arrays B, IB, JB. The product C = AB can be computed by the following
subroutines.

CALL RMLT(A,IA,JA,B,IB,JB,C,IC,JC 2,m,n X IX,NUM,ERR)
CALL RMLTI(A,IA,JA,B,IB,JB,C,IC,JC,2,mn X ,IX NUM,JERR)

It is assumed that A and B are real matrices, and that the product AB is to be stored
in the arrays C, IC, JC. NUM is the estimated maximum number of elements that will
appear in C and JC. It is assumed that C and JC are of dimension max {I,NUM} and that
IC is of dimension £ + 1.

X and IX are arrays of dimension n or larger. These arrays are work spaces for the
routines.

IERR is an integer variable. When RMLT or RMLT!1 is called, if NUM specifies suffi-
cient storage for C and JC, then AB is computed and the results stored in C,IC,JC. Also
IERR is assigned the value O.

Error Return. If there is not sufficient storage in C and JC for the ith row of AB, then
IERR is set to i and the routine terminates. In this case, if i > 1 then the firsti — ! rows
of AB will have been computed and stored in C and JC. Also IC(1),...,IC(i) will contain
the appropriate row locations.

Remark. RMLT and RMLTI differ in their storage operations. RMLT makes certain that
no zero elements of AB appear in C, and it orders the elements of each row of C so that the
column indices of the elements of the row are in ascending order. RMLT1 does neither of

these things, and hence takes less time. However, RMLT may require more storage.

Restriction. 1t is assumed that the storage areas C, IC, JC do not overlap with the storage
areas A,JA, JA and B, B, JC.

Programmer. A.H. Morris

Reference. Gustavson, F.G., “Two Fast Algorithms for Sparse Matrices: Multiplication
and Permuted Transposition,” ACM Trans. Math Software 4 (1978), 3, pp. 250-269.

233

CALL CMLT(A,IA,JA,B,IB,JB,C,IC,JC,2,m,n, X, IX,NUM,IERR)
CALL CMLTI(A,IAJA,B,IB,JB,C,IC,JC,2,mn X IX,NUM,JERR)

It is assumed that A and B are complex matrices, and that the product AB is to be
stored in the arrays C, IC, JC. A, B, and C are complex arrays and NUM is the estimated
maximum number of elements that will appear in C and JC. It is assumed that C and JC
are of dimension max {1,NUM} and that IC is dimension € + 1.

X and IX are arrays of dimension n or larger. These arrays are work spaces for the
routines. X is a complex array.

IERR is an integer variable. When CMLT or CMLT1 is called, if NUM specifies suf-
ficient storage for C and JC, then AB is computed and the results stored in C, IC, JC. Also
IERR is assigned the value Q.

Error Rerurn. If there is not sufficient storage in C and JC for the it? row of AB, then
IERR is set to i and the routine terminates. In this case, if i > 1 then the firsti — 1 rows
of AB will have been computed and stored in C and JC. Also IC(1),...,JC(i) will contain
the appropriate row locations.

Remark. CMLT and CMLT1 differ in their storage operations. CMLT makes certain that
no zero elements of AB appear in C, and it orders the elements of each row of C so that the
column indices of the elements of the row are in ascending order. CMLT1 does neither of
these things, and hence takes less time, However, CMLT 1 may require more storage.

Restriction. 1t is assumed that the storage areas C, IC, JC do not overlap with the storage
areas A, IA, JA and B, IB, JC.

Programmer. A.H. Morris

Reference. Gustavson, F. G., “Two Fast Algorithms for Sparse Matrices: Multiplication
and Permuted Transposition,” ACM Trans. Math Software 4 (1978), 3. pp. 250-269.

234

PRODUCT OF A REAL SPARSE MATRIX AND VECTOR

Let A be areal m X n sparse matrix stored in the arrays A, IA, JA. Then the following
subroutines are available for multiplying A with a real vector.

CALL MVPRD(m,n,AIA,JA X,y)

The argument x is a column vector of dimension n and y an array of dimension m.
When MVPRD is called, Ax is computed and stored in y.

Remark. 1t is assumed that the arrays A, x, y do not overlap.
Programmer. A. H. Morris

CALL MVPRDI(m,n,A,JAJA,X,Y)

The arguments x and y are column vectors of dimension n and m respectively. When
MVPRDI is called, Ax + v is computed and stored in y.

Remark. 1t is assumed that the arrays A, x, y do not overlap.

Programmer. A.H. Morris

CALL MTPRD(m,n,A, 1A JA,X,Y)

The argument x is a row vector of dimension m and y an array of dimension n. When
MTPRD is called, xA is computed and stored iny.

Remark. 1t is assumed that the arrays A, X, y do not overlap.

Programmer. A.H. Morris

CALL MTPRD1(m,n,AJA,JA,x,y)

The arguments x and y are row vectors of dimension m and n, respectively. When
MTPRDI1 is called, XA + y is computed and stored in y.

Remark. 1t is assumed that the arrays A, x, y do not overlap.

Programmer. A. H. Morris

235

PRODUCT OF A COMPLEX SPARSE MATRIX AND VECTOR

Let A be a complex m X n sparse matrix stored in the arrays A, IA, JA. Then the
following subroutines are available for multiplying A with a complex vector,

CALL CVPRD(m,n,AIA,JA X,y)

The argument x is a column vector of dimension n and y an array of dimension m.
A, X, vy are complex arrays. When CVPRD is called, Ax is computed and stored in y.

Remark. 1t is assumed that the arrays A, x, y do not overlap.
Programmer. A. H. Morris

CALL CVPRDI(m;n,AJAJA,X,y)

The arguments x and y are column vectors of dimension n and m, respectively. A, X,y
are complex arrays. When CVPRDI is called, Ax + y is computed and stored in y.

Remark. 1t is assumed that the arrays A, X, y do not overlap.
Programmer. A.H. Morris

CALL CTPRD(m,n,A JAJA X,y)

The argument x is a row vector of dimension m and y an array of dimension n.
A, x, y are complex arrays. When CTPRD is called, XA is computed and stored in y.

Remark. 1t is assumed that the arrays A, x, v do not overlap.
Programmer. A. H. Morris

CALL CTPRDI(m,n,A,IA,JA,X,y)

The arguments x and y are row vectors of dimension m and n, respectively. A, x,y are
complex arrays. When CTPRDI1 is called, XA +y is computed and stored in y.

Remark. 1t is assumed that the arrays A, x, vy do not overlap.

Programmer. A.H. Morris

237

ORDERING THE ROWS OF A SPARSE MATRIX
BY INCREASING LENGTH

Let A be a sparse m X n matrix stored in the arrays A, [A, JA. The following subroutine
is available for ordering the rows of the matrix by increasing length.

CALL SPORD(m,n,IA,R,IWK)

R is an integer array of dimension m. When SPORD is called, the rows of the matrix
are ordered by increasing length. The row ordering is given in R.

IWK is an integer array of dimension m +n + 1 or larger that is used for a work space.

Remark. If rows ij,...,i; are the rows of length &, then the indices iy,...,i; are listed in R in
increasing sequence.

Programmer. A.H. Morris

239

REORDERING SPARSE MATRICES INTO BLOCK TRIANGULAR FORM

Let A be a sparse n X n matrix stored in the arrays A, IA, JA. Then the subroutine
BLKORD is available for reordering the rows and columns of A so that one has a lower
block triangular matrix

Ap 0
*) A Ay
Ay AST Ay

where the blocks Aii are square and cannot themselves be reordered into lower block tri-
angular form.

CALL BLKORD(n,JA JA R,CIB Kk, IWK IERR)

R and C are integer arrays of dimension n, and IERR is an integer variable. When
BLKORD is called, the rows of the matrix are first ordered so that the main diagonal con-
tains a maximum number of nonzeros. After this is done then IERR = the number of zeros
that appear on the diagonal. If IERR =0 then the rows and columns of the matrix are
ordered into block triangular form (*). The row ordering is given in R and the column
ordering is given in C.

IB is an integer array of dimension n and k is an integer variable. When the matrix
has been ordered into block triangular form (*) then k = the number of blocks A;. Also
IB(i) = the row number in the block triangular matrix of the beginning of block A
(i=1,..,k).

IWK is an integer array of dimension 5n or larger that is used for a work space by the
routine.

Error Return. 1f IERR # 0 then the routine terminates. In this case, R contains the row
ordering that gives the main diagonal with the maximum number of nonzeros.

Remark. 1A, JA, and n are not modified by the routine.

Programming. BLKORD employs the subroutines MC21A, MC21B, MC13D, MCI3E
designed by I. S. Duff and J. K. Reid (AERE Harwell, England).

241

References

(1) Duff, I. S., “On Algorithms for Obtaining a Maximum Transversal,”” ACM Trans. Math
Sofrware 7 (1981), pp. 315-330.

(2) Duff, 1. S. and Reid, J. K., “An Implementation of Tarjan’s Algorithm for the Block
Triangularization of a Matrix,” ACM Trans. Math Software 4 (1978), pp. 137-147.

242

SOLUTION OF SPARSE SYSTEMS OF REAL LINEAR EQUATIONS

Let A be a nonsingular n X n sparse real matrix stored in the arrays A, 1A, JA and letb
be a real column vector of dimension n. The subroutines SPSLV and RSLYV are available for
solving the system of equations Ax = b, and the subroutine TSLV is available for solving the
transposed system of equations A'x = b. These routines employ partial pivot gauss elimina-
tion with column interchanges to first obtain an LU decomposition of A, If SPSLYV is called
then only the off-diagonal nonzero elements of U are stored, and then the cquations arc¢
solved. However, if RSLV or TSLYV is called then the off-diagonal nonzero elements of both
L and U are stored. Thus RSLV and TSLV will frequently require at least double the
amount of storage needed by SPSLV, but they can be recalled to solve other systems of
equations Ax =T and Atx = r without having to redecompose the matrix A. Moreover, since
RSLV and TSLV will always generate the same LU decomposition of A, RSLV can be
called to decompose A and solve a system of equations Ax=b, and then TSLV can be called
to solve a transposed system of equations Atx =r using the decomposition obtained by
RSLV.

CALL SPSLV(n,AJA,JAb,RC MAX X, IWK WK,IERR)

It is assumed that n=>1 and that X is an array of dimension n. The solution of the
system of equations Ax = b is computed and stored in X. A,IA,JA and b are not modified
by the routine.

R is an integer array of n entries specifying the order in which the n rows of A are to
be examined and processed. For example, if R contains the entries il,...,in then the algo-
rithm first performs operations on row i, next on row i,, etc. It is well known that the
order in which the rows of a sparse matrix are processed can have a significant impact on
the overall performancé of a subroutine such as SPSLV. Thus R must be chosen judiciously.
R is not modified by the routine.

C is an integer array of n entries which plays a role similar to R. On input, C specifies
a suggested order in which the n columns of A should be ordered for selection of the pivot
clements. For example, if C contains the entries jl,...,jn then it is suggested that the first
pivot element may be from column j,, the second pivot element from column j,, etc.
However, since partial pivoting with column interchange is performed, on output C may
have been modified. On output, C will contain the actual order of the n columns from
which the pivot elements were selected. This order will depend on A and R, and not on b.

IWK and WK are arrays for internal use by the routine, and MAX is an input argument.
When SPSLV is called, an LU decomposition of A is first obtained where U is a unit upper
triangular matrix. The off-diagonal portion of U is stored in sparse form in JWK and WK.
MAX is an estimate of the maximum number of off-diagonal elements of U that might be

243

nonzero and have to be stored (MAX < n(n-1)/2). IWK is an integer array of dimension
3n+ MAX + 2 or larger, and WK is a real array of dimension n + MAX or larger.

IERR is an integer variable that reports the status of the results. When the routine
terminates, IERR will have one of the following values:

IERR >0 Ax =b was solved. IERR = max {l,m} where m is the total num-
ber of off-diagonal nonzero elements of U.

IERR =0 The argument n is nonpositive.

IERR = =k Row R(k) of A is null.

IERR = -n -k Row R(k) of A has a duplicate entry.
IERR =-2n-k Row R(k) of A has been reduced to a row containing only zeros.
IERR =-3n -k Row k of the upper triangular matrix exceeds storage. MAX must
be increased.
When an error is detected, the routine immediately terminates.

Remarks. The amount of storage MAX depends critically on the row ordering given in R.
If it is suspected that the rows and columns of A can be reordered so that one has a lower
block triangular matrix

All 0
Ay Ay
Al ATt Ak

then the subroutine BLKORD should first be tried. This subroutine will specify an order-
ing for lower block triangular form if one exists. However, if such an ordering does not
exist and one is uncertain how to order the rows, then the row ordering given by the sub-
routine SPORD frequently yields good results. In any case, the selection of an initial
column ordering C is never bothersome since partial pivoting with column interchanges is
performed. The initial ordering C(i) = i (i=1,...,n) always suffices.

Programming. SPSLV is a modification by A. H. Morris of the subroutine NSPIV. SPSLV
employs the subroutine NSPIV1. NSPIV and NSPIV1 were written by Andrew H. Sherman

(University of Texas at Austin).

Reference. Sherman, Andrew H., “Algorithms for Sparse Gaussian Elimination with Partial
Pivoting,” ACM Trans. Math Software 4 (1978), pp. 330-338.

244

CALL RSLV(MO,n,A,IA,JA,b,R,C,MAX,X,IWK,WK,IERR)
CALL TSLV(MO,n,AIAJ A b,R,CMAX,X,IWK WK, IERR)

RSLV is called for solving Ax =b, and TSLV is called for solving Atx =b. MO is an
input argument which specifies if RSLV or TSLV is being called for the first time. On an
initial call, MO = 0 and we have the following setup:

It is assumed that n=>1 and that X is an array of dimension n. The solution of the
system of equations is stored in X. A, IA, JA are not modified by the routines. X and b
may share the same storage area. If X is a separate storage area then b is not modified by
the routines.

R is an integer array of n entries specifying the order in which the n rows of A are to
be examined and processed. For example, if R contains the entries i; el then the algo-
rithm first performs operations on row i, next on row i,, etc. It is well known that the
order in which the rows of a sparse matrix are processed can have a significant impact on
the overall performance of subroutines such as RSLV and TSLV. Thus R must be chosen
judiciously. R is not modified by the routine.

C is an integer array of n entries which plays a role similar to R. On input, C specifies a
suggested order in which the n columns of A should be ordered for selection of the pivot
elements. For example, if C contains the entries Jqseesdn then it is suggested that the first
pivot element may be from column j, , the second pivot element from column iy, etc. How-
ever, since partial pivoting with column interchange is performed, on output C may have
been modified. On output, C will contain the actual order of the n columns from which
the pivot elements were selected. This order will depend on A and R, and not on b.

IWK and WK are arrays for internal use by the routines, and MAX is an input argu-
ment. On an initial call to RSLV or TSLV, an LU decomposition of A is first obtained
where L is a lower triangular matrix and U a unit upper triangular matrix. The off-diagonal
portions of L and U are stored in sparse form in IWK and WK. MAX is an estimate of the
maximum number of off-diagonal elements of L and U that might be nonzero and have to
be stored (MAX < n(n-1)). IWK is an integer array of dimension 4n + MAX + 2 or larger,
and WK is a real array of dimension 2n + MAX or larger.

On an initial call to RSLV or TSLV, IERR is an integer variable that reports the status
of the results. When the routine terminates, IERR will have one of the following values:

IERR>0 The system of equations was solved. IERR = max {1,m} where m
is the total number of off-diagonal nonzero elements of L and U.

IERR=0 The argument n is nonpositive.

IERR = -k Row R(k) of A is null.

245

IERR=-n-k Row R(k) of A has a duplicate entry.
IERR =-2n-k Row R(k) of A has been reduced to a row containing only zeros.
IERR=-3n-k Row k of U or L exceeds storage. MAX must be increased.

When an error is detected, the routine immediately terminates.

After an initial call to RSLV or TSLV, if IERR > 0 on output then either routine may
be called with MO # 0. When MO # 0 it is assumed that only b may have been modified.
RSLYV is called for solving the new set of equations Ax =b, and TSLV is called for solving
the new set of equations Atx =b. The routine employs the LU decomposition obtained
on the initial call to RSLV or TSLV to solve the new system of equations. The solution is
stored in X. As before, X and b may share the same storage area. If MO # 0 then only n,
R, C, IWK, and WK are used. A, IA,JA, MAX, and IERR are not referenced by the routine.

Note. The remarks concerning the ordering of the rows and columns of A when SPSLV
is used hold also for RSLV and TSLV.

Programming. RSLV calls the subroutines RSLV1 and SPLU, and TSLV calls the sub-
routines TSLV1 and SPLU. These routines were written by A. H. Morris.

246

SOLUTION OF SPARSE SYSTEMS OF COMPLEX LINEAR EQUATIONS

Let A be a nonsingular n X n sparse complex matrix stored in the arrays A, IA, JA and
let b be a complex column vector of dimension n. The subroutines CSPSLV and CSLV are
available for solving the system of equations Ax = b, and the subroutine CTSLYV is available
for solving the transposed system of equations Alx = b. These routines employ partial pivot
Gauss elimination with column interchanges to first obtain an LU decomposition of A.
If CSPSLYV is called then only the off-diagonal nonzero elements of U are stored, and then
the equations are solved. However, if CSLV or CTSLV is called then the off-diagonal
nonzero elements of both L and U are stored. Thus CSLV and CTSLV will frequently
require at least double the amount of storage needed by CSPSLV, but they can be recalled
to solve other systems of equations Ax = r and A'x = r without having to redecompose the
matrix A. Moreover, since CSLV and CTSLV will always generate the same LU decom-
position of A, CSLV can be called to decompose A and solve a system of equations Ax = b,
and then CTSLV can be called to solve a transposed system of equations Atx = r using the
decomposition obtained by CSLV.

CALL CSPSLV(n,A,JIAJA b,R,C,MAX, X,IWK ,WK,IERR)

A, b, and X are complex arrays. It is assumed that n = 1 and that X is an array of
dimension n. The solution of the system of equations Ax = b is computed and stored in X.
A, IA, JA and b are not modified by the routine.

R is an integer array of n entries specifying the order in which the n rows of A are to
be examined and processed. For example, if R contains the entries i ,....i; then the algo-
rithm first performs operations on row i, , next on row i,, etc. Itis well known that the
order in which the rows of a sparse matrix are processed can have a significant impact on
the overall performance of a subroutine such as CSPSLV. Thus R must be chosen judiciously.
R is not modified by the routine.

C is an integer array of n entries which plays a role similar to R. On input, C specifies
a suggested order in which the n columns of A should be ordered for selection of the pivot
elements. For example, if C contains the entries j,...,J, then it is suggested that the first
pivot element may be from column j, , the second pivot element from column j,, etc.
However, since partial pivoting with column interchange is performed, on output C may
have been modified. On output, C will contain the actual order of the n columns from
which the pivot elements were selected. This order will depend on A and R, and not on b.

IWK and WK are arrays for internal use by the routine, and MAX is an input argument.
When CSPSLYV is called, an LU decomposition of A is first obtained where U is a unit upper
triangular matrix. The off-diagonal portion of U is stored in sparse form in IWK and WK.
MAX is an estimate of the maximum number of off-diagonal elements of U that might be

247

nonzero and have to be stored (MAX < n(n — 1)/2). IWK is an integer array of dimension
3n+ MAX + 2 or larger, and WK is a complex array of dimension n + MAX or larger.

IERR is an integer variable that reports the status of the results, When the routine
terminates, IERR will have one of the following values:

IERR > 0 Ax = b was solved. IERR = max {1,m} where m is the total num-
ber of off-diagonal nonzero elements of U.

IERR =0 The argument n is nonpositive.

IERR = —k Row R(k) of A is null,

IERR=-n—-k Row R(k) of A has a duplicate entry.
IERR=-2n—-k Row R(k) of A has been reduced to a row containing only zeros.
IERR=-3n -k Row k of the upper triangular matrix exceeds storage. MAX must
be increased.
When an error is detected, the routine immediately terminates.

Remarks. The amount of storage MAX depends critically on the row ordering given in R.
If it is suspected that the rows and columns of A can be reordered so that one has a lower
block triangular matrix

Ay)
Ay Ay
Acr At A

then the subroutine BLKORD should first be tried. This subroutine will specify an ordering
for lower block triangular form if one exists. However, if such an ordering does not exist
and one is uncertain how to order the rows, then the row ordering given by the subroutine
SPORD frequently yields good results. In any case, the selection of an initial column
ordering C is never bothersome since partial pivoting with column interchanges is performed.
The initial ordering C(i)=1 (i = 1,...,n) always suffices.

Programming. CSPSLYV is an adaptation by A. H. Morris of the subroutine NSPIV, written
by Andrew H. Sherman (University of Texas at Austin). CSPSLV employs the subroutine
CNSPIV.

Reference. Sherman, Andrew H., ““Algorithms for Sparse Gaussian Elimination with Partial
Pivoting,” ACM Trans. Math Software 4 (1978), pp. 330-338.

248

CALL CSLV(MO,n,A JA,JA,b,R,CMAX,X,IWK,WK,IERR)
CALL CTSLV(MO,n,A,IA JA,b,R,C,MAX,X,IWK,WK,IERR)

CSLV is called for solving Ax = b, and CTSLV is called for solving Alx=b. MOis an
input argument which specifies if CSLV or CTSLV is being called for the first time. On an
initial call, MO = 0 and we have the following setup:

A, b, and X are complex arrays. It is assumed that n > 1 and that X is an array of
dimension n. The solution of the system of equations is stored in X. A, IA, JA are not
modified by the routines. X and b may share the same storage area. If X is a separate
storage area then b is not modified by the routines.

R is an integer array of n entries specifying the order in which the n rows of A are to
be examined and processed. For example, if R contains the entries i S then the algo-
rithm first performs operations on row i , next on row i,, etc. It is well known that the
order in which the rows of a sparse matrix are processed can have a significant impact on
the overall performance of subroutines such as CSLV and CTSLV. Thus R must be chosen
judiciously. R is not modified by the routine.

C is an integer array of n entries which plays a role similar to R. On input, C specifies
a suggested order in which the n columns of A should be ordered for selection of the pivot
elements. For example, if C contains the entries j,,....j; then it is suggested that the first
pivot element may be from column j,, the second pivot element from column j,, etc.
However, since partial pivoting with column interchange is performed, on output C may
have been modified. On output, C will contain the actual order of the n columns from
which the pivot elements were selected. This order will depend on A and R, and noton b,

IWK and WK are arrays for internal use by the routines, and MAX is an input argument.
On an initial call to CSLV or CTSLV, an LU decomposition of A is first obtained where L
is a lower triangular matrix and U a unit upper triangular matrix. The off-diagonal portions
of L and U are stored in sparse form in IWK and WK. MAX is an estimate of the maximum
number of off-diagonal elements of L and U that might be nonzero and have to be stored
(MAX < n(n — 1)). IWK is an integer array of dimension 4n + MAX + 2 or larger, and WK
is a complex array of dimension 2n + MAX or larger.

On an initial call to CSLV or CTSLV, IERR is an integer variable that reports the status
of the results. When the routine terminates, IERR will have one of the following values:

IERR>0 The system of equations was solved. IERR = max {l,m} where m
is the total number of off-diagonal nonzero elements of L and U.

IERR=0 The argument n is nonpositive.

IERR = -k Row R(k) of A is null.

249

IERR=-n -k Row R(k) of A has a duplicate entry.
IERR=-2n—k Row R(k) of A has been reduced to a row containing only zeros.
IERR=-3n—-k Rowk of UorL exceeds storage. MAX must be increased.

When an error is detected, the routine immediately terminates.

After an initial call to CSLV or CTSLV, if IERR > 0 on output then either routine may
be called with MO # 0. When MO # 0 it is assumed that only b may have been modified.
CSLV is called for solving the new set of equations Ax = b, and CTSLV is called for solving
the new set of equations A'x = b. The routine employs the LU decomposition obtained
on the initial call to CSLV or CTSLV to solve the new system of equations. The solution is
stored in X. As before, X and b may share the same storage area. If MO # 0 then only n,
R, C, IWK, and WK are used. A, IA, JA, MAX, and IERR are not referenced by the routine.

Nore. The remarks conceming the ordering of the rows and columns of A when CSPSLV
is used hold also for CSLV and CTSLV.

Programming. CSLV calls the subroutines CSLV1 and CSPLU, and CTSLV calls the sub-
routines CTSLV1 and CSPLU. These routines were written by A. H. Morris.

250

COMPUTATION OF EIGENVALUES OF GENERAL REAL MATRICES

The subroutines EIG and EIG1 are available for computing the eigenvalues of real
matrices. These routines frequently yield results accurate to 13-14 significant digits. Indeed,
for symmetric matrices they may give 2 or more digits better accuracy than the routines
designed specifically for symmetric matrices. However, if the eigenvalues are not distinct
or if they are exceedingly tightly clustered, then a severe drop in accuracy can occur when
the matrix is not symmetric. In this case one should not expect more than 7-8 digit
accuracy.

CALL EIG(IBAL,A kan WR.WLIERR)
CALL EIG1(IBAL.A kan WR WLIERR)

A is a matrix of order n > 1 and WR,WI are real arrays of dimension n or larger. When
EIG or EIGI is called then the eigenvalues A, ,...,.A of A are computed. The real parts of the
eigenvalues are stored in WR(1),.,WR(n) and the imaginary parts are stored in
WI(1),...WI(n). The cigenvalues are unordered except that complex conjugate pairs of
eigenvalues appear consecutively with the eigenvalue having the positive imaginary part
being first.

IBAL and ka are input arguments. The argument ka is the number of rows in the
dimension statement for A in the calling program. IBAL may be any integer. If IBAL *0
then the routines balance A before they compute the eigenvalues. Otherwise, if IBAL = 0
then A is not balanced.

Error Return. IERR is an integer variable. If all the eigenvalues are found then IERR is set
to 0. Otherwise, if more than 30 iterations are required to compute the j™P eigenvalue)\j,
then IERR is set to j and the routine terminates. In this case, if j < n then the eigenvalues
)\j+1 s, Will have been computed and the results stored in the WR and WI arrays.

Remarks

(1) Even though the balancing operation does not increase the theoretical bounds on the
errors, nevertheless at times it may result in a slight loss of accuracy. On the other
hand, balancing requires little additional time and in certain cases can improve the
accuracy by as much as 5 - 6 significant digits. Thus it is recommended that balancing
be done.

(2) A is destroyed during computation. EIG and EIG1 reduce A to upper Hessenberg form
and then apply the QR algorithm to obtain the eigenvalues. They differ only in the
choice of transformations used to reduce A to upper Hessenberg form. EIG employs
elementary similarity transformations and EIG1 employs orthogonal similarity

251

transformations. In theory the use of orthogonal transformations assures one of a
tighter bound on the errors. However, since in practice matrices infrequently arise for
which the orthogonal transformations actually generate more accurate results, and
since the orthogonal transformations normally require more time than the elementary
transformations, therefore EIG is the recommended routine.

Programming. EIG and EIG1 are driver routines for the EISPACK subroutines BALANC,
ELMHSO, ORTHES, and HQR. These subroutines were developed at Argonne National
Laboratory. The functions SPMPAR and I1MACH are also used.

Reference. Smith, B. T., Boyle, J. M., et al., Matrix Eigensystem Routines — EISPACK
Guide (Second Edition), Springer-Verlag, 1976.

252

COMPUTATION OF EIGENVALUES AND EIGENVECTORS OF
GENERAL REAL MATRICES

The subroutines EIGV and EIGV1 are available for computing the eigenvalues and
eigenvectors of real matrices. These routines are extensions of the respective eigenvalue
routines EIG and EIG1. Thus all comments made concerning the accuracy of the eigenvalues
produced by EIG and EIG1 apply also to EIGV and EIGV1. In particular, EIGV and EIGV1
can frequently yield high precision results for the eigenvalues if they are distinct. However,
be aware that errors in the eigenvalues, no matter how seemingly insignificant, can be con-
siderably magnified in the computation of the eigenvectors. It is not at all unusual to
obtain an eigenvalue and eigenvector where the eigenvalue is correct to within 2 -3 units
of the 14 significant digit, but the components of the corresponding eigenvector are only
accurate to 9 - 10 significant digits. In the case of repeated eigenvalues the situation regard-
ing the eigenvectors is totally unpredictable. The components of such an eigenvector may
be correct to 6 -7 significant digits, or the eigenvector may not even be an eigenvector! In
this case the results should be checked.

CALL EIGV(IBAL,A ka,n WR,WI,ZR,ZLIERR)
CALL EIGV1(IBAL,A ka,n,WR,WL,ZR,Z1,IERR)

A is a matrix of order n = 1 and WR,WI are real arrays of dimension n or larger. When
EIGV or EIGV1 is called the eigenvalues Ayse N and corresponding eigenvectors z, ,...,.Z,
are computed. The real parts of the eigenvalues are stored in WR(D),...,WR(n) and the
imaginary parts are stored in WI(1),..,WI(n). The eigenvalues are unordered except that
complex conjugate pairs of eigenvalues appear consecutively with the eigenvalue having the
positive imaginary part being first.

The input argument ka is the number of rows in the dimension statement for A in the
calling program. ZR and ZI are real arrays of dimension ka X n. Forj = 1,..,n the real
parts of the components of the eigenvector z; are stored in the j'" column of ZR (in
locations ZR(1, j),..,ZR(n, j)) and the imaginary parts are stored in the j'* column of ZI.
The eigenvectors z, ...,z are not normalized.

IBAL is an input argument that can be assigned any integer value. If IBAL # O then the
routines balance A before they compute the eigenvalues and eigenvectors. Otherwise, if
IBAL = O then A is not balanced.

Error Return. TERR is an integer variable. If all the eigenvalues and eigenvectors are found
then IERR is set to 0. Otherwise, if more than 30 iterations are required to compute the jth
eigenvalue ?\j, then IERR is set to j and the routine terminates. In this case, if j < n then
the eigenvalues A, ...\, will have been computed and the results stored in the WR and WI
arrays. However, none cf the eigenvectors will have been computed. The eigenvectors are

computed only after all the eigenvalues have been obtained.

253

Remarks

(D

(2)

Even though the balancing operation does not increase the theoretical bounds on the
errors, nevertheless at times it may result in a slight loss of accuracy. On the other
hand, balancing requires little additional time and in certain cases can improve the
accuracy of the eigenvalues by as much as 5-6 significant digits. When this occurs
balancing will normally be needed to obtain the eigenvectors. In general, it is
recommended that balancing be done.

A is destroyed during computation. EIGV and EIGV1 both reduce A to upper
Hessenberg form, apply the QR algorithm to the Hessenberg matrix to obtain the
eigenvalues, and then backsubstitute to generate the eigenvectors. They differ only in
the choice of transformations used to reduce A to upper Hessenberg form. EIGV
employs elementary similarity transformations and EIGV1 employs orthogonal
similarity transformations. In theory the use of orthogonal transformations assures one
of a tighter bound on the errors. However, since in practice matrices infrequently arise
for which the orthogonal transformations actually generate more accurate results, and
since the orthogonal transformations normally require more time than the elementary
transformations, therefore EIGV is the recommended routine.

Programming. EIGV and EIGV1 are driver routines for the EISPACK subroutines BALANC,
ELMHSO, ORTHES, ELTRNO, ORTRAN, HQR2, and BALBAK. These subroutines were
developed at Argonne National Laboratory. The functions SPMPAR and I1MACH are also
used.

Reference. Smith, B. T., Boyle, J. M., et al., Matrix Eigensystem Routines — EISPACK
Guide (Second Edition), Springer-Verlag, 1976.

254

DOUBLE PRECISION COMPUTATION OF EIGENVALUES OF
REAL MATRICES

The subroutine DEIG is available for the double precision computation of the eigen-
values of real matrices. This routine frequently yields results accurate to 26-28 significant
digits. However, if the eigenvalues are not distinct or if they are exceedingly tightly
clustered, then a severe drop in accuracy can OcCcur. In this case one should not expect
more than 13-14 digit accuracy.

CALL DEIG(IBAL,A ka,n, WR,WLIERR)

A is a double precision matrix of order n= 1 and WR, WI are double precision arrays
of dimension n or larger. When DEIG is called then the eigenvalues 7\1,...,)\n of A are com-
puted. The real parts of the eigenvalues are stored in WR(1),...,WR(n) and the imaginary
parts are stored in WI(1),...,WI(n). The eigenvalues are unordered except that complex
conjugate pairs of eigenvalues appear consecutively with the eigenvalue having the positive
imaginary part being first.

IBAL and ka are input arguments. The argument ka is the number of rows in the
dimension statement for A in the calling program. IBAL may be any integer. If IBAL# 0
then the routine balances A before it computes the eigenvalues. Otherwise, if IBAL =0
then A is not balanced.

Error Return. IERR is an integer variable. If all the eigenvalues are found then IERR is
set to 0. Otherwise, if more than 50 iterations are required to compute the jth eigenvalue
)\j, then IERR is set to j and the routine terminates. In this case, if j <n then the eigen-
values }\jﬂ,...,?\n will have been computed and the results stored in the WR and WI arrays.
Remarks

(1) A is destroyed during computation.

(2) DEIG is a double precision version of the eigenvalue routine EIG1.

Programming. DEIG is a driver routine for the subroutines DBAL, DORTH, and DHQR.
These subroutines are double precision versions of the EISPACK subroutines BALANC,
ORTHES, and HQR, developed at Argonne National Laboratory. The double precision
versions were prepared by A. H. Morris. The functions DPMPAR and 11MACH are also
used.

Reference. Smith, B. T., Boyle, J. M., et al., Matrix Eigensystem Routines — EISPACK
Guide (Second Edition), Springer-Verlag, 1976.

255

DOUBLE PRECISION COMPUTATION OF EIGENVALUES AND
EIGENVECTORS OF REAL MATRICES

The subroutine DEIGV is available for the double precision computation of the eigen-
values and eigenvectors of real matrices. This routine frequently yields values for the
eigenvalues that are accurate to 26-28 significant digits. However, be aware that errors in
the eigenvalues, no matter how seemingly insignificant, can be considerably magnified in
the computation of the eigenvectors. If the eigenvalues are not distinct or if they are
exceedingly tightly clustered, then a severe drop in accuracy can occur. In this case one
should not expect the eigenvalues to have more than 13-14 digit accuracy.

CALL DEIGV(IBAL A ka,n,WR,WI,ZR Z1,IERR)

A is a double precision matrix of order n > 1 and WR, W1 are double precision arrays
of dimension n or larger. When DEIGV is called then the eigenvalues)\1,...,)\ n and corre-
sponding eigenvectors z,,...,z, are computed. The real parts of the eigenvalues are stored
in WR(1),..., WR(n) and the imaginary parts are stored in WI(1),...,WI(n). The eigenvalues
are unordered except that complex conjugate pairs of cigenvalues appear consecutively
with the eigenvalue having the positive imaginary part being first.

The input argument ka is the number of rows in the dimension statement for A in the
calling program. ZR and ZI are double precision arrays of dimensionka X n. Forj=1,..,n
the real parts of the components of the eigenvector z; are stored in the j™ column of ZR
(in locations ZR(1.j),...,ZR(n,j)) and the imaginary parts are stored in the it column of ZI.
The eigenvectors zy,...,2 are not normalized.

IBAL is an input argument that can be assigned any integer value. If IBAL # 0 then
the routine balances A before it computes the eigenvalues and eigenvectors. Otherwise, if
IBAL = 0 then A is not balanced.

Error Return. 1ERR is an integer variable. If all the eigenvalues and eigenvectors are found
then IERR is set to 0. Otherwise, if more than 50 iterations are required to compute the jth
cigenvalue)\j, then IERR is set to j and the routine terminates. In this case, if j <n then
the eigenvalues ., ,..., A will have been computed and the results stored in the WR and WI
arrays. However, none of the eigenvectors will have been computed. The eigenvectors are
computed only after all the eigenvalues have been obtained.

Remarks

(1) A is destroyed during computation.
(2) DEIGV is a double precision version of the eigenvalue/eigenvector routine EIGV1.

257

Programming. DEIGV is a driver routine for the subroutines DBAL, DORTH, DORTRN,
DHQR?2, and DBABK. These subroutines are double precision versions of the EISPACK
routines BALANC, ORTHES, ORTRAN, HQR2, and BALBAK, developed at Argonne

National Laboratory. The double precision versions were prepared by A. H. Morris. The
functions DPMPAR and I1MACH are also used.

Reference. Smith, B. T., Boyle, J. M., et al., Matrix Eigensystem Routines — EISPACK
Guide (Second Edition), Springer-Verlag, 1976.

258

COMPUTATION OF EIGENVALUES OF SYMMETRIC REAL MATRICES

The subroutines SEIG and SEIG1 are available for computing the cigenvalues of
symmetric real matrices. These routines frequently yield high precision results. SEIG is
faster than SEIGI, but at times SEIG1 will produce better results when the symmetric
matrix is tridiagonal. For arbitrary symmetric matrices it is not clear if there is any differ-
ence in the reliability of the routines.

CALL SEIG(A kan W T.IERR)
CALL SEIGI1(A ka,nW.TIERR)

A is a symmetric matrix of order n = 1 and W an array of dimension n or larger. When
SEIG or SEIG] is called the eigenvalues A, ;-\ are computed and stored in W(1),...,W(n).
The eigenvalues are ordered so that A| < =+ < A

A may be packed or in standard form.! The input argument ka is a nonnegative
integer. If ka = O then A is assumed to be packed. Otherwise, if ka # 0 then A is assumed
to be in the standard format. In this case ka has the value:

ka = the number of rows in the dimension statement for A in the calling program
It is assumed that ka = n. However, it is not required that A(i,j) be defined fori < j. Only
the lower triangular elements of A are used.

T is an array used for temporary storage. If SEIG is called then T must be of dimension
2n. However, if SEIG1 is called then T need only be of dimension n.

Error Return. 1ERR is an integer variable. If all the eigenvalues are found then IERR is set
to 0. Otherwise, if more than 30 iterations of the QL algorithm are required to compute the
jth eigenvalue)\j, then IERR is set to j. In this case, if j > 1 then the eigenvalues 7\1 ,...,7\j_1
will have been computed and stored in W. The eigenvalues are ordered so that
NS S)\j_ , - However, they need not be the smallest eigenvalues of A.

Note. A is destroyed during computation.

Programming. SEIG and SEIG]1 are driver routines for the EISPACK subroutines TRED],
TRED3, TQLRAT, and IMTQLI1. These subroutines were developed at Argonne National
Laboratory. The function SPMPAR is also used.

Reference. Smith, B. T., Boyle, J. M., et al., Matrix Eigensystem Routines — EISPACK
Guide (Second Edition), Springer-Verlag, 1976.

'For details on the packed format see the section on packing and unpacking symmetric matrices.

259

COMPUTATION OF EIGENVALUES AND EIGENVECTORS OF
SYMMETRIC REAL MATRICES

The subroutines SEIGV and SEIGV1 are available for computing the eigenvalues and
eigenvectors of symmetric real matrices. These routines frequently yield high precision
results for the eigenvalues. However, be aware that errors in the eigenvalues, no matter
how seemingly insignificant, can be considerably magnified in the computation of the
eigenvectors. It is not at all unusual to obtain an eigenvalue and eigenvector where the
eigenvalue is correct to within 2-3 units of the 14 significant digit, but the components
of the corresponding eigenvector are only accurate to 9-10 significant digits. SEIGV is
faster than SEIGV1, but at times SEIGV1 will produce better results when the symmetric
matrix is tridiagonal. For arbitrary symmetric matrices it is not clear if there is any dif-
ference in the reliability of the routines.

CALL SEIGV(A ka,n,W,Z T IERR)
CALL SEIGV1(A ka,n,W,Z,T,IERR)

A is a symmetric matrix of order n 2 1 and W is an array of dimension n or larger.
When SEIG or SEIGV1 is called the eigenvalues A, ,...,A and corresponding orthonormal
¢igenvectors Z),...,2, are computed. The eigenvalues are stored in W(1),..,.W(n) and are
ordered so that ?\1 S S

A must be in the standard format, having the dimension ka X n. It is assumed that
ka 2 n. However, it is not required that A(i,j) be defined for i < j. Only the lower
triangular elements of A are used.

Z is an array of dimension ka X n or larger. For j = 1,...,n the components of the
eigenvector z; are stored in the jth column of Z (in locations Z(1, j),...,Z(n,j)). To conserve
memory one can let A and Z denote the same array.

T is an array of dimension n used for temporary storage.

Error Return. IERR is an integer variable. If all the eigenvalues and eigenvectors are found
then IERR is set to 0. Otherwise, if more than 30 iterations of the QL algorithm are
required to compute the j'" eigenvalue)\j, then IERR is set to j. In this case, if j > 1 then
the eigenvalues A, ,...,)\j_l and eigenvectors z, i will have been computed and stored in
the W and Z arrays. However,the eigenvalues will be unordered.

Note. A is destroyed during computation.

Programming. SEIGV and SEIGV1 are driver routines for the EISPACK subroutines
TRED2, TQL2, and IMTQL2. These subroutines were developed at Argonne National
Laboratory. The function SPMPAR is also used.

Reference. Smith, B. T., Boyle, J. M., et al., Matrix Eigensystem Routines — FISPACK
Guide (Second Edition), Springer-Verlag, 1976.

262

COMPUTATION OF EIGENVALUES OF COMPLEX MATRICES

The subroutine CEIG is available for computing the eigenvalues of complex matrices.
This routine frequently yields results accurate to 13-14 significant digits. However, if the
eigenvalues are not distinct or if they are exceedingly tightly clustered, then a severe drop
in accuracy can occur. In this case one should not expect more than 7-8 digit accuracy.

CALL CEIG(IBAL AR Al kan WR.WIIERR)

AR and AI are real matrices of order n2 1, and WR and WI are real arrays of
dimension n or larger. AR and Al are the real and imaginary portions of the complex matrix
whose eigenvalues are to be computed. When CEIG is called the eigenvalues ?\1 yerrs 7\n are
computed. The real parts of the eigenvalues are stored in WR(1),...,WR(n) and the imaginary
parts are stored in WI(1),...,WI(n). The eigenvalues are unordered.

IBAL and ka are input arguments. It is assumed that ka is the number of rows in the
dimension statements for AR and Al in the calling program. IBAL may be any integer. If
IBAL# 0 then the complex matrix (represented by AR and AI) is balanced before the
eigenvalues are computed. Otherwise, if IBAL = O then the complex matrix is not
balanced.

Error Return. IERR is an integer variable. If all the eigenvalues are found then IERR is set

to 0. Otherwise, if more than 30 iterations are required to compute the j'P eigenvalue 7\j,

then IERR is set to j and the routine terminates. In this case, if j <<n then the eigenvalues

)\j+1 ,.»\,, will have been computed and the results stored in the WR and W1 arrays.

Remarks

(1) Even though the balancing operation does not increase the theoretical bounds on the
errors, nevertheless at times it may result in a slight loss of accuracy. On the other
hand, balancing requires little additional time and in certain cases can improve the
accuracy by as much as 5-6 significant digits. Thus it is recommended that balancing be
done.

(2) AR and Al are destroyed during computation. CEIG reduces the complex matrix
(represented by AR and AI) to upper Hessenberg form with unitary similarity
transformations. Then the QR algorithm is used to obtain the eigenvalues.

Usage. 1f one has a complex matrix A, then AR and Al can be obtained using the matrix
subroutines CMREAL and CMIMAG.

263

Programming. CEIG is a driver routine for the EISPACK subroutines CBAL, CORTH, and

COMQR. These subroutines were developed at Argonne National Laboratory. The func-
tions SPMPAR and 11MACH are also used.

Reference. Smith, B. T., Boyle, J. M., et al., Matrix Eigensystem Routines — EISPACK
Guide (Second Edition), Springer-Verlag, 1976.

264

COMPUTATION OF EIGENVALUES AND EIGENVECTORS OF
COMPLEX MATRICES

The subroutine CEIGV is available for computing the eigenvalues and eigenvectors of
complex matrices. This routine frequently yields values for the eigenvalues that are accurate
to 13-14 significant digits. However, be aware that errors in the eigenvalues, no matter how
seemingly insignificant, can be considerably magnified in the computation of the eigen-
vectors. It is not at all unusual to obtain an eigenvalue and eigenvector where the eigenvalue
is correct to within 2-3 units of the 14th significant digit, but the components of the
corresponding eigenvector are only accurate to 9-10 significant digits. If the eigenvalues
of a matrix are not distinct or if they are exceedingly tightly clustered, then a severe drop
in accuracy can occur. In this case one should not expect the eigenvalues to have more than
7-8 digit accuracy, and the situation regarding the eigenvectors is totally unpredictable.
The components of such an eigenvector may be correct to 6-7 significant digits, or the
eigenvector may not even be an eigenvector! In this case the results should be checked.

CALL CEIGV (IBAL.AR Al .ka,n. WR WI ZR.ZI IERR.TEMP)

AR and Al are real matrices of order n = 1 and WR and WI are real arrays of dimension
n or larger. AR and AI are the real and imaginary portions of the complex matrix whose
eigenvalues and eigenvectors are to be computed. When CEIGV is called the eigenvalues
A,,.A, and corresponding eigenvectors z;,..,z ~are computed. The real parts of the
eigenvalues are stored in WR(1),..,WR(n) and the imaginary parts are stored in

WI(1),...,WI(n). The eigenvalues are unordered.

It is assumed that the input argument ka is the number of rows in the dimension
statements for AR and Al in the calling program. ZR and ZI are real arrays of dimension
ka X n. For j = 1,...,n the real parts of the components of the eigenvector z; are stored in the
j'" column of ZR (in locations ZR(1, j),...,ZR(i1,j)) and the imaginary parts are stored in the

jth column of ZI. The eigenvectors Zy,eZ, Are not normalized.

IBAL is an input argument that can be assigned any integer value. If IBAL # O then the
complex matrix (represented by AR and Al) is balanced before the eigenvalues and
eigenvectors are computed. Otherwise, if IBAL = 0 then the complex matrix is not
balanced.

TEMP is a real array used for temporary storage by the routine. If no balancing is to be
done (i.e., if IBAL = 0) then TEMP must be of dimension 2n or larger. Otherwise, if
balancing is to be performed then TEMP must be of dimension 3n or larger.

Error Return. 1ERR is an integer variable. If all the eigenvalues and eigenvectors are found
then IERR is set to 0. Otherwise, if more than 30 iterations are required to compute the jth
eigenvalue)\j, then IERR is set to j and the routine terminates. In this case, if j < n then
the eigenvalues)\j 1 peesA n will have been computed and the results stored in the WR and WI
arrays. However, none of the eigenvectors will have been computed. The eigenvectors are
computed only after all the eigenvalues have been obtained.

Remarks.

(1) Even though the balancing operation does not increase the theoretical bounds on the
errors, nevertheless at times it may result in a slight loss of accuracy. On the other
hand, balancing requires little additional time and in certain cases can improve the
accuracy of the eigenvalues by as much as 5 - 6 significant digits. When this occurs
balancing will normally be needed to obtain the eigenvectors. In general, it is
recommended that balancing be done.

(2) AR and AI are destroyed during computation. CEIGV reduces the complex matrix
(represented by AR and AI) to upper Hessenberg form with unitary similarity
transformations. Then the QR algorithm is employed to obtain the eigenvalues, and
backsubstitution is performed to generate the eigenvectors.

Usage. If one has a complex matrix A, then AR and Al can be obtained using the matrix
subroutines CMREAL and CMIMAG.

Programming. CEIGV is a driver routine for the EISPACK subroutines CBAL, CORTH,
COMQR2, and CBABK?2. These subroutines were developed at Argonne National Labora-
tory. The functions SPMPAR and I1MACH are also used.

Reference. Smith, B. T., Boyle, J. M., et al., Matrix Eigensystem Routines — EISPACK
Guide (Second Edition), Springer-Verlag, 1976.

266

DOUBLE PRECISION COMPUTATION OF EIGENVALUES OF
COMPLEX MATRICES

The subroutine DCEIG is available for the double precision computation of the eigen-
values of complex matrices, This routine frequently yields results accurate to 26-28 signifi-
cant digits. However, if the eigenvalues are not distinct or if they are exceedingly tightly
clustered, then a severe drop in accuracy can occur. In this case one should not expect more
than 13-14 digit accuracy.

CALL DCEIG(IBAL,AR,AlLka,n,WR,WL,IERR)

AR and Al are double precision matrices of order n 2 1, and WR and WI are double
precision arrays of dimension n or larger. AR and Al are the real and imaginary parts of the
matrix whose eigenvalues are to be computed. When DCEIG is called the eigenvalues
A;s-A, are computed. The real parts of the eigenvalues are stored in WR(1),...,WR(n)
and the imaginary parts are stored in WI(1),...,WI(n). The eigenvalues are unordered.

IBAL and ka are input arguments, It is assumed that ka is the number of rows in the
dimension statements for AR and Al in the calling program. IBAL may be any integer. If
IBAL # O then the complex matrix (represented by AR and Al) is balanced before the
eigenvalues are computed. Otherwise, if IBAL = O then the complex matrix is not balanced.

Error Rerurn. 1ERR is an integer variable. If all the eigenvalues are found then IERR is set
to 0. Otherwise, if more than 50 iterations are required to compute the j'" eigenvalue ?\j,
then IERR is set to j and the routine terminates. In this case, if j <n then the eigenvalues
)\j +10-s0, Will have been computed and the results stored in the WR and WI arrays.
Remarks.

(1) AR and Al are destroyed during computation,
(2) DCEIG is a double precision version of the eigenvalue routine CEIG.

Programming. DCEIG is a driver routine for the subroutines DCBAL, DCORTH, and
DCOMQR. These subroutines are double precision versions of the EISPACK subroutines
CBAL, CORTH, and COMQR, developed at Argonne National Laboratory. The double
precision versions were prepared by A. H. Morris. The functions DCPABS, DPMPAR,
IIMACH and subroutine DCSQRT are also used.

Reference. Smith, B. T., Boyle, J. M., et al., Matrix Eigensystem Routines — EISPACK
Guide (Second Edition), Springer-Verlag, 1976.

267

DOUBLE PRECISION COMPUTATION OF EIGENVALUES AND EIGENVECTORS
OF COMPLEX MATRICES

The subroutine DCEIGV is available for the double precision computation of the
eigenvalues and eigenvectors of complex matrices. This routine-frequently yields values
for the eigenvalues that are accurate to 26-28 significant digits, However, be aware that
the errors in the eigenvalues, no matter how seemingly insignificant, can be considerably
magnified in the computation of the eigenvectors. If the eigenvalues are not distinct or
if they are exceedingly tightly clustered, then a severe drop in accuracy can occur. In this
case one should not expect the eigenvalues to have more than 13-14 digit accuracy.

CALL DCEIGV(IBAL,AR,AlLka,n,WR,WI,ZR,Z] IERR, TEMP)

AR and Al are double precision matrices of order n = 1 and WR and WI are double
precision arrays of dimension n or larger. AR and Al are the real and imaginary portions
of the complex matrix whose eigenvalues and eigenvectors are to be computed. When
DCEIGV is called the eigenvalues A, ,...,A and corresponding eigenvectors Z,,...,Z, are
computed. The real parts of the eigenvalues are stored in WR(1),..., WR(n) and the imaginary
parts are stored in WI(1),...,WI(n). The eigenvalues are unordered.

It is assumed that the input argument ka is the number of rows in the dimension
statements for AR and Al in the calling program. ZR and ZI are double precision arrays
of dimension ka X n. Forj = 1,....n the real parts of the components of the eigenvector
z; are stored in the j'M column of ZR (in locations ZR(1,j),...,ZR(n,j)) and the imaginary
parts are stored in the jt? column of ZI. The eigenvectors z,,...,Z, are not normalized.

IBAL is an input argument that can be assigned any integer value. If IBAL # 0 then the
complex matrix (represented by AR and Al) is balanced before the eigenvalues and eigen-
vectors are computed. Otherwise, if IBAL = 0 then the complex matrix is not balanced.

TEMP is a double precision array used for temporary storage by the routine. If no
balancing is to be done (i.e., if IBAL = 0) then TEMP must be of dimension 2n or larger.
Otherwise, if balancing is to be performed then TEMP must be of dimension 3n or larger.

Error Return. 1ERR is an integer variable. If all the eigenvalues and eigenvectors are found
then IERR is set to 0. Otherwise, if more than 50 iterations are required to compute the
jth eigenvalue)\j, then IERR is set to j and the routine terminates. In this case, if j <n then
the eigenvalues)\j+1 s--»N,, will have been computed and the results stored in the WR and WI
arrays. However, none of the eigenvectors will have been computed. The eigenvectors are
computed only after all the eigenvalues have been obtained.

269

Remarks.
(1) AR and Al are destroyed during computation.
(2) DCEIGYV is a double precision version of the eigenvalue/eigenvector routine CEIGV.

Programming. DCEIGV is a driver routine for the subroutines DCBAL, DCORTH,
" DCMQR2, and DCBABK. These subroutines are double precision versions of the EISPACK
subroutines CBAL, CORTH, COMQR2, and CBABK2, developed at Argonne National
Laboratory. The double precision versions were prepared by A. H. Morris. The functions
DCPABS, DPMPAR, [IMACH and subroutine DCSQRT are also used.

Reference. Smith, B. T., Boyle, J. M., et al., Matrix Eigensystem Routines — EISPACK
Guide (Second Edition), Springer-Verlag, 1976.

270

£, SOLUTION OF SYSTEMS OF LINEAR EQUATIONS WITH
EQUALITY AND INEQUALITY CONSTRAINTS

Let A be a k X n matrix, C an £ X n matrix, and E an m X n matrix. Alsolet b, d, and
f be column vectors of dimensions k, £, and m respectively. The following subroutine is
available for obtaining a column vector x of dimension n which minimizes [|Ax—b||1

k
= X IAix - bil subject to the constraints
i=1
Cx=d
Ex <f.

Here A, denotes the i™" row of A, and Ex < f means that every component of Ex is less than
or equal to the corresponding component of f.

CALL CL1(k,2,m,n,Q.,kq,KODE, TOL ITER,X,RES,RNORM,WK IWK)

It is assumed that k2> 1,220, m>0, and n= 1. Q is a 2-dimensional array with kq
rows and at least n + 2 columns where kq 2 k + £+ m + 2. The matrices A,C,E and vectors
b,d,f are stored in the first k + € + m rows and n + 1 columns of Q as follows:

A b
E f
Q is modified by the routine.

KODE is a variable used for input/output purposes, X an array of dimensionn+ 2 or
larger, and RES an array of dimension k + £ + m or larger. On input KODE is normally set
by the user to 0. This indicates that ||Ax — b[l, is to be minimized subject only to the con-
straints Cx =d and Ex < f. However, if it is also desired that one or more variables x.
satisfy x. <0 or xj>0, or that one or more residuals bi - A;x satisfy b, —Aix<0 or
b, - Ax > 0, then the user may set KODE to a nonzero value. If KODE # 0 on input, then
the user must also set X(j) and RES (i) to the values

-1.0 X, <0
X((G)= 0.0 X is unrestricted
1.0 x.20

}
-1.0 bi - Aix <0
RES@) = 0.0 b, - A;x is unrestricted
1.0 b, —Ax>0

forj=1,..,nandi=1,..,k to indicate the additional constraints which are desired.

271

RNORM is a variable. When CL1 is called, if a vector x is found that minimizes
IAx — bll; subject to the desired constraints, then KODE = 0 on output and the solution x
is stored in X. Also RNORM is assigned the value ||Ax - bl|;, b — Ax is stored in the first k
locations of RES, d — Cx is stored in the next £ locations, and f — Ex is stored in the last m
locations.

The input argument TOL is a tolerance. In effect, the routine cannot distinguish
between 0 and any quantity whose magnitude is less than TOL. Normally the setting
TOL = 1072 suffices where » is the number of decimal digits of accuracy available.

When CL1 is called, a modified form of the simplex algorithm is used to minimize
IAx — b||1. Frequently the routine requires less than 5(k + £ + m) iterations to perform this
task. ITER is a variable used for input/output purposes. On input the user must set ITER
to the maximum number of iterations that will be permitted. When the routine terminates,
ITER has for its value the number of iterations that were performed.

On output KODE reports the status of the results. The routine assigns KODE one of
the following values:
KODE =0 The problem was solved.
KODE =1 The problem has no solution.
KODE =2 Sufficient accuracy cannot be maintained to solve the problem using the
current value of TOL.
KODE =3 The maximum number of iterations were performed. More iterations are
needed.
When KODE > 1 on output, X contains the last vector x which was obtained, RNORM
= |AX - bll,, and RES contains the vectors b — AX, d - CX, and f - EX.

WK is an array of dimension 2(k + 2 + m + n) or larger, and IWK is an array of dimen-
sion 3(k + £ + m) + 2n or larger. WK and IWK are work spaces for the routine.

Programming. CL1 calls the subroutine KL 1. CL1 was written by I. Barrodale and F. D. K.
Roberts (University of Victoria, British Columbia, Canada).

References
(1) Barrodale, 1. and Roberts, F. D. K., “An Improved Algorithm for Discrete £, Linear
Approximation,” SIAM J. Numer. Analysis 10 (1973), pp. 839-848.

(2) ,“An Efficient Algorithm for Discrete €, Linear Approximation
with Linear Constraints,” SIAM J. Numer. Analysis 15 (1978), pp. 603-611.
3) , “Algorithm 552, Solution of the Constrained £, Linear Approx-

imation Problem,” ACM Trans. Math Software 6 (1980), pp. 231-235.

272

LEAST SQUARES SOLUTION OF SYSTEMS OF LINEAR EQUATIONS

Given an m X n matrix A and an m X £ matrix B. The column vectors b, b, 0f B
specify £ distinct linear least squares problems

ij B bj G=1,..%.

This set of problems can be written in the form AX = B where X is the n X ¢ matrix having
the column vectors x,,...,X,. There always exists a unique minimum length least squares
solution X; for each ij = bj. The subroutines LLSQ, HFTI, and HFTI2 are available for
obtaining the minimum length solution matrix X. HFTI and HFTI2 are more general than
LLSQ, being able to solve arbitrary systems AX =B. LLSQ assumes that m=>n> 1 and
that the rank of A is n. The routines perform Householder triangularization. HFTI and
HFTI2 require more time than LLSQ, but may be more accurate. In LLSQ all calculations
are performed in single precision. In HFTI and HFTI2 most inner products are computed
in double precision and the results stored in single precision.

CALL LLSQ(m,n,A ka,B kb2, WK ,IWK IERR)

It is assumed that m > n > 1 and that the rank of A is n. The input arguments ka and
kb have the following values:

ka = the number of rows in the dimension statement for A in the calling program

kb = the number of rows in the dimension statement for B in the calling program
It is required that ka 2 m and kb =2 m.

IERR is an integer variable. When LLSQ is called, if no input errors are detected then
IERR is set to 0 and the solution matrix X stored in B. Also, if m # n then the residual
norm IIij— bjII is computed and stored in B(n + 1,j) forj=1,...,2.1

WK and IWK are arrays of dimension n or larger that are work spaces for the routine.

Error Return. 1TERR # 0 when m 2 n > | is not satisfied (IERR = 1) or the rank of A is less
than n (IERR = 2).

Note. A is destroyed during computation.
Programming. L1.SQ is a driver for the subroutines ORTHO and ORSOL, written by

Nai-Kuan Tsao and Paul J. Nikolai (Aerospace Research Laboratories, Wright-Patterson
Air Force Base).

! Throughout this section |ic(| = \/?12 for any vector ¢ = (¢ ,....c)

273

Reference. Tsao, N. K. and Nikolai, P. J., Procedures using Orthogonal Transformations
for Linear Least Squares Problems. Report ARL TR 74-0124, Aerospace Research Labora-
tories, Wright-Patterson Air Force Base, 1974,

CALL HFTI(A ka,m,n,B ,kb,2,7,k, RNORM,H,G,IP)
CALL HFTI2(A ka,m,n,B.kb,D,7.k, RNORM,H,G,IPIERR)

There are no restrictions on m and n (other than they both be positive integers). The
input arguments ka and kb have the foliowing values:

ka = the number of rows in the dimension statement for A in the calling program

kb = the number of rows in the dimension statement for B in the calling program
It is required that ka > m. Also, if 2 | then kb > max {m,n} .

If 2> 1 then RNORM is an array of dimension £ or larger. When HFTI or HFTI2
is called, the minimum length solution matrix X is computed and stored in B. Also the
residual norm ||Axj - bjll is computed and stored in RNORM(j) forj=1,...,%.

H, G, and IP are arrays of dimension n or larger that are work spaces for the routines.

The parameters 71, k, and D.

7 is a tolerance that is set by the user, k a variable, and D an array of dimension
min {m,n} or larger. It is assumed that 72 0. Normally 7 =0 is the setting that is used.
D and k are set by the routines.

In order to understand the use of 7, k, and D one must be briefly acquainted
with the processing of A. The routines first reduce A to a triangular matrix C where
A = QCP. Q is an orthogonal matrix and P a permutation matrix. P is defined so that the
diagonal elements ¢ of C satisfy 1cii| = |Ci+1,i+1| for each i. The variable k is set to the
largest integer such that lckkl > 7, and if HFTI2 is used then the diagonal elements c,; are
stored in D. C is now regarded as the partitioned matrix

C= Cl C2
0 C

where C1 is a k X k matrix. Minimum length least squares solutions x, are then computed
for the problems ij = bj using only the first k rows of C. This is equivalent to replacing

A with
~ C, C
A= 1 2
o (O 0>P

and solving Kxj = bj forj=1,...,L

274

Since Iclll Zeee 2 Ickkl > 7 clearly k is the rank of A. It is also true that the ratio
|°11|/ lckk| is a lower bound on the condition number of C; (relative to the spectral norm).
Thus, if the ratio is extremely large (say 2 108) then a severe loss of accuracy can be ex-
pected. A large ratio may be due all or in part to rank deficiency (or near rank deficiency)
of the matrix A. Fortunately, rank deficiency is frequently not too difficult to detect and
cure. When A is rank deficient then machine roundoff may assign ¢, 2 small value, say
21 * 1014, when it should be 0. The cure is to examine the diagonal elements ¢;; which
are stored in D, to reset 7 SO as to eliminate the unwanted Ci'is, and then to rerun the
problem. This will reduce the order of (O thereby lowering the rank of the replacement
matrix A. C1 will now be better conditioned, but the value of the residual norms ||Axj —bjll
may be larger. If the norms do increase, then the solution obtained will be satisfactory only
if the size of the increased norms fall within acceptable bounds.

Remarks
(1) The variable k is set to 0 if all |cii| < 7. If k =0 then the zero matrix is the solution for
AX =B.

(2) If £<0 then the decomposition A = QCP is performed, the diagonal elements of C
are stored in D, and k is computed. B and RNORM are ignored.

(3) The contents of A are destroyed by the routines.

(4) HFTI and HFETI?2 yield the same results.

Error Return. 1ERR is a variable that is set by the routine. If no input errors are detected
then IERR is set to 0. Otherwise, IERR is assigned one of the following values:

IERR =1 if m > ka

[ERR=2 ife>1 and kb < max {m,n}
When an error is detected, the routine immediately terminates.

Programming. HEFTI and HFTI2 call the subroutine H12. These routines were written by
Charles L. Lawson and Richard J. Hanson (Jet Propulsion Laboratory), and modified by
A. H. Morris.

Reference. Lawson, C. L., and Hanson, R.J,, Solving Least Squares Problems, Prentice-Hall,
Inc., Englewood Cliffs, N.J., 1974.

275

LEAST SQUARES SOLUTION OF OVERDETERMINED SYSTEMS OF
LINEAR EQUATIONS WITH ITERATIVE IMPROVEMENT

Given an m X n matrix A and an m X £ matrix B. The column vectors bl,...,bQ of B
specify £ distinct linear least squares problems

ij=bj Gg=1,..9.

This set of problems can be written in the form AX = B where X is the n X £ matrix having
the column vectors X ,....X,. Assume that m>n> 1 and that the rank of A is n. Then
there exists a unique least squares solution X for each ij = bj. The subroutine LLSQMP
is available for obtaining the solution matrix X. Iterative improvement is performed to
compute X to machine accuracy.

CALL LLSQMP(m,n,A ka,B kb2 WK,IWK,IERR)

It is assumed that m = n > 1 and that the rank of A is n. The input arguments ka and
kb have the following values:

ka = the number of rows in the dimension statement for A in the calling program

kb = the number of rows in the dimension statement for B in the calling program
It is required that ka 2> m and kb 2 m.

When LLSQMP is called, the solution X is computed and stored in B. Also, if
m % n then the residual norm ||Axj - bjll is computed and stored in B(n+1,j) forj = 1,...,2.1
A is not modified by the routine.

WK is an array of dimension mn + 2m + n or larger, and IWK an array of dimension
n or larger. WK and IWK are work spaces for the routine.

IERR is a variable that is set by the routine. When LLSQMP terminates, IERR has one
of the following values:

IERR=20 The solution X was computed to machine accuracy.

IERR =1 X was obtained, but not to machine accuracy.

IERR =2 The restriction m 2 n > 1 is not satisfied.

IERR =3 The rank of A is less than n.

Programming. LLSQMP is a driver for the subroutines ORTHO, ORSOL, and ORIMP.
These subroutines were written by Nai-Kuan Tsao and Paul J. Nikolai (Aerospace Research
Laboratories, Wright-Patterson Air Force Base). ORIMP was modified by A. H. Morris.
The function SPMPAR and subroutine MCOPY are also used.

277

Reference. Tsao, N. K., and Nikolai, P. J., Procedures using Orthogonal Transformations
for Linear Least Squares Problems, Report ARL TR 74-0124, Aerospace Research Labora-
tories, Wright-Patterson Air Force Base, 1974,

278

LEAST SQUARES SOLUTION OF SYSTEMS OF LINEAR EQUATIONS
WITH EQUALITY AND INEQUALITY CONSTRAINTS

Let A be an m, X n matrix. E an m_ X n matrix, G an m_ X n matrix, b a column
vector of dimension m , f a column vector of dimension m, , and h a column vector of
dimension m_. The subroutme LSEI is available for finding a column vector x of dimension
n that minimizes ||Ax — bl| subject to the constraints

HEx- fll =1

Gx = h
where r = min, I Ey - fil. I The inequality Gx > h means that every component of the
product Gx must be equal to or greater than the corresponding component of h. If the
equation Ey = f can be solved, thenr = = (O and the constraint |[Ex — fll = r becomes the
equality constraints Ex = f. It is assumed that m, = 0, m, 20, and m, =0 Ifm, =0
then LSEI solves | Ex — fll = r subject to the constraints Gx = h.

CALL LSEI (W,kw,m,,m,,m,.n,OPT,x,RNORME, RNORMA,MODE, WK, IWK)

Ifm=m,+m, +m, then W is the m X (n + 1) matrix:

E f
W=lA b)
G h
The input argument kw is assumed to have the value:

kw = the number of rows in the dimension statement for W in the calling program
Thus it is required that kw =2 m.

RNORME and RNORMA are real variables. When LSEI is called, if the constraints
|lEx - fll =1 and Gx > h are consistent then x is computed, RNORME is assigned the value
r, and RNORMA is assigned the value JAx - bll.2

OPT is an array, called the option vector, which permits the user to take advantage of
certain options that are supplied by the routine. If no options are desired then OPT may be
declared to have dimension 1 and OPT(1) must be assigned the value 1. The details
concerning the available options and how to specify them in OPT are given below.

IWK is an array of dimension m, + 2n + 2 or larger, and WK is an array of dimension
2(m, +n) + max {ma +m, n} + (m +2)(n+7) or larger. IWK and WK are work spaces

' Throughout this section 1ici: denotes the norn /2 c? for any vector ¢ = (C;, Cp,--)-
2if m,, = 0 then RNORME =0, and if m, = 0 then RNORMA =0.

279

When LSEI is called, using a solution for |Ex — f|| = r, a reduced least squares problem
with inequality constraints is obtained and solved. When the routine terminates IWK(1),
IWK(2), IWK(3) contain the following information:

IWK(1) = the estimated rank of the matrix E

IWK(2) = the estimated rank of the reduced problem

IWK(3) = the amount of storage in the array WK that was actually needed
IWK(3) may be important since the amount of storage required by WK depends only on
A,E,G and not on the data b,f,h. The above formula for the dimension of WK may at
times overestimate the amount of storage that is actually needed. For subsequent runs
involving the same A,E,G but possibly different b,f,h the dimension of WK may be set to
the value of IWK(3).

Error Return. MODE is an integer variable that is set by the routine. If no input errors are
detected and restrictions ||Ex — f|| = r and Gx =2 h are consistent, then the problem is
solved and MODE is set to O or 1 depending on whether r = 0 or r > 0. Otherwise, if an
input error is detected or the restrictions are found to be inconsistent, then MODE is
assigned one of the following values:
MODE = 2 The restrictions are not consistent and r = 0.
MODE = 3 The restrictions are not consistent and r > 0.
MODE = 4 Aninput error was detected. Either kw <m, the
covariance matrix is requested and kw < n, or the
option vector OPT is not defined properly.
When a MODE 2, 3, or 4 situation is detected then the routine immediately terminates.
In these three cases X, RNORME, and RNORMA are not defined.

Remarks
(1) W is modified by the routine.
(2) Ifm < QOorn < 0 then MODE is set to 0 and the routine terminates.

The option vector OPT. If no options are desired then OPT may be declared to be of
dimension 1 and OPT(1) must have the value 1. Otherwise, OPT is a linked list consisting of
groups of data link;, key,, data, (i= 1,...,5). Each link; and key, requires one word of storage.

" The number of words required by data, depends on the value of key,. The general layout of
OPT is as follows:

OPT(1) = link, (index of the first entry of the next group)

OPT(2) = key1 (key to the option)
OPT(3) = the first word of the data (data,) for this option

OPT(link,) = link, (index of the first entry of the next group)
OPT(link, +1) = key, (key to the option)

280

OPT(link, + 2) = the first word of the data (data,) for this option

OPT(link,) = 1.0 (There are no more options to be considered.)

The following options are permitted:

key =

key =

key =

key =

key =

1

It is assumed that kw = n. Compute the n X n covariance matrix
and store it in the first n rows and columns of W.! The data for
this option is a single value. It must be nonzero for the covariance
matrix to be computed. .

Scale the nonzero columns of the matrix (é) so that they have length

1. The data for this option is a single value. It must be nonzero for
the scaling to be performed. .
Scale the columns of the matrix (é) The data for this option

consists of n scaling factors, one for each matrix column.

Change the internal tolerance 7 which is used for determining the
rank of E. The data for this option is the new tolerance. 7 may be
set to any value = € where € is the smallest floating point number for
which 1+e>1 (e=2"* for the CDC 6700). If the new value is
less than e then it is ignored and 7 is set to €. The default value
employed for 7 is \/€.

Change the internal tolerance 7 which is used for rank determination
in the reduced least squares problem.! The data for this option is the
new tolerance. 7 may be set to any value 2 € where € is the smallest
floating point number for which 1 +¢€ > 1. If the new value is less
than e then it is ignored and 7 is set to €. The default value employed

for 7 is /€.

The order of the options in the array OPT is arbitrary. If an option has an unrecognized key
then the option is ignored. It'is assumed that the dimension of OPT is no greater than
100000 and that the number of options is < 1000. If either of these assumptions is
violated then MODE will be set to 4 and the routine will terminate. It is also required that
link; # link; for i # j. If this restriction is not satisfied then the linked list OPT will be
circular, MODE will be set to 4, and the routine will terminate.

Remarks. LSEI employs the least squares routine WNNLS, which also examines the option
vector OPT. WNNLS recognizes options having keys 5,6,7,8. Keys 6 and 7 should never
appear in an option vector for LSFL If a key 5 tolerance is defined then the tolerance is

1 See the background notes near the end of this section.

281

used in WNNLS. The only exception is when a key 8 tolerance is defined for WNNLS. The

key 8 tolerance will override the key 5 tolerance only if the key 8 option follows the key 5
option in the option vector.

Example. Assume that we have an array D containing n scaling factors for the columns of the
E

matrix (8) , and that the tolerance TOL is always to be used for rank determination. Then

OPT will have to be of dimension 2 n + 9 and OPT can be defined as follows:

OPT(1) = N+3 (Scaling option)
OPT(2) = 3.0
DO10TI=1,N
10 OPT({I+2) = D(I)
OPT(N+3) = N+6 (Matrix E tolerance option)

OPT(N +4) = 4.0

OPT(N +5) = TOL

OPT(N+6) = N+9 (Reduced problem tolerance option)
OPT(N+7) = 5.0

OPT(N + 8) = TOL

OPT(N+9) = 1.0 (There are no more options.)

Background. 1f m, # O then a change of variables x = Qy is first made where Q is an orthog-
onal matrix. Next a column vector y is found that minimizes | EQy — fil. Let k denote the
estimated rank of E (which is stored in IWK(1)). Then the vector y is of the form y; where
y, has k components and y, has n — k components. The vector y, is found for which
IEQy — f|| is minimized. This minimization does not depend on y,;i.e., for any y, the
vectory = z‘ satisfies r = min ||EQy — f|.

After the y; portion of y is found, then the problem is reduced to finding y, for which
IAQy — bj| is minimized subject to GQy = h. The matrices AQ and GQ are partitioned
into

AQ = (A} Ay)

GQ = (G; Gy
where A; and G; contain k columns and A, and G, contain n — k columns. Then the
reduced problem is that of finding the vector y, which mimimizes [|A,y, — (b = Ayl
subject to the constraint G,y, = h — G,y;. The internal tolerance used for rank deter-
mination in computing y, may be modified by the key = 5 option.

The covariant matrix C obtained by the key = 1 option may be defined as follows:
Let 2 denote the estimated rank of A, (which is stored in IWK(2)), and let C denote the
pseudo-inverse of the matrix AbA,. Also let 62 = 1 when m, < n - k and let 02 = JAx - b[¥/
(m, -) whenm, >n - k. Then

282

0
C=02Q< Q)Qt_
0 C

This definition may not be meaningful when there are inequality constraints Gx = h.

Programming . LSEI employs the subroutines LSI, LPDP, WNNLS, WNLSM, and WNLIT.
These routines were written by Karen H. Haskell and Richard J. Hanson (Sandia Labora-
tories) and modified by A. H. Morris. The subroutines HFTI, H12, SROTM, SROTMG,
SCOPY, SSWAP, SSCAL, SAXPY and functions SPMPAR, SDOT, SASUM, SNRM?2,
ISAMAX are also used.

Reference. Haskell, K. H. and Hanson, R.J., Selected Algorithms for the Linearly Con-

strained Least Squares Problem — A User’s Guide. Report SAND 78-1290, Sandia Labora-
tories, Albuquerque, New Mexico, 1979.

283

LEAST SQUARES SOLUTION OF SYSTEMS OF LINEAR EQUATIONS
WITH EQUALITY AND NONNEGATIVITY CONSTRAINTS

Let Abeanm, X n matrix, E an m, X n matrix, b a column vector of dimension m,,
and f a column vector of dimension m,. The subroutine WNNLS is available for finding a
column vector x = (x1 yeres X n)t that minimizes ||Ax —b}| subject to the constraints:!
Ex = ¢
x; =0 for i > ¢
It is assumed that m, > 0, m, >0,and 0 <2< nlIf m = 0 then WNNLS solves
Ex = fsubject to the constraints x; =0 G@>9.

CALL WNNLS(W,kw,m,,m,,n,2 0PT,x, RNORM,MODE, IWK,WK)

Ifm =m_ +m, then W is the mX (n + 1) matrix:

(x)

W =

A b

The input argument kw is assumed to have the value:

kw = the number of rows in the dimension statement for W in the calling program
Thus it is required that kw = m.

RNORM is a real variable. The permissible vectors for the problem are those vectors x
for which x, > 0 (i >). When the routine is called, a permissible vector is found that
minimizes ||Ax — bll subject to [|Ex — fil = min {||Eu - fll:uis permissible}. Also RNORM
is assigned the value \/lIAx — bil + |Ex — fI2.2

OPT is an array, called the option vector, which permits the user to take advantage of
certain options that are supplied by the routine. If no options are desired then OPT may be
declared to have dimension 1 and OPT(1) must be assigned the value 1. The details
concerning the available options and how to specify them in OPT are given below.

IWK is an array of dimension m + n or larger, and WK is an array of dimension m + 5n
or larger. IWK and WK are work spaces.

Error Return. MODE is an integer variable that is set by the routine. If the problem is
successfully solved then MODE is assigned the value 0. Otherwise, MODE is assigned one of
the following values:

MODE = 1 The maximum number of iterations (3(n—{&) iterations) was exceeded.

' Throughout this section ilci| denotes the norm VZ °i2 for any vector ¢ = (¢, ¢,,)
2If m, = 0 then RNORM = ||Ex - fl], and if m, = 0 then RNORM = |{Ax - bll.

285

An approximate solution and its residual norm are stored in x and
RNORM.

MODE = 2 An input error was detected. Either one of the restrictions kw 2 m
and 0 < £ < n is violated, or the option vector OPT is not properly
defined.

When an input error is detected then the routine immediately terminates. In this case x and
RNORM are not defined.

Remarks
(1) W is modified by the routine.
(2) Ifm < 0Oorn < 0 then MODE is set to 0 and the routine terminates.

The option vector OPT. If no options are desired then OPT may be declared to be of
dimension 1 and OPT(1) must have the value 1. Otherwise, OPT is a linked list consisting of
groups of data link,, keyi, datai (i = 1,...,8). Each link; and keyi requires one word of
storage. The number of words required by data, depends on the value of key,. The general
layout of OPT is as follows:

OPT(1) = link (index of the first entry of the next group)
OPT(2) = key, (key to the option)
OPT(3) = the first word of the data (data,) for this option

OPT(link,) = link, (index of the first entry of the next group)
OPT(link1 +1) = key2 (key to the option)
OPT(link, + 2) = the first word of the data (data,) for this option

OPT(links) = 1.0 (There are no more options to be considered.)

The following options are permitted:

key = 6 Scale the nonzero columns of the matrix E} so that they have length 1.
The data for this option is a single value. It must be nonzero for the scaling
to be performed.

key = 7 Scale the columns of the matrix (E) The data for this option consists of
n scaling factors, one for each matrix column,

key = 8 Change the internal tolerance 7 which is used for rank determination. The

data for this option is the new tolerance. 7 may be set to any value > €
where € is the smallest floating point aumber for which 1+ ¢ > 1.

286

(¢ = 27*7 for the CDC 6700.) If the new value is less than e then it is
ignored and T is set to €. The default value employed for 7 is \/E.l

The order of the options in the array OPT is arbitrary. If an option has an unrecognized key
then the option is ignored. It is assumed that the dimension of OPT is no greater than
100000 and that the number of options < 1000. If either of these assumptions is violated
then MODE will be set to 2 and the routine will terminate. It is also required that
link; # link; for i # j. If this restriction is not satisfied then the linked list OPT will be
circular, MODE will be set to 2, and the routine will terminate.

Example. Assume that we have an array D containing n scaling factors for the columns of
the matrix (i\,, and that TOL is the tolerance to be used for rank determination. Then

OPT will have to be of dimension 2> n + 6 and OPT can be defined as follows:

OPT(l) = N+ 3 {Scaling option)
OPT(2) = 7.0
DO 101 =1,N

10 OPT(U +2) = D(I)

OPT(N+3) = N+6 (Tolerance option)
OPT(N+4) = 8.0

OPT(N +5). = TOL

OPT(N+6) = 1.0 (There are no more options.)

Programming. WNNLS employs the subroutines WNLSM and WNLIT. These routines
were written by Karen H. Haskell and Richard J. Hanson (Sandia Laboratories), and
modified by A. H. Morris. The subroutines H12, SROTM, SROTMG, SCOPY. SSWAP,
SSCAL, SAXPY and functions SPMPAR, SASUM, SNRM?2, ISAMAX are also used.

References

(1) Haskell, K. H. and Hanson, R. J., Selected Algorithms for the Linearly Constrained
Least Squares Problem — A User’s Guide. Report SAND 78-1290, Sandia Labora-
tories, Albuquerque, New Mexico, 1979.

(2) —_____, An Algorithm for Linear Least Squares Problems with Equality and
Nonnegativity Constraints. Report SAND 77-0552, Sandia Laboratories, Albuquerque.
New Mexico, 1978.

! This option may also be invoked by setting key = 5.

LEAST SQUARES ITERATIVE IMPROVEMENT SOLUTION OF SYSTEMS
OF LINEAR EQUATIONS WITH EQUALITY CONSTRAINTS

Let A be an m, X n matrix, E an m, X n matrix, B an m, X £ matrix, and F anm, X ¢
matrix. It is assumed that O < m, < n and that the rank of E is m,. Let by,...,b, denote
the column vectors of B and fy,...,f, the column vectors of F. The subroutine L2SLV is
available for finding the unique minimum length column vector x; of dimension n that
minimizes lIAx - b; | subject to the equality constraints Ex fy (if there are any) for
j=1,...,81 Iteratlve improvement is performed to compute the vectors X],...,Xo to machine
accuracy. It is assumed that m, > 0. If m, = O then L2SLV finds the unique minimum
length solution x; to Ex; = fjforj= 1,...,%

CALL L2SLV(m,n,m,,%,A, ka,B,kb,WGTS,TOL,N1,IPIVOT,
X, kx, R, kr,T,kt, WK, IERR)

If m = m, + m, then A is the m X n matrix (i) and B is the m X £ matrix (g) The
input arguments ka and kb have the values:

ka = the number of rows in the dimension statement for A in the calling program

kb = the number of rows in the dimension statement for B in the calling program
It is assumed that m = 1,n>1, 2> |, ka=>m, and kb >m. A and B are not modified by
the routine.

WGTS is an array containing m nonnegative weights. The first m, weights are set
to 1.0 by the routine. Let wy,..., Wy, denote the remaining weights (i.e., let w; =
WGTS(m, +i) fori=1,..,m,). The remaining weights are supplied by the user. In effect,
w; is the weighting that is given to the ith equation in the least squares problem Ax; = b;. If
W denotes the m, Xm, diagonal matrix diag(wy,..., Wy) then L2SLV finds the unique
minimum length vector that minimizes [WAx; — Wb;ll subJect to Ex; = fj for j=L.,%
Alternatively, X; can be characterized as the unique minimum length vector that minimizes
lA%; - bjlly sub]ect to Ex; = f;. Here lirll, denotes the weighted least squares norm

\/ Z; w1 r1 for any vector r = (ry,...,Ip,). For convenience, in the remainder of this section
let W denote the m X m diagonal matrix diag (1,..., l,wl,...,wma).

X is an n X £ matrix that contains the solution vectors X;,...,X, when the routine
terminates. The input argument kx is the number of rows in the dimension statement for
X in the calling program. It is assumed that kx = n.

! Throughout this section || c|| denotes the norm hY Z c for any vector ¢ = (Cy,..., Cmg).

289

~ f‘ ~
R is an m X € matrix. Let b; denote the jth column vector (bj> of B forj=1,.,%
i
Then L2SLV stores the residual vector 3 W'l;j —Wxxj in the jth column of R. The input
argument kr is the number of rows in the dimension statement for R in the calling program.

It is assumed that kr 2 m.

WK is an array of dimension 6(m + n) + 2¢ or larger that is used for a work space.
When L2SLV terminates, forj=1,..., 2

WK(j) = { n; if iterative improvement of the solution x; converged
-n; if iterative improvement of x; failed to converge
where n; is the number of iterations in the iterative improvement process that were per-
formed in computing x;. Also
WK(R+)) = the estimated number of correct digits in x; before iterative improvement
was performed
forj=1,...,%

TOL and N1 correspond to the parameters 7 and Kk in the least squares subroutines
HFTI and HFTI2. TOL is a nonnegative number that is specified by the user, and N1 isa
variable that is set by the routine. When L2SLV is called, modified Gram-Schmidt orthog-
onalization with column pivoting is used to reduce WA to the form (A{A,) where A; isan
m X N; matrix having rank N;. A, is of the form QU where Q!Q = diag (dl,...,le) and U is
an upper unit triangular matrix. The values d;,d,,... correspond to the diagonal elements
€115 €3, ... generated by HFTI and HFTI2 (d; = cizi fori=1,2,...). The values are ordered so
that d; > d;4,, and d,,d,, ... are stored in WK(22 + 1), WK(2€ + 2),.... If m = m, then N1 is
assigned the value m,. Otherwise, if m > m, then N1 =k — 1 where k is the smallest integer
greater than m, for which dy <7. Here r=TOL if TOL > 0,and 7 = (ne)zdmeﬂ where € is
the smallest value for which 1 +e>1 (e =247 on the CDC 6700) if TOL = 0. Thus, if
TOL = 0 then a tolerance based on the computer precision is used to determine the rank
N, of WA. Otherwise, if TOL > 0 then TOL is the tolerance that is used to specify the rank
of the problem to be solved. If the user inadvertently sets TOL to be negative then L2SLV
resets TOL to be 0.

IPIVOT is an array of dimension n or larger that is used by L2SLV to record the order
in which the columns of WA are selected by the pivoting procedure when WA is reduced to
(AjA,). If N1 < n then the first N1 elements of IPIVOT are the indices of the columns
of WA from which the matrix A, is generated.

T is a 2-dimensional array of dimension kt X n that is used for temporary storage. It
is assumed that kt 2 m + n. When L2SLV terminates, if N1 = n then the unscaled n X n

290

covariance matrix is stored in the first n rows and columns of T. Iterative improvement is
not performed on the covariance matrix.

Error Return. 1ERR is an integer variable that is set by the routine. If no input errors are
detected and the results appear to be satisfactory, then IERR is set to 0. Otherwise, IERR
is assigned one of the following values:
[ERR = 1 Either m, n, or £ is not positive.
IERR = 2 The restriction 0 <m, < min {m,n} is not satisfied.
IERR = 3 One of the dimensioning restrictions ka = m, kb 2 m, kx = n, kr 2 m,
kt = m + n is violated.

IERR = 4 WGTS() is negative for some i > m,.

IERR = 5 Either WA=0o0rE=0.

IERR = 6 The rank of E is less than m,.

IERR = 7 Iterative improvement of all the solutions xi,...,X, failed to converge.
IERR = 8 Iterative improvement of one or more solutions failed to converge.

IERR = 9 More than p iterations of the iterative improvement procedure were

performed in computing some X;. (Here it is assumed that a p decimal
digit floating-point arithmetic is being used. p = 14 for the CDC 6700.)

IERR = 10 The accuracy of some x; before iterative improvement was estimated to
be less than half a decimal digit.

IERR = 11 One or more of the computed diagonal elements of the covariance
matrix is negative. This is due to roundoff error. Theoretically, all the
diagonal elements should be nonnegative. No evidence of severe ill-
conditioning was detected.

IERR = 12 One or more of the computed diagonal elements of the covariance
matrix is negative. This is due to roundoff error. Theoretically, all the
diagonal elements should be nonnegative. The problem appears to be
extremely ill-conditioned.

When an input error is detected (IERR = 1,2,...,6) then L2SLV immediately terminates.
If evidence of severe ill-conditioning is detected, then IERR is set to 8, 9, or 10 and com-
putation of the solutions continues. If iterative improvement appears to converge for one
or more of the solutions, then the covariance matrix is also computed (when N1 =n).
However, if iterative improvement fails for all the solutions Xi,...,Xo, then IERR is set to 7
and the covariance matrix is not computed.

Note. WK(1),...,WK(2%) should be examined when severe ill-conditioning is detected.

The Covariance Matrix. L2SLV computes the unscaled covariance matrix

0 0
Q _ JQ
0 C

defined in the section concerning the least squares subroutine LSEL

291

Programming. 12SLV employs the subroutines DECOM2,SOLVE2, SOLVE3, and COVAR.
These routines were written by Roy Wampler (National Bureau of Standards). L2SLV isa
slightly modified version by A. H. Morris of the subroutine L2B discussed in reference (4).
The algorithm employed for finding and iteratively improving the least squares solutions is
described in references (1)-(3). The function SPMPAR is also used.

References

(1) Bjorck, Ake, “Solving Linear Least Squares Problems by Gram-Schmidt Orthogonaliza-
tion,” BIT 7 (1967), pp. 1-21.

@) . “Iterative Refinement of Linear Least Squares Solutions I,” BIT 7
(1967), pp. 257-278.
3) . “Iterative Refinement of Linear Least Squares Solutions II,” BIT &

(1968), pp. 8-30.

(4) Wampler, Roy, “Solutions to Weighted Least Squares Problems by Modified Gram-
Schmidt with Iterative Refinement,” ACM Trans. Math Software 5 (1979), pp. 457~
465.

292

ITERATIVE LEAST SQUARES SOLUTION OF BANDED LINEAR EQUATIONS

Given an m X n matrix A, a column vector b of dimension m, and a real number A. Let
A= ({‘I) where 1 is the n X n identity matrix, and let b = (3) . The problem is to find a
column vector x of dimension.n which is a least squares solution of Ax =b If A is stored
in band form then the following subroutine is available for solving this problem.

CALL BLSQ(m,n,A ka,m,,m ,\,b,x,ATOL,BTOL,CONLIM JMXITER,
IND,ITER,COND,RNORM,XNORM,WK)

A is an m X n matrix stored in band form, m, the number of diagonals below the main
diagonal containing nonzero elements, and m, the number of diagonals above the main
diagonal containing nonzero elements. The argument ka is the number of rows in the
dimension statement for A in the calling program. It is assumed that 0 < m;, < m,
0<m <n, and ka = m, When BLSQ is called, an iterative procedure is used to obtain a
least squares solution x of Ax =b. The vector b is modified by the routine.

ATOL and BTOL are input arguments which specify the relative accuracy of Aand b
respectively. For example, if it is estimated that b is accurate to k decimal digits then one
may set BTOL = 107¥. Tt is required that ATOL = 0 and BTOL = 0. If ATOL =0 or
BTOL = 0, then it is assumed that A or b is accurate to machine precision.

Let cond(A) denote the condition number of A relative to the Frobenius norm.!
In each iteration of the algorithm being used, an estimate is made of the condition number
cond(A). The estimates form a monotonically nondecreasing sequence. The input argu-
ment CONLIM is an upper limit on cond(A). If CONLIM > 0 then BLSQ terminates when
an estimate of cond(A) exceeds CONLIM. This termination may be needed to prevent
small or zero singular values of A from coming into effect and causing damage to the
solution x. CONLIM may be ignored by being set to 0. It is assumed that CONLIM = 0.

The input argument MXITER is the maximum number of iterations that are permitted.
Normally BLSQ requires less than 4n iterations. The related argument ITER is a variable.
When the routine terminates ITER = the number of iterations that were performed.

COND, RNORM, and XNORM are xiariables. When BLSQ terminates COND = the last
estimate made for cond (A), RNORM = llAx — b/, and XNORM = lx|l.2

leond &) = la “F fla* “F where A ¥ is the pseudoinverse of A, Here "C"F = gcfj for any matrix C = (cij)'
el = \/E ci2 for any vector ¢ = (¢,C55...)-

293

The equations Ax — b are considered to be compatible if for any least squares solution
X, lAx — bl = 0. IND is a variable that reports the status of the results. When BLSQ
terminates, IND has one of the following values:

IND=0 The solution is x = 0. No iterations were performed.

IND =1 The equations Ax = b are probably compatible. A solution x has been

obtained which is sufficiently accurate, given the values ATOL and BTOL.

IND=2 The equations Ax = b are probably not compatible. A least squares

solution x has been obtained which is sufficiently accurate, given the
value ATOL.

IND=3 An estimate COND of cond(A) exceeds CONLIM. The vector x is the

most recent approximation of a solution for Ax = b.

IND =4 The equations Ax = b are probably compatible. A solution x has been

obtained which is as accurate as seems reasonable on this machine,

IND=5 The equations AX = b are probably not compatible. A least squares

solution x has been obtained which is as accurate as seems reasonable
on this machine,

IND=6 cond(K) appears to be so large that there is not much point in doing

further iterations. The vector x is the most recent approximation of a
solution for Ax = b.

IND=7 MXITER iterations were performed. More iterations are needed. The

vector x is the most recent approximation of a solution for Ax=D.

Remarks

(1) A large estimate of the condition number cond(A) may be due to rank deficiency or
near rank deficiency of the matrix A. If it is suspected that a large estimate of
cond(A) has occurred for this reason, then it is recommended that CONLIM be set
to a moderate value such as e~ % where e is the smallest value such thatl + € > 1
(e = 2-47 for the CDC 6000-7000 series computers). Setting CONLIM to O is equiv-
alent to setting CONLIM to e~1.

(2) The vector b is the only input argument modified by the routine.

Algorithm. BLSQ employs an iteration algorithm developed by Golub and Kahan.

Programming. BLSQ calls the subroutines NORMLZ, BVPRD1, BTPRD1, SCOPY, and
SSCAL. The function SNRM?2 is also used. BSLQ is an adaptation by A. H. Morris of the
subroutine LSQR, written by Christopher C. Paige (McGill University, Montreal, Canada)
and Michael A. Saunders (Stanford University).

References

(1) Paige, C. C. and Saunders, M. A., “"LSQR: An Algorithm for Sparse Linear Equations
and Sparse Least Squares,”” ACM Trans. Math Software 8 (1982), pp. 43-71.

(2) ——— , “Algorithm 583. LSQR: Sparse Linear Equations and Least Squares
Problems,”” ACM Trans. Math Software 8 (1982), pp. 195-209.

294

ITERATIVE LEAST SQUARES SOLUTION OF SPARSE LINEAR EQUATIONS

Given an m X n matrix A, a column vector b of dimension m, and a real number A. Let
A= (71:‘1) where 1 is the n X n identity matrix, and let b = (8) . The problem is to find a
column vector x of dimension n which is a least squares solution of Ax =b. If A is sparse

then the following subroutines are available for solving this problem.

CALL SPLSQ(m,n,A,JA,JA\,b,x,ATOL,BTOL,CONLIM,MXITER,
IND,ITER,COND,RNORM,XNORM,WK)

CALL STLSQ(m,n,TA,ITA,JTA\,b,x,ATOL,BTOL,CONLIM,MXITER,
IND,ITER,COND,RNORM,XNORM,WK)

If SPLSQ is called then A, IA, JA are arrays containing the matrix A in sparse form.
Otherwise, if STLSQ is called then TA, ITA, JTA are arrays containing the transpose matrix
Al in sparse form. An iterative procedure is used to obtain a least squares solution x of
Ax = b. The vector b is modified by the routines.

ATOL and BTOL are input arguments which specify the relative accuracy of Aand b
respectively. For example, if it is estimated that b is accurate to k decimal digits then one
may set BTOL = 10~K. 1t is required that ATOL = O and BTOL = 0. If ATOL =0 or
BTOL = 0, then it is assumed that A or b is accurate to machine precision.

Let cond(A) denote the condition number of A relative to the Frobenius norm.!
In each iteration of the algorithm being used, an estimate is made of the condition number
cond(A). The estimates form a monotonically nondecreasing sequence. The input argu-
ment CONLIM is an upper limit on cond(A). If CONLIM > 0 then the routines terminate
when an estimate of cond(A) exceeds CONLIM. This termination may be needed to
prevent small or zero singular values of A from coming into effect and causing damage
to the solution x. CONLIM may be ignored by being set to 0. It is assumed that CONLIM = 0.

The input argument MXITER is the maximum number of iterations that are permitted.
Normally the routines require less than 4n iterations. The related argument ITER is a variable,
When the routines terminate ITER = the number of iterations that were performed.

COND, RNORM, and XNORM are variables. When the routines terminate COND = the
last estimate made for cond (A), RNORM = lAx — bll, and XNORM = IIx 1.2

Yeond (&) = A& "l (red “l where AT is the pseudoinverse of A. Here "C“l- = \/chj for any matrix C = (cij)'

2 e = \/5 Ci2 for any vector ¢ = (cl,cz,...).

295

The equations Ax — b are considered to be compatible if for any least squares solution
x, IAx — bll= 0. IND is a variable that reports the status of the results, When the routines
terminate, IND has one of the following values:

IND=0
IND=1
IND =2
IND =3
IND=4
IND=5
IND=6
IND=7
Remarks

The solution is x = 0. No iterations were performed.

The equations Ax = b are probably compatible. A solution x has been
obtained which is sufficiently accurate, given the values ATOL and BTOL.
The equations Ax = b are probably not compatible. A least squares
solution x has been obtained which is sufficiently accurate, given the
value ATOL.

An estimate COND of cond(A) exceeds CONLIM. The vector x is the
most recent approximation of a solution for Ax = b.

The equations Ax = b are probably compatible. A solution x has been
obtained which is as accurate as seems reasonable on this machine.

The equations AX = b are probably not compatible. A least squares
solution x has been obtained which is as accurate as seems reasonable
on this machine.

cond(A) appears to be so large that there is not much point in doing
further iterations. The vector x is the most recent approximation of a
solution for Ax = b.

MXITER iterations were performed. More iterations are needed. The
vector x is the most recent approximation of a solution for Ax=b.

(1) A large estimate of the condition number cond(A) may be due to rank deficiency or
near rank deficiency of the matrix A. If it is suspected that a large estimate of
cond(A) has occurred for this reason, then it is recommended that CONLIM be set
to a moderate value such as e~ ”* where e is the smallest value such thatl + e > 1
(e = 2=47 for the CDC 6000-7000 series computers). Setting CONLIM to 0 is equiv-
alent to setting CONLIM to e~!.

(2) The vector b is the only input argument modified by the routine.

Algorithm. SPLSQ and STLSQ employ an iterative algorithm developed by Golub and Kahan.

Programming. SPLSQ and STLSQ call the subroutines NORMLZ, MVPRD1, MTPRDI,
SCOPY, and SSCAL. The function SNRM2 is also used. SPLSQ and STLSQ are adaptations
by A.H.Morris of the subroutine LSQR, written by Christopher C. Paige (McGill University,
Montreal, Canada) and Michael A. Saunders (Stanford University).

References

(1) Paige, C. C. and Saunders, M. A., “LSQR: An Algorithm for Sparse Linear Equations

(2)

and Sparse Least Squares,” ACM Trans. Math Sofrware 8 (1982), pp. 43-71.

, “‘Algorithm 583. LSQR: Sparse Linear Equations and Least Squares

Problems,” ACM Trans. Math Software 8 (1982), pp. 195-209.

296

MINIMIZATION OF FUNCTIONS OF A SINGLE VARIABLE

Let F(x) be a continuous real-valued function defined for a < x < b, Then the
following subroutine is available for finding a local minimum of F(x).

CALL FMIN(F,a,b,x,w, AERR,RERR,ERROR,IND)

It is assumed that a < b, FMIN finds a value x in the interval [a,b] which is a local
minimum of F. ERROR and w are variables. When FMIN terminates, w = F(x) and ERROR
is the estimated maximum absolute error of x.

The input arguments AERR and RERR are the absolute and relative error tolerances
to be satisfied. For example, if k significant digit accuracy is desired then one may set
RERR = 10~ k. It is assumed that AERR > 0 and RERR > 0. The setting AERR = Ois
equivalent to the setting AERR = 107 20 and the setting RERR = 0 is a request for machine
precision.

IND is a variable that reports the status of the results. When FMIN terminates, IND=0
if x was found to the desired accuracy. Otherwise, IND = 1 when the value obtained for x
could not be refined to the desired accuracy. In this case, w satisfies the tolerances AERR
and RERR.
Note. F must be declared in the calling program to be of type EXTERNAL.

Algorithm. The golden section search procedure is used.

Programming. The function SPMPAR is called. FMIN was written by A. H. Morris.

297

UNCONSTRAINED MINIMUM OF THE SUM OF SQUARES
OF NONLINEAR FUNCTIONS

Let f;(x),...,{y; (x) be m real-valued functions of n real variables x = (xp,...,X,) Where

m = n. The problem under consideration is to find a point x which minimizes the function
m

o(x) = .21 fi(x)z. Assume that each fj(x) is differentiable and that an initial guess a =
1:

(aj,-.-,ay) to a minimum of ¢(x) is given. Then the following subroutine is available for

finding a point which minimizes ¢(x).

CALL LMDIFF(F,m,n,X,FVEC,EPS, TOL,INFO,IWK, WK, %)

X is an array of dimension n and FVEC is an array of dimension m. On input X
contains the starting point a = (a,,...,a;). When LMDIFF terminates, X contains the final
estimate X = (Xy,...,X,) of a minimum of ¢ and FVEC contains the values of the functions
f,...,f, at the output point in X.

The argument F is the name of a user defined subroutine that has the format:
CALL F(m,n,X,FVEC,IFLAG)

Here X is an array of dimension n, FVEC is an array of dimension m, and IFLAG is an
integer variable. The array X contains a point x = (Xj,...,Xp)- Normally F will evaluate the
functions fi,...,f, at this point and store the results in FVEC. However, if x does not lie in
the domain of f;,...,f;, then this cannot be done. In this case, the argument IFLAG (which
will have been assigned a nonnegative value by LMDIFF) should be reset by F to a negative
value. This will signal LMDIFF to terminate. F must be declared in the calling program to
be of type EXTERNAL.

EPS is an input argument which specifies the relative accuracy of F. If it is estimated
that the subroutine F produces results accurate to k significant decimal digits then one may
set EPS = 10-k. It is required that EPS > 0. If EPS = 0 then it is assumed that F produces
results accurate to machine precision.

TOL is an input argument which specifies the desired accuracy to be attained. The
Euclidean norm [|x|| = Vv ?‘.,ixi2 is employed. If X denotes an actual minimum of ¢, then
LMDIFF terminates when an iterate x is generated for which it is estimated that

(1) ¢(x) <(1+TOL)*$() or

(2) IID(x-X)I <TOL- IDxI|
is satisfied. In (2) x and X are regarded as column vectors, and D is a diagonal matrix
generated by LMDIFF whose entries are scaling factors. For convenience, criterion (1) is
called the F-convergence (or ¢-convergence) test and criterion (2) is called the x-convergence
test. It is required that TOL = 0. In order for the convergence tests to work properly, it is
recommended that TOL always be smaller than 1075,

299

IWK is an array of dimension n and WK is an array of dimension 2. IWK and WK are
work spaces. It is assumed that the argument £ is greater than or equal to mn + 5n + m.

INFO is an integer variable that reports the status of the results. When LMDIFF
terminates, INFO will have one of the following values:
INFO < 0 This occurs when the user terminates the execution of LMDIFF by
resetting the argument IFLAG in the subroutine F to a negative value.
Then INFO = the negative value of IFLAG.
INFO = 0 (Input Error) Either] < n<m,EPS=>0,TOL=20,0or2=2mn+5n+m
is violated.

INFO = 1 The F-convergence test has been satisfied.

INFO = 2 The xconvergence test has been satisfied.

INFO = 3 Both the F-convergence and x-convergence tests have been satisfied.

INFO = 4 The gradient of ¢ is O at point X.

INFO = 5 The number of calls to the subroutine F has reached or exceeded
200(n + 1).

INFO = 6 TOL is too small. No further reduction in the value of ¢(x) is possible.

INFO = 7 TOL is too small. No further improvement in the accuracy of X is
possible.

When LMDIFF terminates, if INFO # 0 then X contains the final iterate that was generated.
Also, if INFO 2 1 then FVEC contains the values of the functions f,...,f;, at this iterate.
If INFO = 4 then X should be examined very closely. The gradient of ¢ can be 0 when X is
a local minimum or maximum, or when X is a saddle point. If INFO = 5 then it may (or
may not) be helpful to continue the procedure by recalling LMDIFF with the current point
in X as the new starting point. Since TOL is a relative tolerance, this setting can occur when

¢(0)=0.
Algorithm. A modified form of the Levenberg-Marquardt algorithm is employed.

Programming. LMDIFF is a slightly modified version of the MINPACK-1 subroutine
LMDIF1. The MINPACK-1 subroutines LMDIF, SPMPAR, ENORM, FDJAC2, LMPAR,
QRFAC, and QRSOLV are employed. The subroutines were written by Jorge J. More,
Burton S. Garbow, and Kenneth E. Hillstrom (Argonne National Laboratory).

References

(1) More, J.J., Garbow, B. S., and Hillstrom, K. E., User Guide for MINPACK-1, Argonne
National Laboratory Report ANL-80-74, Argonne, Illinois, 1980.

(2) More, J.J., “The Levenberg-Marquardt Algorithm: Implementation and Theory,”
Numerical Analysis, G. A. Watson (ed.), Springer-Verlag, 1977.

300

LINEAR PROGRAMMING

Let A = (g;) be an m X n matrix, B an array containing by,...,b,,, and C an array
containing cq,...,c, where aij,bi,cj are real. Consider the problem of finding nonnegative
values Xy ,...,X, which maximize or minimize the function ¢;x;+*** +c,X, subject to the
constraints:

ayx; + e tagx, {<,=,2>}b

AmiXp+ 00t FapX, {<, =, >} by,
In each constraint

aX; + 00t tagX, (<,=, 3}
only one of the relations <X, =, > is used, but the relation may vary from constraint to
constraint. The following subroutines are available for solving this problem.

CALL SMPLX(A,B,C,ka,m,n,IND,IBASIS, X,z ITER MXITER,
NUMLE NUMGE BI WK IWK)

CALL SSPLX(TA,ITA,JTA,B,C,m,n,IND,IBASIS, X,z ITER MXITER,
NUMLE,NUMGE BI WK IWK)

It is assumed that m > 2,n = 2, and that each bi> 0. If SMPLX is called then ka is
the number of rows in the dimension statement for A in the calling program. Otherwise, if
SSPLX is called then TA,ITA,JTA are arrays containing the transpose matrix At in sparse
form.

The constraints a;x; + ** +aX, {< ,=,>}b; are assumed to be ordered so
that the < constraints are followed by the = constraints, and the = constraints come last.
NUMLE and NUMGE have the values:

NUMLE = the number of < constraints

NUMGE = the number of 2 constraints
NUMLE and NUMGE must satisfy NUMLE > 0, NUMGE > 0, and NUMLE + NUMGE <m.

When SMPLX or SSPLX is called, the routine attempts to maximize Ej X subject to
the constraints. A modified form of the primal simplex algorithm is employed. Frequently
the procedure requires less than Sm iterations to perform the task. The argument MXITER
has the value:

MXITER = the maximum number of iterations that may be performed
This argument is provided by the user. The related argument ITER is a variable that is set
by the routine. When the routine terminates, ITER has for its value the number of itera-
tions that were performed.

301

IND is a variable and IBASIS an array of dimension m. IBASIS contains the indices i
of the current basic variables x,, and IND is used for input/output purposes. On input IND
is normally set by the user to 0. If IND = 0 then the routine selects its own beginning basis
and stores the appropriate indices in IBASIS. [The remainder of this paragraph may be
skipped by anyone not acquainted with the simplex algorithm.] If the user wishes to use
his own beginning basis, then IND must be set to 1 and the indices of the initial basic vari-
ables stored in IBASIS. It is not required that the initial basis be selected so that the basic
variables are nonnegative. The initial basic variables may be original, slack, surplus, or
artificial variables. Slack and surplus variables are automatically provided for the <and >
constraints, and artificial variables for the = constraints. The routine defines x_,; to be the
slack, surplus, or artificial variable for the ith constraint a X teerta X n{< ,=,>}bi. If
IND = 0 then the slack, surplus, and artificial variables are the initial basic variables that are
employed.

On output IND reports the status of the results. The routine assigns IND one of the
following values:
IND=0 The problem was solved.

IND=1 The problem has no solution.

IND=2 MXITER iterations were performed. More iterations are needed.
IND=3 Sufficient accuracy cannot be maintained to solve the problem.

IND=4 The problem has an unbounded solution.

IND=5 An input error was detected. (See below)

IND=6 A possible solution was obtained. The routine is not certain if the

solution is correct.
X is an array of dimension n+ NUMLE + NUMGE and z is a variable. If IND =0 or
IND = 6, then z has for its value the maximum value obtained for X, C;X; and X contains
the values obtained for the original, slack, and surplus variables. If IND # 5 then IBASIS
contains the indices of the basic variables currently in effect when the routine terminates.

BI is an array of dimension m? that is used for storing the inverse of the basis matrix.
The order of the column vectors of the basis matrix corresponds to the order of the basic
variables given in IBASIS. If IND # 3,5 on output then BI contains the inverse of the basis
matrix currently in effect when the routine terminates.

WK is an array of dimension 2m or larger, and IWK is an array of dimension 2m + n or
larger. WK and IWK are work spaces.

Input Errors. IND = 5 occurs on output when one of the following conditions is violated:

(1) n=z2andka=zm=2

(2) NUMLE + NUMGE <m

(3) Eachb; =>0.

(4) Tne basis matrix specified by the user in IBASIS (when IND =1 on input) is non-
singular and sufficiently well conditioned so that its inverse can be computed.

302

Remarks

(1) AB,C,TA,ITA,JTA are not modified by the routines.

(2) The routines maximize Z.c.x.. This function can be minimized by maximizing j(—cj)xj
and then changing the sign of the result,

(3) SMPLX and SSPLX generate the same results. For efficiency, SSPLX should be used
when A is sparse.

Algorithm. A three step procedure is used. The first step eliminates the negative variables.
Then phases (1) and (2) of the primal simplex algorithm are invoked. Negative variables are
eliminated as follows: Let xg,,...,x5 be the basic variables and Yij the components of the
simplex tableau.

(1) Compute dj = Ei'yij for each nonbasic variable x. where the sum Ei' is for all i where
xg; < 0. If all d.> 0 then the problem has no feasible solution. Otherwise, select k
so that d; = minj dj. Then X, is the variable to be made basic.

2) If Xpj > 0 and y;, > 0 for some j then go to (3). Otherwise, select a negative variable
Xp, to become nonbasic where xg,/y,, = max {xBj/yjk:xBj <0 and yji <0}. Then
update the basis and go to (5).

(3) Compute € = min {xBj/yjk:xBj>O and Yix >0} and check if a negative variable xg;
exists that satisfies the conditions:

(*) yjx <O0and € > xp;/yjx
If such a variable exists then go to (4). Otherwise, select a nonnegative variable xg, to
become nonbasic where y,;, > 0 and xg,/y,, = €. Then update the basis and go to (1).

(4) Select a negative variable x5, to become nonbasic where Xy, /¥, = max {Xp;/Vji: xp; <0
and xg; satisfies (*)}. Then update the basis and go to (5).

(5) Check if there are any remaining negative variables. If not, then we are finished.
Otherwise go to (1).

Programming. SMPLX and SSPLX employ the subroutines SMPLX1, SSPLXI1, and

CROUT1. These routines were written by A. H. Morris. The function SPMPAR is also
used.

Reference. Cooper, Leon and Steinberg, David, Methods and Applications of Linear Pro-
gramming, W.B. Saunders Co., Philadelphia, 1974,

303

THE ASSIGNMENT PROBLEM

Let C=(c,) be an n X n matrix (the cost matnx) The problem under consideration is

to find an n X n matrix x = (%) which minimizes T = Z _Z ¢..X.. and satisfies:

N =1 j=1 87

(nH 121 x..=1for1=1...n
3] 2 xJ=1for1=1

i=1
(3) Each X = Oorl

Each x which satisfies (1)~(3) is called an assignment. For each such x, from (1) and (3) we
note that for each j there exists a unique integer #(j) such that Xa(i).i = 1. Also, (2) and (3)
assert that m is a permutation of {1, } Conversely, for any permutatlon @ there cor-
responds an assignment x defined by X (). =1 and X5 = 0 for 1=f= 7(j). Thus, the problem is

to find a permutation 7 of {1,.. .,n} which minimizes T = E Caiiy i
i=1 ’

routine is available for solving this problem when all G are integers.

The following sub-

CALL ASSGN(n,C,JC,T,IWK,IERR)

C is a 2-dimensional integer array of dimension n X (n+ 1), JC an integer array of
dimension n, and T an integer variable. It is assumed that n 2 2 and that the first n columns
of C contain the cost matrix (cij). [The (n+1)% column of C is a work space for the
routine.] When ASSGN is called, the desired permutation 7 is obtained and the values
m(1),...,m(n) stored in JC. Also T is assigned the minimized value Ej Crlidii"

IWK is an array of dimension 7n + 2 or larger that is a work space for the routine.

IERR is a variable that is set by the routine. If JC and T are obtained then IERR is

assigned the value 0. Otherwise, if the problem cannot be solved because of integer over-
flow, then IERR = 1.

Remarks
(1) Cis destroyed by the routine.
(2) ASSGN minimizes T = Ec

Zj(C

MONE This function can be maximized by minimizing
(i) J) and then changmg the sign of the result.

Programming. ASSGN calls the subroutine ASSGN1. ASSGN1 was written by Giorgio
Carpaneto and Paolo Toth (University of Bologna, Italy), and modified by A. H. Morris.
The function IIMACH is also used.

Reference. Carpaneto, G., and Toth, P., “Algorithm 548, Solution of the Assignment Prob-
lem,” ACM Trans. Math Software 6 (1980), pp. 104-111.

305

FAST FOURIER TRANSFORM

Let n be a positive integer and 6 =2xj/n forj = O 1 - 1. For any complex-valued
functions f and g defined on the pomts 0 let (f,g) = E f(H) g(B) Then (f,g) is an inner
product when f and g are regarded as funct1ons defmed only on 6 Also e’ (G=0,1,..,n~-1)
form an orthogonal set of functlons where each eii® has norm \/_ n. Thus, if f is a function
that is approximated by f(8) = j§0 ¢ eli® then each =z (f(0),e‘3"). The mapping £(6,)~>¢,
given by

S =

C. =

ni:l f(ek) e—27rijk/n
J k=0

is called the discrete Fourier transform and its inverse
n-1
- 2wijk /n
f(()j) k§0 Cc €

the inverse discrete Fourier transform. The following subroutines are available for comput-
ing these transforms.

CALL FFT(C,n,2,IERR)
CALL FFT1(A,B,n 2 IERR)

Let G =g + ibj (G=0, 1,..,n-1) be the data to be transformed. If FFT is called then
C is a complex array containing Cg:CpsesCy g (Where C(j+ 1) = G for j <n). Otherwise,
if FFT1 is called then A and B are real arrays containing a; ,a, ,. a _,and b b bn_1

respectively.

The argument £ may have the values 1 or -1, and IERR is a variable. When FFT or
FFT]1 is called, if there are no input errors then IERR is set to O and

n-~1

T k2=30 ¢, exp (2mRijk/n)
is computed. The results 6‘] = ﬁj +iﬁj replace the original data ¢ = g +ibj in C (or
A and B).

Restrictions on the argument n. When FFT and FFT1 are called, n is factored by the routine
into its prime factors. It is assumed that the largest prime factor of n is <23. If n=p%n
where 1 is the square free portion of n, then it is further assumed that 1 <210 whenever 7 is
a product of two or more primes.

! Throughout this sectioni = /-1,

307

Error Return.

IERR =
IERR
IERR

"

IERR =

If an input error is detected then IERR is set as follows:

1
2
3

4

ifn<l1
if n has too many factors
if n has a prime factor greater than 23 or the

square free portion of n is greater than 210
ifR+£+1

The setting IERR = 2 can occur only when n > 4251528,

Remark. The complex array C is interpreted by FFT as a real array of dimension 2n.
If this association is not permitted by the FORTRAN being employed then use FFTL.

Programming. FFT and FFT1 are interface routines for the subroutine SFFT, which was
written by Richard C. Singleton (Stanford Research Institute).

Reference. Singleton, R. C., “An Algorithm for Computing the Mixed Radix Fast Fourier
Transform,” IEEE Trans. Audio and Electroacoustics, vol. AU-17 (1969), pp. 93-103.

308

MULTIVARIATE FAST FOURIER TRANSFORM

Let n,,...,n be positive integers, and for any J = (j;,....j_) where i,=0,1,..n -1
(v=1,..,m) let 6, denote the point (21rj1/n1 res 2 /nm). Also, for any complex-valued
functions f and g defined on the points 0y let (f,g) = z, f(6,) &(6,). Then (f,g) is an inner
product when f and g are regarded as functions defined only on 6. Also the functions
¢J(6)=exp(ij101)--'exp aj, 6™) form an orthogonal set where each ¢; has the norm
vny e nm.1 Thus, if f is a function that is approximated by f= X, c; ¢, then each
¢y = —%—_ (f.¢y). The mapping f(6;) > ¢, given by

nl' -

1

CJ - nlooanm

I 0) exp(-2mij k, ng)---exp(-2mij_k_ /nm)
is called the discrete multivariate Fourier transform and its inverse
f(6;) =Zgcy exp(2mij k,/n) exp(2mij_k_ /nm)
the inverse discrete multivariate Fourier transform. The sums X are forall K = (k, s K)

where k =0,1,...,n -1(v=1,..,m). The following subroutines are available for comput-
ing these transforms.

CALL MFFT(C,N,m,2,IERR)
CALL MFFT1(A,B,N,m,¢,IERR)

Let C; = a +ibJ be the data to be transformed where J = (j1 ,...,jm) for
i, =0, l,..,n, =1 (=1,.,m). If MFFT is called then C is a 1-dimensional complex array
containing the values c; (where ¢, = C(l +j, tjyn tignn, teectjongeeeny).
Otherwise, if MFFT1 is called then A and B are 1-dimensional real arrays containing the
data a; and b; respectively.

Note. 1f MFFT is used and m = 2 or 3, then instead of having to store the m-dimensional
data c; into a l-dimensional array C, the data may be stored in C where C is defined to
be an m-dimensional array. If m = 2 then C may be declared to be of dimension
n, X n,, in which case C(j; + 1, j, + 1) = ¢; for all J = (j1> Jp). Similarly, if
m = 3 then C may be declared to be of dimension n, X n, X ny, in which case

C@y + 1,43 +1,j3+1)=c¢y for all J =(j,j,,i3). Similar comments hold for A and
B if MFFT1 is employed.

N is an array containing the integers n,...,n_. The argument & may have the values
1 and -1, and IERR is a variable. When MFFT or MFFTI is called, if there are no input
errors then IERR is set to O and the transform

! Throughout this section i=+/-land@g = (8!,...,6™) denotes an arbitrary point.

309

A

C; = Zg Ckg exp (2n2ij k, /nl) ecexp (2nfij k| /n_)

is computed. The results 61 = SJ +il'5J replace the original data ¢; = a; +ib; in C (or A
and B).

Restrictions on the arguments n,...n_ . When MFFT and MFFTI are called, each n, is
factored by the routine into its prime factors. It is assumed that the largest prime factor of
n, is <23. If HV & uf n, where ﬁy is the square free portion of n , then it is further
assumed that n < 210 whenever n_is a product of two or more primes.

Error Return. If an input error is detected then IERR is set as follows:

IERR =1 if some n, <1

IERR = 2 if some n, has too many factors

IERR = 3 if some n, has a prime factor greater than 23 or the
square free portion of some n,, is greater than 210

IERR = 4 ifR+#+1

IERR =5 ifm<0

The setting IERR = 2 can occur only when some n, > 4251528.

Remark. The complex array C of dimension n;eeen is interpreted by MFFT as a real
array of dimension 2n1- en . If this association is not permitted by the FORTRAN being
employed then use MFFT]1.

Programming. MFFT and MFFT1 are interface routines for the subroutine SFFT, which
was written by Richard C. Singleton (Stanford Research Institute).

Reference. Singleton, R. C., “An Algorithm for Computing the Mixed Radix Fast Fourier
Transform,” IEEE Trans. Audio and Electroacoustics, vol. AU—17 (1969), pp 93-103.

310

DISCRETE COSINE AND SINE TRANSFORMS

Let n be a positive integer and 6, = (v + 1/2)w/n for »=0,1,...,n—1. For any real-
1
valued functions f and g defined on the points 6, let (f,g)= :7_‘;0 f(6)g(@,). Then (f,g)

is an inner product when f and g are regarded as functions defined only on 6,. Also
cosjf (j=0,1,..,n—1) form an orthogonal set of functions where cosjf has norm vn
when j=0 and norm y/n/2 when j> 1. Thus, if f is a function that is approximated by

1
f(0)=a, +2 nil 3 cos j@ then each a = % (f(8), cos j@). The mapping fe,) —~ 3 is called
F

the discrete cosine transform and its inverse a,~> f(6,) the inverse discrete cosine transform.

Alternatively, the functions sinjf (j =1,...,n) also form an orthogonal set where sin j@
has norm,/n/2 when j _] < n and norm vn when j=n. Thus if f is a function that is approx-

imated by f(8)=2 E b sinj0 +b_sinnf then each b = —(f(0) sin j#). The mapping

f@,) ~ b is called the d:screte sine transform and its inverse b — {(6) the inverse discrete
sine transform

The subroutines COSQB and COSQF are available for computing the discrete cosine
transform and its inverse, and the subroutines SINQB and SINQF are available for comput-
ing the discrete sine transform and its inverse. The subroutine COSQI provides information
that is needed for the cosine and sine transform routines.

CALL COSQI(n,WK)

WK is an array of dimension 3n+ 15 or larger that is a work space for the routines
COSQB, COSQF, SINQB, and SINQF, COSQI stores in WK information needed for the
Fast Fourier computation of the discrete cosine and sine transforms and their inverses.
A preliminary call must be made to COSQI before COSQB, COSQF, SINQB, and SINQF can
be used. After this preliminary call, COSQI need only be recalled when n is modified.

Programming. COSQI employs the subroutines RFFTI and RFFTI1. These routines were
written by Paul N. Swarztrauber (National Center for Atmospheric Research, Boulder,

Colorado).

CALL COSQB(n,X,WK)

X is an array of dimension n or larger. On input it is assumed that X contains the data
£(6,), f(Bl) »f(8 _)). When COSQB is called, 4na is computed and stored in X(j + 1) for
i=0,1,..,n-1.

311

WK is an array of dimension 3n+ 15 or larger that is a work space for the routine.
WK must be set up by the routine COSQI before COSQB can be used.

Programming. COSQB employs the subroutines COSB1, RFFTB, RFFTB1, RADB2, RADB3,
RADB4, RADBS5, and RADBG. These routines were written by Paul N. Swarztrauber

(National Center for Atmospheric Research, Boulder, Colorado).

CALL COSQF(n,X,WK)

X is an array of dimension n or larger. On input it is assumed that X contains the data
TN T When COSQF is called, f(8)) is computed and stored in X(v+ 1) for
v=0,1,.,n-1.

WK is an array of dimension 3n + 15 or larger that is a work space for the routine. WK
must be set up by the routine COSQI before COSQF can be used.

Example. Assume that X contains the data f(8,),..., f(8,_)- When the statements

CALL COSQI(n,WK)

CALL COSQB(n,X,WK)

CALL COSQF(n,X,WK)
are called, COSQB stores 4na,...,4na _; in X and COSQF then sets X(v +1) = 4nf(g,) for
v =0,1,....,n—=1. Thus, the terms of the original sequence X are multiplied by 4n.

Programming. COSQF employs the subroutines COSQF1, RFFTF, RFFTF1, RADF2,
RADEF3, RADF4, RADFS5, and RADFG. These routines were written by Paul N. Swarztrauber
(National Center for Atmospheric Research, Boulder, Colorado).

CALL SINQB(n,X,WK)

X is an array of dimension n or larger. On input it is assumed that X contains the data
f(GO),...,f(On_l). When SINQB is called, 4nbj is computed and stored in X(j) for j = 1,...,n.

WK is an array of dimension 3n + 15 or larger that is a work space for the routine. WK
must be set up by the routine COSQI before SINQB can be used.

Programming. SINQB calls the subroutine COSQB. SINQB was written by Paul N.
Swarztrauber (National Center for Atmospheric Research, Boulder, Colorado).

CALL SINQF(n,X,WK)

X is an array of dimension n or larger. On input it is assumed that X contains the data
b,,...,b,. When SINQF is called, f(@) is computed and stored in X(v + 1) forr=0,1,...,n-1.

312

WK is an array of dimension 3n + 15 or larger that is a work space for the routine. WK
must be set up by the routine COSQI before SINQF can be used.

Example. Assume that X contains the data b;,...,b,. When the statements
CALL COSQI(n,WK)
CALL SINQF(n,X,WK)

CALL SINQB(n,X,WK)
are called, SINQF stores f(GO),...,f(Gn_l) in X and SINQB then sets X(j) = 4nbj forj=1,..,n.

Thus, the terms of the original sequence X are multiplied by 4n.

Programming. SINQF calls the subroutine COSQF. SINQF was written by Paul N.
Swarztrauber (National Center for Atmospheric Research, Boulder, Colorado).

313

RATIONAL MINIMAX APPROXIMATION OF FUNCTIONS

Let a <b and g(x) be a continuous nonvanishing function on the interval [a,b]. For
any continuous function f(x), let (Ifll denote the weighted norm max {If(x)l/lg(x)l :
as<x < b}. Also let ¢(x) be a continuous strictly monotonic mapping on [a,b]. Then for
any nonnegative integers £ and m, the subroutine CHEBY is available for finding a rational
function

Po t P19(x) + = + poop(x)*

R(x) =
Qo t quP(x) + =+ + q,, p(x)™

which minimizes ||[R — f|l. The subroutine performs the calculations in double precision.
It is assumed that the error curve 8(x) = (R(x) — f(x))/g(x) satisfies [6(x)! = IR - £l at
precisely & + m + 2 critical points xy < x; <+*+<x,(n=2+m+ 1), and that 0(X;41) =
-8(x;) for each i <n.

CALL CHEBY (a,b,F,G,PHLe¢,ITER,MXITER, %,m,P,Q,
ERROR, IERR, WK)

The arguments a and b are double precision real numbers. F, G, and PHI are functions
whose arguments and values are double precision real numbers. The functions must be
declared in the calling program to be of types DOUBLE PRECISION and EXTERNAL.
The functions evaluate f(x), g(x), and ¢(x) respectively.

The argument € is a double precision tolerance that is supplied by the user. If A
denotes the estimated value of (IR - f|, then the routine converges when the error curve
6(x) satisfies A(1 - €) < 18(x;)l < A(1 + €) for each x;. Thus e specifies the relative agree-
ment that must be attained between [|f — R|| and the [6(x;)|. Normally the setting € = 104
will give satisfactory results. It is required that 0 < ¢ < 10-2 be satisfied.

The Remes-type algorithm designed by Cody, Fraser, and Hart is employed. This
algorithm normally requires less than 20 iterations. The argument MXITER = the maximum
number of iterations that may be performed. This argument is set by the user. The related
argument ITER is an integer variable that is set by the routine. When CHEBY terminates,
ITER will have for its value the number of iterations that were actually performed.

P is a double precision array of dimension £ + 1, Q a double precision array of dimen-
sion m + 1, ERROR a double precision variable, and IERR an integer variable. When
CHEBY terminates, if the rational function approximation R(x) has been obtained then
IERR is assigned the value 0 and ERROR is the estimated error |[R — f||. The coefficient
p; of the numerator-of R(x) is stored in P(i + 1) fori = 0,1,...,2, and the coefficient q; of
the denominator is stored in QG + 1) for j = 0,1,...,m. The coefficient qo will always
have the value 1.

315

Let k = 2 + m + 2. Then WK is a double precision array of dimension k(k +5) or
larger that is used for a work space.

Error Return. 1ERR is assigned one of the following values when the desired minimizing
rational function R(x) is not obtained.
IERR = 1 An input error was detected. Either 2 <0, m <0, e <0, ¢ = 10-2, or
g(x) = 0 for some point x.

IERR = 2 MXITER iterations were performed. More iterations are needed to obtain
R(x).

IERR = 3 The system of linear equations that define the coefficients p; and q; was
found to be singular. This indicates that for the current values of £ and
m, the numerator and denominator of R(x) may have common factors.

IERR = 4 A nonmonotonic sequence of critical points x; was obtained. Modify £
and/or m.

IERR = 5 The value of the error curve 8(x) at some critical point x; appears to be
too large. This indicates that R(x) may have poles, and that m (or
possibly a or b) may have to be modified.

IERR = 6 CHEBY completely failed to find (or roughly approximate) R(x). All

information in P, Q, and ERROR should be ignored.
If IERR = 2,3,4, or 5 then P and Q contain the coefficients of the most recent rational
function approximation R(x) obtained, and ERROR is an estimate of the error IR - fl of
the approximation.

Remark. The two most common weighting functions employed are g(x) = 1 and g(x) =
f(x). If g(x) = 1 then the absolute error is minimized in constructing R(x). If g(x) = f(x)
then the relative error is minimized.

Programming. CHEBY employs the subroutines CHEBY1, CERR, and DPSLV. These
routines were written by A. H. Morris. CHEBY, CHEBY 1, and CERR are slightly modified
translations of the ALGOL 60 procedures Chebychev, lineq, del, and surmis given in the
reference.

Reference. Cody, W.J., Fraser, W., and Hart, J. F., “Rational Chebychev Approximation
using Linear Equations,” Numerische Mathematik 12 (1968), pp. 242-251.

316

L, APPROXIMATION OF FUNCTIONS

For any continuous real-valued function f(x) defined on the interval [a,b], let IIfIIP
denote the L, norm defined by

lifll, = (2 IfCoP dx) /e if 0<p<oo
lIfll, = max{If(x)I : a <x <b} ifp = o

If p = oo then the norm is also known as the Chebychey norm. For any continuous function
f, 0 <p <o, and € >0, the subroutine ADAPT is available for finding a continuous piece-
wise polynomial function ¢ that satisfies ||f - qbllp <e.

CALL ADAPT (F,a,b,e, KNOTS,ERROR,XKNOTS,C,IERR,max,n,X,
ANORM, DX MO,m,XBREAK ,KDIFF,DLEFT ,DRIGHT)

It is assumed that the polynomials which form the approximation ¢ are of degree < 1.
The argument n must satisfy 1 <n <19, and IERR is a variable. When ADAPT is called, if
there are no input errors and ¢ is successfully constructed, then IERR is set to 0, a sequence
of points a = X, L vee <L X, < Xp+1 — bisselected, and ¢ takes the form

— . _ sse — n
o(x) = co ey (x x.)+ +cin(x xi) xi<x<xi+l

fori = 1,..,k. The points X)Xy 4q AT€ called the knots (or nodes) of ¢.

The argument max is the maximum number of polynomials that may be used in
forming ¢. KNOTS and ERROR are variables, XKNOTS an array of dimension max + 1
or larger, and C a 2-dimensional array of dimension max X (n+1). ADAPT stores the knots
Xy Xqp in the XKNOTS array and the coefficients Cig»-sGp 1N C(1,1),...,C(, n+1) for
i=1,.,k. The number k of polynomials actually generated always satisfies k < max.
ADAPT sets KNOTS to k +1 (the total number of knots), and ERROR is a rough estimate
of the error ||f - ¢ ||p actually obtained.

The argument ¢ specifies the degree of smoothness that the approximation ¢ must
satisfy. It is assumed that 0 <@ < 10 and n > 2Q. If £ = 0 then it is only required that ¢ be
continuous on the interval [a,b]. Otherwise, if 2> 1 then it is assumed that f is of class C¢
on [a,b] except at possibly a finite number of points (called break points), and it is required
that ¢ be of class C* on [a,b] except possibly at the break points.

The argument m specifies the number of break points of f, It is assumed that m < 20.
If m=0 then the arguments XBREAK,KDIFF,DLEFT, and DRIGHT can be ignored.
Otherwise, if m 21 then it is assumed that XBREAK ,KDIFF,DLEFT, and DRIGHT are
arrays of dimension m or larger, and that

317

XBREAK(i) = the it? break point, call it u,

KDIFF(i) = the smallest integer v, for which the V{h derivative of f does not exist
or is not continuous at u,

DLEFT(i) = the value from the left of the V;h derivative at u,

DRIGHT(#) = the value from the right of the v}h derivative at u,

fori=1,..,m. Itisalso assumed thata<u, <---<u <bandn> 2y, for each ;.

F is the name of a user defined function that has the value F(x,D) = f(x) foras<x <b.
If2=0 then D can be ignored. (However, D must still be given as an argument of F.)
Otherwise, if 221 then D is an array of dimension greater than or equal to £. For any x
not a break point in XBREAK, the user must set D(j) = the i derivative of f at x for
j < 0. However, if x = XBREAK(i) then the user need only set D(j) = the j' derivative of f
at x for j < KDIFF(i). The function F must be declared in the calling program to be of type
EXTERNAL.

The argument DX specifies the maximum distance to be permitted between the knots
x; and the argument ANORM specifies the norm to be used. Set

ANORN = £1.0 for L, approximation

ANORM = 220 for L, (least squares) approximation
ANORM = 3.0 for L., (minimax) approximation
ANORM = -p for Lp (0 <p < o) approximation

Before considering the argument MO, one should be briefly acquainted with how

ADAPT operates. ADAPT employs the following procedure to construct ¢.

(1) Setl = [a,b] and k = 0. Let a be the first knot of ¢.

(2) If the interior of I contains no break points then go to (3). Otherwise, it I = [c,d]
then partition I into the subintervals {¢c,u] and [u,d] where u is the smallest break
point greater than c¢. Stack the right subinterval fu.d] and reset I to [c.u].

(3) Construct a polynomial ¢, on I using Hermite interpolation. If the length of the
interval 1 is < DX and ¢, satisfactorily approximates f on I, then go to (4). Otherwise
go to (5).

(4) Setktobek+ 1. Let ¢, be the k'™ polynomial forming ¢ and let the right end point of
I be the (k + 1)st knot of ¢. If the interval stack is empty then the procedure is

finished. Otherwise, obtain from the stack the next interval I to be considered and
return to (2).

(5) The polynominal ¢; cannot be used. Partition I into halves, stack the right subinterval,
and reset [to be the left subinterval. Then go to (3).

318

The argument MO specifies the accuracy criterion that the approximation ¢ is to
satisfy on a subinterval I = [c,d] of [a,b]. It is assumed that MO = 0,1,2. If the L_, norm
is used then MO is ignored! and ¢ is required to satisfy |f(x) - o(x)| <eforc < x < d.
Otherwise, if the Lp (0 < p <o) norm is used then ¢ is required to satisfy:

-d d-c
| Ifx) - ¢(x)P dx < ¢ forMO =0
~C

_j’d If(x) = ()P dx < &P for MO

1l
[§]

The setting MO = 0, which is the most commonly used setting, requires the total error
||f-oll : < €. The alternate setting MO = 2 employs € to control local accuracy. If ¢ consists
of k polynomials then the total error ||f - gbllp < k!/Pe. This setting can be useful when f is
rough. A (heuristic) compromise strategy is provided when MO = 1. At each step in the
formation of ¢, the MO = 1 strategy estimates the total number of subintervals that will
finally be needed and adjusts the error requirement for the subinterval I accordingly. This
strategy attempts to keep the total error to a minimum while relaxing the local accuracy
criterion demanded by the MO = O setting.

Remarks. KNOTS, IERR, max, n, £, MO, m, and KDIFF are integer arguments. All other
arguments (including F) are double precision arguments.

Error Return. ADAPT assigns IERR one of the following values:

IERR = 0 The approximation was successfully constructed.

IERR = -1 Either a2 b or one of the arguments ¢, n, £, ANORM, MO, m was
assigned an incorrect value.

IERR = -2 [a,b] is too small an interval.

IERR = -3 DX is less than (b — a)/max. Since only max subintervals can be
used and each subinterval must be of length < DX, the interval
[a,b,] cannot be covered. Make DX or max larger.

IERR = -4 The restriction a<<u; <--*<u_ <b on the break points was
violated.

IERR = -5 Either KDIFF(i) <0 or KDIFF(@i) > (n- 1)/2 for some i.

IERR = 1 ADAPT selected max + 1 knots. More knots are needed to com-
plete the problem.

IERR = 2 A subinterval 1 = [c,d] must be partitioned into subintervals
[c,u] and [u,d] where u is a break point. However, this cannot be
done either because the interval stack is full, or partitioning will
produce too small an interval. (The stack can hold only 50
subintervals.)

IERR = 3 A subinterval must be partitioned because its length is greater than

DX. However, this cannot be done since the interval stack is full.
!However, it is still required that MO = 0,1,2.

319

If an input error is detected (i.e., if IERR <0) then no computation is performed.
Otherwise, if IERR =2 0 then when ADAPT terminates KNOTS = the number of knots
generated, XKNOTS contains the knots, C contains the coefficients of the polynomials
generated, and ERROR contains the error estimate for f-¢ over the interval covered.

IERR = 4 A subinterval must be partitioned so that the accuracy criterion
can be satisfied. However, this cannot be done either because
the stack is full, or partitioning will produce too small an

interval.

Remarks.

(1

(2)

(3)

Example. The following code can be used for approximating f(x) = e* on the interval

If the L., norm is used then e controls absolute accuracy, not relative accuracy. This

should be kept in mind when € is to be set for any Lp norm.

ADAPT requires more time when £ > 2 than when £ =0 or 1. However, the choice of
the norm normally has little effect on the efficiency of the routine.

ADAPT can yield excellent results even when the derivatives of f have singularities. The
one major exception is when the first derivative of f is not bounded. Then the routine

can be expected to fail.

[0,1].

DOUBLE PRECISION F, A, B, EPS, ERROR, ANORM, DX
DOUBLE PRECISION XKNOTS (11), C(10,20)
EXTERNALF

DATA MAX, A, B, DX/10, 0.D0, 1.DO0, 1.D0O/

N=8

L=1

EPS = 1.D-12
ANORM = 3.D0

CALL ADAPT(F,A,B,EPS , KNOTS , ERROR,XKNOTS,C,IERR,

N MAX,N,L,ANORM,DX,0,0)

Here F may be defined by:

DOUBLE PRECISION FUNCTION F(X,D)
DOUBLE PRECISION X,D(1)

F = DEXP(X)

D(1)=F

RETURN

END

320

In the ADAPT statement the arrays XBREAK, KDIFF, DLEFT, and DRIGHT have been
omitted since m = 0.

Programming. ADAPT employs the subroutines ADAPT1, ADSET, ADTAKE, ADCOMP,
NEWTON, ADCHK, ADPUT, ADTRAN and the functions ERRINT, POLYDD. These
routines exchange information in labeled common blocks. The block names are INPUTZ,
RESULZ, KONTRL, and COMDIF. The routines were written by John R. Rice (Purdue
University) and modified by A. H. Morris. The function DPMPAR is also used.

References

(1) Rice, J. R, “Algorithm 525. ADAPT, Adaptive Smooth Curve Fitting,” A.C.M. Trans.
Math Software 4 (1978), pp. 82-94,

2y | *“Adaptive Approximation,” J. Approx. Theory 16 (1976), pp. 329-337.

321

LINEAR INTERPOLATION

Let a be a real number and (x1 ¥y),...,(xn, yn) a sequence of points. The following
function performs a linear interpolation at point a.

TRP(a,n,X,Y)
It is assumed that n > 2 and x; <+** <x .XandY are arrays containing the abscissas
Xy X, and ordinates y, ...y, respectively. TRP (a,n,X,Y) = b where b is the value of the

interpolation at a.

Programmer. A.H. Morris

323

LAGRANGE INTERPOLATION

Let {(xi,y,-) = 1,...,n} be a set of n = 2 points where x; < *** <x,, m be an integer
where 2 < m < n, and X,,...,x;, be k = 1 points at which m point Lagrange interpolation
is to be performed. The subroutine LTRP is available for performing this interpolation.

CALL LTRP(m,X,Y,n, XLYLk,T,IERR)

X is an array containing Xx,...,X,, Y an array containing y,,...,y,, XI an array contain-
ing Xy,...,Xy, and YI an array of dimension k or larger. When LTRP is called, if no input
errors are detected then interpolation is performed at each)_cj and the result stored in YI(j)
forj=1,....k.

T is an array of dimension m or larger. The array is used as a temporary storage area
by the routine.

Error Return. 1ERR is a variable that is set by the routine. If no input errors are detected
then IERR is assigned the value 0. Otherwise, IERR is assigned one of the following values:
IERR =1 if m<?2
IERR =2 if m>n
IERR = 3 if k<1
When an error is detected LTRP immediately terminates.

1]

Algorithm. If X; = (X3 ¥+ Xj4n)/2 for some i, then (x;V;),...;(Xj4+m-1,Yi+m-1) are the
m data points used in the Lagrange interpolation at X j- Otherwise, the data points selected
for the interpolation are those m points (x;, y;) whose abscissas are closest to x T

Linear Interpolation. For m = 2, if the abscissae x; are not equally spaced then LTRP can
produce different results than the linear interpolating function TRP. If X; lies in the
interval [x;, x;+;) then TRP always uses the data points (x;,y;) and (X;j+1,¥;j+1) to find the
interpolated value at ij. However, the operation of LTRP is somewhat different. For
example, if the point X; in [x;, x;4+;) is closer to x;_; than to x;4;, then (x;_1,y;_;) and
(x;, y;) will be the data points employed in the interpolation. Thus, TRP will normally be
the procedure that will be desired for linear interpolation.

Programming. Developed by A.H. Morris. The portion of the code for finding the sub-
interval containing)_(j was written by Rondall E. Jones (Sandia Laboratories).

325

HERMITE INTERPOLATION

Let x;,...,x, be k = 1 distinct points, ny,...,n, be positive integers, andn=n;+ -+ + n.
Also given the data y;,V;,-.- (“l 1) for i = 1,...,k. Then there exists a unique n — | degree
polynomial p(x) which satlsfles

p(xi) = yl
P'(Xj) = Y;
(ﬂl—l)(x) — y(n|—1)

for each i = 1,...,k. The subroutine HTRP is available for obtaining this polynomial.

CALL HTRP(n,X,Y,A,WK,IERR)

X and Y are arrays of dimension n containing the following information: X(j) =X, for
j = 1,..n, and Y(1),...,Y(n) contain the values y .y l',...,yl("l—l). Fori= 2, k let
m =n +0e4n i 1 Then X(m +j)=x forj=1,.,n, and Y(m, + 1),...,Y(m, + n,) contain
the values /R AR AL R

A is an array of dimension n and IERR an integer variable. When HTRP is called, if no
errors are detected then IERR is assigned the value O and the coefficients a; of the poly-
o
nomial p(x) = a5 + ‘21 aj(x - X(1)) *++(x — X(j)) are computed and stored in A(j+ 1)
j=
forj=0,1,...,n— 1.

WK is an array of dimension n or larger that is a work space for the routine.

Error Return. If an error is detected then IERR is assigned one of the following values:

IERR = 1 The argument n is not positive.

IERR = 2 There exists integers i and £ for which X(i) = X(®) but X # X(j) for
some j where i < j < £. In this case, the values i and £ are stored (in
floating point form) in WK(1) and WK(2).

When an error is detected, the routine immediately terminates.

Example. 1f p(0) = 2, p(—1) = 1, and p'(—1) = 2 where x, = 0 and x, = —1, then HTRP
stores 2, 1, —1 in A. Hence, p(x) =2 + x — x(x + 1) is the desired polynomial .

n-1
Remark. The Newton representation ag + E aj(x~ X(1)) *+* (x - X(§)) of the polynomial
n-1
p(x) can be converted to the Taylor series representatlon 2 ¢j(x - caz)J by the subroutine
PCOEFF. y=0

Programmer. A.H. Morris
327

CONVERSION OF REAL POLYNOMIALS FROM NEWTON
TO TAYLOR SERIES FORM

n-1
Forn = 1 let p(x) = 35 + _21 aj(x—xl) s (X x5). Then for any real number «,
i= y

the subroutine PCOEFF is available for converting the polynomial p(x) to the Taylor series
n-1 .

form I c;(x- a).
j=o0

CALL PCOEFF(e,n,X,A,C,T)

X is a single precision real array containing Xy, ..., X,_1, A a single precision real array
containing ay, a, ..., a,_; where a; is stored in A(G+ 1) forj=0,1,..,n—1, and C a single
precision real array of dimension n or larger. When PCOEFF is called then the coefficients
c; of the Taylor series representation are computed and stored in C(j +1) forj=0,1,...,n- 1.

T is a double precision array of dimension n or larger. The array is a work space for
the routine. (The conversion of the coefficients is done in double precision.)

Note. A and C may reference the same storage area. If they do reference the same storage
area then the results c; will overwrite the input data a;.

Programmer. A.H. Morris

329

LEAST SQUARES POLYNOMIAL FIT

Let {(x y):i=1, m} be a set of m = 2 points where X, # X for i #j. Then for any
positive integer n where n < m, the subroutine PFIT is avaﬂable for obtaining the (unique)

nth degree polynomial p(x) = Z a.x} which minimizes E (p(x;) - yl)2

j=o0 !

CALL PFIT(n,m,X,Y,A,RNORM,PHI,WK,IERR)

X is an array containing X seeeXp s Y an array containing y, ...,y , and A an array
of dimension n + 1 or larger., RNORM and IERR are variables. When PFIT is called, if no

input errors are detected then IERR is set to 0, the coefficients 3 of p(x) are stored in
AG+ 1) forj=0,1,...,n,and RNORM is assigned the value \/Ei r(x;) - yi)z.

PHI is an array of dimension 2(n + 1) or larger, and WK is an array of dimension 4m
or larger. PHI and WK are work spaces for the routine.

Error Return. IERR=1ifn<] or n=2m

Algorithm. The abscissas x, are first mapped into values in the interval [—1,1]. Then
the Forsythe procedure is used.

Programmer. A.H. Morris

331

WEIGHTED LEAST SQUARES POLYNOMIAL FIT

Let {(xi,yi):i= 1,...,m} be a set of m > 2 points where x; # x; fori # j, and let

w; = 0(i= 1,...,m) be weights. It is assumed that m,, = 2 where my, is the number of non-

zero weights. For any positive integer n where n < mg,, the subroutine WPFIT is
n

available for finding the (unique) nt! degree polynomial p(x) = X ajxj which minimizes
m j=0
Z w0 -y

CALL WPFIT(n,m,X,Y,W,A,RNORM, PHI, WK,IERR)

X is an array containing X, ...,Xy,, Y an array containing y;, ...,¥p, W an array contain-
ing wy, ..., Wy, and A an array of dimension n + 1 or larger. RNORM and IERR are variables.
When WPFIT is called, if no input errors are detected then IERR is set to 0, the coefficients
a; of p(x) are computed and stored in A(j +1) for j=0,1,...,n, and RNORM is assigned
the value V'Z; wi(p(x;) — yp?.

PHI is an array of dimension 2(n + 1) or larger, and WK is an array of dimension 4m
or larger. PHI and WK are work spaces for the routine.

Error Return. IERR=1ifn<1 or n= m,, and [ERR = 3 if some w, is negative,

Algorithm. The abscissas x, corresponding to the positive weights are first mapped into
values in the interval [—1,1]. Then the Forsythe procedure is used.

Programmer. A. H. Morris

333

CUBIC SPLINE INTERPOLATION

Given x, Lo K X, A function f(x) is a cubic spline having the nodes (knots)
XX if f is a polynomial of degree <3 on the interval [x;, Xi+l] fori = 1,..,n-1, and
the first and second derivatives f'(x) and f"(x) exist and are continuous for all x. If f,
denotes the polynomial for the interval [x;, X, , | then f; has the form:

fi(x) =y, + ai(x —xi) +bi(x —xi)2 + ci(x - xi)3
Consequently, f is obtained by fitting the polynomials f1’""fn—1 together at the points
Xoy greesXp g+ For x < X, f(x) = f1 (x), and for x > X, f(x) = fn_l(x). Also f(xi) =y, for
i = 1,..,n-1. Hence, if f(xn) =Y, then f interpolates the points (xi, yi) fori = 1,..,n.

Assume now that the ordinates y,,....y ~are given. Then there exist an infinitude of
splines with nodes x Xy that interpolate the points (xi, yi). However, only one of these

1o
splines satisfies the conditions:
f"(xl) = ozf"(x2)+ﬁ loe} < 1
f"(xn) = af"(xn_1)+ﬁ ol <1

The following subroutine is available for obtaining this spline,

CALL SPLIFT(X,Y,DY,DDY ,n,W,JERR,MO,a,8,0,8)

X and Y are arrays containing the abscissas X ,....X| and ordinates y,,....y respectively.
It is assumed that x, <--+< x, and n=>4. DY and DDY are arrays of dimension n or
larger, and IERR is an integer variable. When SPLIFT is called, if there are no input errors
then 1IERR is assigned the value O, the first derivatives f'(xl),...,f'(xn) are computed and
stored in DY(1),..,DY(n), and the second derivatives f"(x,),...,f (x) are computed and
stored in DDY(1),...,.DDY(n).

W is an array of dimension 3n or larger that is used for a storage area. On the first call
to SPLIFT the argument MO must be set to 0. When SPLIFT is initially called, certain
calculations which depend only on the values of «, &, and XX, are performed and the
results stored in W. On subsequent calls to SPLIFT, if only the values of §, § and/or Yy
are modified, then the information in W need not be recomputed. Set MO = 1 and the
information in W will be reused.

Error Return. 1f there is an input error then IERR is set as follows:

IERR = 1 if |lal=or|lal=1
IERR = 2 itn < 4
IERR = 3 if the restriction X, Lo KL X, is not satisfied

335

Remarks

(D

(2)

After DY and DDY have been obtained, then either SCOMP1 or SCOMP2 may be used
to evaluate the spline at any point x. SEVAL] or SEVAL?2 may be used if derivatives
are also desired.

Given the values y'l and y;. Then there exists a unique interpolating cubic spline f that
satisfies f(x,;) =y} and f '(x_) = y,. This spline can be obtained by setting

a==a=-1/2and
3 Yo—¥1 .,
b= RS [xz_ Xy YI]

- -3 ¥n = ¥Yn-1 I}
B=— - -y, -
xn Xn—l Xn xn—l

Programmer. Rondall E. Jones (Sandia Laboratories).

336

WEIGHTED LEAST SQUARE CUBIC SPLINE FITTING

Let t, <---<t, be a sequence where £ > 2, {(xpy):i=1,..m} beasetof m >4
points where t, <x, <0 <x <y, and w,,...,.W be positive weights. Then the subroutine
SPFIT is available for obtaining a cubic spline f(x) with the nodes t, ,...,t, which minimizes

igl w, (f(x) - v,)%. This spline is represented by
= = Y _ ¢+
f(x) Z, + g (x tj) + bj (x tj) + ¢ (x tj)

fort, < x < tiy, G= 1,...,2 — 1). If the nodes are selected so that ¢ < m — 2 and each

interval (tj ,tj +1) contains a data point x, , then this least squares approximation is unique.
i

CALL SPFIT(X,Y,W,m,T,£,Z,A,B,C,WK,JERR)

X is an array containing X) seeesXp s Y an array containing YooY W an array con-
taining w,,...,.w_, and T an array containing t, ,...,t,. Z, A, B, C are arrays of dimension
2 — 1 or larger, and IERR is an integer variable. When SPFIT is called, if no input errors are
detected then IERR is set to 0. Also, the coefficients z;, &, bj, ¢ of the least squares
approximating spline f(x) are computed and stored in Z, A, B, C.

WK is an array of dimension 7% + 18 or larger that is a work space for the routine.

Error Rerurn. 1ERR is set to one of the following values when an input error is detected.
IERR=1 if8<2,
IERR=2 ift, << t, is not satisfied.
IERR=3 ifm=>4andt, <x, <--°<x <tyarenot satisfied.

If an error is detected, the routine immediately terminates,

Remark, After A, B, C, and Z have been obtained, then SCOMP may be used to evaluate
the spline at any point x. SEVAL may be used if derivatives are also desired.

Programming. SPFIT employs the subroutines BSPP, BSL2, BSPEV, BCHFAC, and
BCHSLV. SPFIT was written by A. H. Morris.

337

CUBIC SPLINE EVALUATION

Given x; < *** < x,. A function f(x) is a cubic spline having the nodes (knots)
Xy, ...,X, if f is a polynomial of degree <3 on the interval [x;, x;+,] fori=1,..,n—1, and
the first and second derivatives f'(x) and f"(x) exist and are continuous for all x. If
f; denotes the polynomial for the interval [x;, x;+,] then f; has the form:

£(x) = y; + a(x - x;) + by(x — x)? + ¢(x - x;)°

Consequently, f is obtained by fitting the polynomials f,...,f,_; together at the points
X35 s Xpo1- For x < x; f(x)=f{(x), and for x > x, f(x)= f,_;(x). Also f(x;) =y; for
i=1,.,n - 1. Hence, if f(x;) = y, then f interpolates the points (x;,y;) for i = L,...,n.

A cubic spline f given by the polynomials f;,...,f,_; is uniquely defined by any of the
following three sets of data:

(1) the points (x;, y;) and coefficients a;, b;, ¢; fori=1,...,n— 1

(2) the points (x;, y;) and first derivatives f'(x;) fori= 1,...,n

(3) the points (x;, y;) and second derivatives f"(x;) fori= 1,...,n
The subroutines SCOMP, SCOMP1, SCOMP2 are available for computing the spline at any
point x. SCOMP is used if data set (1) is given, SCOMP1 is used if data set (2) is given, and
SCOMP?2 is used if data set (3) is given. SCOMP is faster than SCOMP1, and SCOMP1 is
faster than SCOMP?2.

CALL SCOMP(X,Y,A,B,C,N,XI,YI,m,IERR)

Let N=n - 1. Then N is the number of polynomials f; that form the spline, X and Y
are arrays containing the abscissas x;,...,xy and ordinates y;,...,yN, and A, B, C are arrays
containing the coefficients a;, b;, c; (i = 1,...,N). It is assumed that N = 1 and that
X <o <Xy

Let X;,...,X,, be the points at which the spline f is to be evaluated. XI is an array
containing Xi,...,X;,, YI an array of dimension m or larger, and IERR a variable. When
SCOMP is called, if m < 1 then IERR is set to 1 and the routine terminates. Otherwise, if
m = 1 then IERR is set to 0 and f(¥;) is computed and stored in YI(j) forj=1,...,m.

Note. SCOMP does not require f to be a spline. It is only required that f;(x) be a cubic
polynomial y; + a;(x — x;) + by(x — x;)? + ¢;(x - x;)° and that

f(x) = f;(x) for x <x

f(x) = fi(x) for x; <x<x4; (A<i<N)

f(x) = fy(x) for x = xy.

In this case, SCOMP computes the value f(x;+) forj=1,...,m.

339

Programming. Adaptation by A.H. Morris of code written by Rondall E. Jones (Sandia
Laboratories).

CALL SCOMP1(X,Y,DY,n, XL, YI,m,IERR)

X, Y, DY are arrays containing the abscissas x;,...,X,, ordinates y,...,¥,, and first
derivatives f'(x;),...,f'(x,) respectively. It is assumed that n 2 2 and x; <*** <x,,.

Let X,,...,X,, be the points at which the spline f is to be evaluated. XI is an array
containing Xi,...,Xp,, YI an array of dimension m or larger, and IERR a variable. When
SCOMP1 is called, if m < 1 then IERR is set to 1 and the routine terminates. Otherwise, if
m = | then IERR is set to 0 and f(’ij) is computed and stored in YI(j) forj=1,...,m.

Programming. Adaptation by A.H. Morris of code written by Rondall E. Jones (Sandia
Laboratories).

CALL SCOMP2(X,Y,DDY,n,X1Y],m,IERR)

X, Y, DDY are arrays containing the abscissas x,...,X,, ordinates yy,...,y,, and second
derivatives f"(x,),...,f"(x,) respectively. It is assumed that n > 2 and x; < *** <x,.

Let X;....,X, be the points at which the spline f is to be evaluated. XI is an array
containing Xi,...,Xy, YI an array of dimension m or larger, and IERR a variable. When
SCOMP?2 is called, if m < 1 then IERR is set to 1 and the routine terminates. Otherwise, if
m 2> 1 then IERR is set to 0 and f(X;) is computed and stored in YI(j) forj = I,...,m.

Programmer. Rondall E. Jones (Sandia Laboratories)

340

CUBIC SPLINE EVALUATION AND DIFFERENTIATION

Given Xy Lo < X . A function f(x) is a cubic spline having the nodes (knots)
X1,..,X, if fis a polynomial of degree <3 on the interval [xi, xi+1] fori = 1,..,n-1, and
the first and second derivatives f'(x) and f'(x) exist and are continuous for all x. If f,
denotes the polynomial for the interval [X;, X;,,] then f; has the form:

f(x) = y;+a, (x-x)+b, (x- xi)2 +e; (x- xi)3
Consequently, f is obtained by fitting the polynomials f,,...f, _, together at the points
Xy seersXp _q Forx<x1 f(lx) = fl(x), and for x>xn f(x) = fn_l(x). Also f(x;) =, for
i = 1,..,n~1. Hence, if f(xn) =y, then f interpolates the points (xi, yi) fori = 1,..n.

A cubic spline f given by the polynomials f ,...,fn_1
following three sets of data:

(1) the points (x,, yi) and coefficients a, bi, ¢ fori = 1,..,n-1

(2) the points (x,,y;) and first derivatives f'(x;) fori = 1,..,n

(3) the points (x;, y.) and second derivatives f'(x,) fori = 1,.,n
The subroutines SEVAL, SEVAL1, SEVAL?2 are available for computing the spline and its
first and second derivatives at any point x. SEVAL is used if data set (1) is given, SEVAL1
is used if data set (2) is given, and SEVAL?2 is used if data set (3) is given. SEVAL is faster
than SEVALI, and SEVALL is faster than SEVAL?2.

is uniquely defined by any of the

CALL SEVAL (X.Y. AB.CN.XI1.YI.DYI.DDYI.m.IERR)

Let N = n- 1. Then N is the number of polynomials f; that form the spline, X and Y
are arrays containing the abscissas XXy and ordinates Yy ¥yo and A, B, C are arrays
containing the coefficients a;, b;, ¢; G = 1,...,,N). It is assumed that N => 1 and that

X, <'°°<xN.

Let X;,...,X,, be the points at which the spline f and its first two derivatives are to be
evaluated. XI is an array containing X,,...,Xy, YI, DYL, DDYI are arrays of dimension m
or larger, and IERR is a variable. When SEVAL is called, if m < | then IERR is set
to 1 and the routine terminates. Otherwise, if m > 1 then IERR is set to O and the
values f(X;), f'(%;), f"(%X;) are computed and stored in YI(j), DYI(j), DDYI(j) for
j=1,..,m.

Note. SEVAL does not require f to be a spline. It is only required that f;(x) be a cubic
polynomial y; + a;(x — x;) + by(x - x1)? + ¢;(x — x;)° and that

f(x) = fi(x) for x <x,

f(x) = fi(x) for x; <x<x54; (A<i<N)

f(x) = fy(x) for x = xy.
In this case, SEVAL computes the values f(ij+), f'()_(j 1), f"ch +) forj=1,...,m.

341

Programming. Adaptation by A.H. Morris of code written by Rondall E. Jones (Sandia
Laboratories).

CALL SEVALI1(X,Y,DY,n,XI,YI,DYI,DDYI,m,IERR)

X, Y, DY are arrays containing the abscissas X;,...,X,, ordinates y,...,y,, and first
derivatives f'(x,),...,f'(x,) respectively. It is assumed that n > 2 and x; < +*- <x,.

Let X,,...,X,, be the points at which the spline f and its first two derivatives are to
be evaluated. XI is an array containing X;,...,X,, YI, DYI, DDYI are arrays of dimen-
sion m or larger, and IERR is a variable. When SEVALI1 is called, if m < 1 then IERR
is set to 1 and the routine terminates. Otherwise, if m = 1 then IERR is set to 0 and
the values f(%;), f'(X;), f"(X;) are computed and stored in YI(j), DYI(j), DDYI(j) for
j=1,...,m.

Programming. Adaptation by A. H. Morris of code written by Rondall E. Jones (Sandia
Laboratories).

CALL SEVAL2 (X.Y.DDY n XILYLDYL.DDYI,m,JERR)

X, Y, DDY are arrays containing the abscissas b SN S8 ordinates Yy and second
derivatives f"(xl),...,f"(xn) respectively. It is assumed that n> 2 and X, <o <X

Let X;,...,x, be the points at which the spline f and its first two derivatives are to
be evaluated. XI is an array containing X1,5Xm»> YI, DYI, DDYI are arrays of dimen-
sion m or larger, and IERR is a variable. When SEVAL?2 is called, if m < 1 then IERR
is set to 1 and the routine terminates. Otherwise, if m = 1 then IERR is set to 0 and

the values f()_(j), f'(ij), f"(ij) are computed and stored in YI(j), DYI(j), DDYI(j) for
j=1,...,m.

Programmer. Rondall E. Jones (Sandia Laboratories)

342

SPLINE UNDER TENSION INTERPOLATION

Given real 0 and x, < *** <x,. A function f(x) is a spline having the tension factor o and
the nodes (knots) x,,...,x, if f(x) and its first two derivatives are continuous on [x,, x,], and
£"(x) - 2f(x) = ax + b; on the interval [x;,%;4,] fori=1,..,n-1. Here @ = |ol(n- 1)/
(X, - X,) and a;, b; are constants. For x; <x <x;, f(x) can be represented by

f(x) = A, sinh 3(x - x;) + By sinh 3(x;+; — x) - (&% + b;)/5?

when ¢ # 0, and by a cubic polynomial when ¢ = 0.

Assume now that n ordinates y,...,y, are given. Then there exist an infinitude of
splines f(x) having tension ¢ for which f(x;) =y; (i= 1,...,n). However, if values y; and
y. are given then only one of these splines will satisfy f'(x,) =y} and f'(x,) = y,. For
convenience, denote this spline by f,. If ¢ = O then it is clear that f, is the standard
cubic spline. Also it can be verified that when o = oo, f, converges uniformly on [x1,Xq]
to the piecewise linear function 2(x) where 2x) =y; + my(x — x;) for X; < X < X4
@i=1,...,n—1). Here m; = (yj+1 ~¥i)/(Xj+1 — X;). The following subroutine is available for
obtaining the spline f,.

CALL CURV1(n,X,Y,SLP1,SLPN,IND,DDY, TEMP,0,IERR)

X and Y are arrays containing the abscissas x;,...,X, and ordinates y;,....¥,. It is
assumed that n 2 2 and x| <+ <X,.

SLP! and SLPN are assigned the values y; and y,. The user may omit values for
either or both of these arguments. IND specifies the information that is provided.

IND = 0 Values are supplied for SLP1 and SLPN.

IND =1 A value is supplied for SLP1 but not for SLPN.

IND = 2 A value is supplied for SLPN but not for SLP1.

IND =3 Values are not supplied for SLP1 and SLPN.
If a value is not supplied by the user, then the routine provides a value.

DDY is an array of dimension n or larger, and IERR is an integer variable. When
CURV! is called, if no input errors are detected then IERR is assigned the value 0 and the
second derivatives f, (x;),...,f (x,) are computed and stored in DDY.

TEMP is an array of dimension n or larger that is used for a work space.
Error Return. 1ERR reports the following input errors:
IERR =1 if n<2

IERR = 2 if x; <-+* <X, is not satisfied
When either of these errors is detected then the routine immediately terminates.

343

Remarks .
(1) After DDY is obtained then CURV2 may be used to evaluate the spline at any point x.
(2) X,Y,n,SLPI, SLPN, IND, ¢ are not modified by CURV .

Programming. CURV1 employs the subroutines CEEZ, TERMS, and SNHCSH. CURV],
CEEZ, and TERMS were written by A.K. Cline and R.J. Renka (University of Texas at
Austin).

Reference. Cline, A.K., ““Scalar and Planar Valued Curve Fitting using Splines under
Tension,”” Communications ACM 17 (April 1974), pp. 218-220.

344

SPLINE UNDER TENSION EVALUATION

Given ¢ and x; < *** <x,. A function f(x) is a spline having the tension factor o and
the nodes (knots) x,...,x, if f(x) and its first two derivatives are continuous on [X, X,],
and f"(x) — 32f(x) = ax +b; on the interval [x;, X;4] fori=1,..,n~ 1. Here 3 = lel(n- 1)/
(x, — X;) and a;, b; are constants. If f(x) = f;(x) for x; < x < x;4, then f;(x) can be repre-
sented by

fi(x) = A, sinh G(x - x;) + B sinh 0(x;, 1 — x) ~ (a;x + b;)/7?

when ¢ # 0, and by a cubic polynomial when o = 0. For x <x; we let f(x) = f; (x), and for
X > x, we let f(x) =f,_; (x).

Assume now that f(x;) = y; for i = 1,...,n. Then for a fixed o, f(x) is uniquely defined
by the points (x;,y;) and the second derivatives f"(x;) (i =1,...,n). When this data is avail-
able, the following function may be used for computing the spline at any point t.

CURV2(t,n,X,Y,DDY,0)

X and Y are arrays containing the abscissas x;,...,x, and ordinates yy,...,¥p, and
DDY is an array containing the second derivatives f”(xy),...,f"(x,). It is assumed that
n>2and x; <+ <x,. CURV2(t,nX,Y,DDY,0) = f(t) for any real t.

Remark. After DDY has been obtained, CURV2 may be repeatedly called to evaluate the
curve at different points so long as the tension factor ¢ remains fixed. However, if o is
modified, then it should be emphasized that the derivative information in DDY will have to
be recomputed before CURV?2 can be used with the new tension factor.

Programming. CURV?2 employs the function INTRVL and subroutine SNHCSH. CURV?2
was written by A.K. Cline and R.J. Renka (University of Texas at Austin). INTRVL was
written by A. H. Morris.

Reference. Cline, A.K., “Scalar and Planar Valued Curve Fitting using Splines under
Tension,” Communications ACM 17 (April 1974), pp. 218-220.

345

DIFFERENTIATION AND INTEGRATION OF SPLINES UNDER TENSION
Let f(x) be a spline having the tension factor ¢ and the nodes x,...,X,. Assume that
f(x;) = y; for i = 1,..,n. If the second derivatives f"(xy),....f"(x,) are known then the

following functions may be used for differentiating and integrating the spline.

CURVD(t,n,X,Y,DDY,0)

X and Y are arrays containing the abscissas x,,...,x, and ordinates y,,...,¥,, and DDY
is an array containing the second derivatives f"(x),...,f"(x,). It is assumed that n > 2 and
x; < »*+ <x,. For any real t, the derivative { '(t) is computed and assigned to be the value
of CURVD(t,n, X, Y,DDY,0).

Programming. CURVD employs the function INTRVL and subroutine SNHCSH. CURVD
was written by A.K. Cline and R.J. Renka (University of Texas at Austin). INTRVL was
written by A. H. Morris.

CURVI(a,b,n,X,Y,DDY, 0)

X and Y are arrays containing the abscissas X,...,X, and ordinates y,,...,y,, and DDY
is an array containing the second derivatives f"(x,),...,f"(x,). It is assumed that n > 2 and

x; <+ <x, CURVI(a,b,n,X,Y,DDY,0) = f: f(t) dt for any real a and b.
Note. It is not required that a <<b.
Programming. CURVI employs the function INTRVL and subroutine SNHCSH. CURVI

was written by A.K. Cline and R.J. Renka (University of Texas at Austin). INTRVL was
written by A. H. Morris.

347

TWO DIMENSIONAL SPLINE UNDER TENSION CURVE FITTING

Given a sequence of points (Xq,V),...»(Xy, ¥n). One procedure for fitting a curve to
the points is to let sy =0 and §; = s_; + \/(xi - x_)+ (i~ ¥ij-,)* fori=2,..,n, and
then to find two splines x(s) and y(s) with tension o that satisfy x(s;) = x; and y(s;) =Y,
fori= 1,..,n. If ; and 6, are the desired angles for the curve s = (x(s), y(s)) at the points
(x1,¥1) and (xp, y,), then the splines x(s) and y(s) can be selected so that x'(s;) = cos; and
y'(s;) = sinf; for i = 1,n. The curve s > (x(s), y(s)) then passes through the points (x;, y;)
and has the required slopes at the end points. The subroutine KURV1 is available for
obtaining the second derivatives x"(s;), y"(s;) (i = 1,...,n) which characterize this curve, and
the subroutine KURV? is available for computing the curve.

CALL KURVI1(n,X,Y,SLP1,SLPN,IND,DDX,DDY,TEMP,S, ¢,IERR)

X and Y are arrays containing the abscissas X,...,x, and ordinates y,,...,y,. It is
assumed that n > 2 and that the points (x;,y;) are indexed in the order that they are to
be traversed by the curve. It is also assumed that (x;,y;) # (Xj+1,¥j+1) fori= L..,n—- L.

SLP1 and SLPN are assigned the values 6; and 6,. These angles are measured counter-
clockwise (in radians) from the positive x-axis. The user may omit values for SLP1 and/or
SLPN. IND specifies the information that is provided. '

IND = Q0 Values are supplied for SLP1 and SLPN.

IND = 1 A value is supplied for SLP1 but not for SLPN.

IND = 2 A value is supplied for SLPN but not for SLP1.

IND = 3 Values are not supplied for SLP1 and SLPN.

If a value is not supplied by the user, then the routine provides a value.

o is the tension factor to be employed. If |o| is small, say |o| < 10-3, then x(s) and
y(s) approximate cubic splines and the curve may be quite wavy. However, if |0l is large,
say |o| > 100, then the resulting curve will approximate the polygonal line from (xy,y;)
to (x4, ¥n)

IERR is an integer variable and S, DDX,DDY are arrays of dimension n or larger.
When KURVI is called, if no input errors are detected then IERR is assigned the value O
and the values s,..,s, are computed and stored in S. Also, the second derivatives

x"(s1),...,x"(sp) and y"(sy),...,¥"(s,) are computed and stored in DDX and DDY.

TEMP is an array of dimension n or larger that is used for a work space.

349

Error Return. 1ERR reports the following input errors:
IERR =1 ifn<2
IERR = 2 if (x{,y;) = (Xj+1,¥i+1) for some i
When either of these errors is detected then the routine immediately terminates.

Remarks
(1) After S, DDX, DDY are obtained then KURV?2 may be used to compute the curve.
(2) X,Y,n,SLPI,SLPN, IND, g are not modified by KURV1.

Programming. KURV1 employs the subroutines CEEZ, TERMS, and SNHCSH. KURV1,
CEEZ, and TERMS were written by A.K. Cline and R.J. Renka (University of Texas at
Austin).

CALLKURV2(t,XT,YT,n,X,Y,DDX,DDY,S,0)

X and Y are arrays containing the abscissas x,...,x, and ordinates y;,...,¥,, S is an
array containing s,,...,s;, and DDX and DDY are arrays containing the second derivatives
x"(s1);...,x"(sp) and y"(s;),...,¥"(s,).

Now consider the change of variables t = s/s,, and let t = (X(t), ¥(t)) denote the curve
in terms of the new parameter t. XT and YT are real variables. Forany 0 <t< 1, KURV2
computes the point (X(t), ¥(t)) on the curve and assigns XT the value X(t) and YT the
value ¥ (t).

Remark. After DDX and DDY have been obtained, KURV2 may be repeatedly called to
evaluate the curve at different points so long as the tension factor o remains fixed. How-
ever, if o is modified, then it should be emphasized that the derivative information in DDX
and DDY will have to be recomputed before KURV2 can be used with the new tension
factor.

Programming. KURV?2 employs the function INTRVL and subroutine SNHCSH. KURV2

was written by A.K. Cline and R.J. Renka (University of Texas at Austin). INTRVL was
written by A. H. Morris.

350

TWO DIMENSIONAL SPLINE UNDER TENSION CLOSED CURVE FITTING

Given a sequence of points (X;,¥1),...,(Xy, ¥5). One procedure for fitting a

closed curve to the points is to let s; = \/(xl %)% + (y; —y,)* and §; = s_; +
V(%= x;21)? + (¥; - y;-1)? fori=2,..,n, and then to find periodic splines x(s) and y(s)
with tension o that pass through the points (s, X;),...,(sy, Xp), (81 * 8y, X;) and (s1,¥1),---,
(8y> Yn)s (81 +85,¥1). The mapping s = (x(s), y(s)) then defines a closed curve that passes
through the points (x;,y;). The subroutine KURVP1 is available for obtaining the second
derivatives x"(s;), y"(s;) (i = 1,...,n) which characterize this curve, and the subroutine
KURVP2 is available for computing the curve.

CALL KURVP1(n,X,Y,DDX,DDY,TEMP,S,0,IERR)

X and Y are arrays containing the abscissas xi,...,X, and ordinates y,...,y,. It is
assumed that n > 2 and that the points (x;, y;) are indexed in the order that they are to be
traversed by the curve. It is also assumed that (x;,y;) # (Xj+1,¥j+1) fori=1,..,n- 1.

¢ is the tension factor to be employed. If |o| is small, say |g| < 10-3, then x(s) and
y(s) approximate periodic cubic splines and the curve may be quite wavy. However, if
|o| is large, say |o| > 100, then the curve will approximate the closed polygonal path that
traverses the points (x;, y;).

IERR is an integer variable and S, DDX, DDY are arrays of dimension n or larger.
When KURVPI is called, if no input errors are detected then IERR is assigned the value O
and the values s;,...,s, are computed and stored in S. Also, the second derivatives
x"(s1),...,x"(s,) and y"(s;),...,y"(s,) are computed and stored in DDX and DDY.

TEMP is an array of dimension 2n or larger that is used for a work space.

Error Return. 1ERR reports the following input errors:
IERR =1 ifn<?2
IERR = 2 if (xi,¥;) = (Xj+1,¥j+1) for some i
When either of these errors is detected then the routine immediately terminates.

Remark. After S, DDX, DDY are obtained the KURVP2 may be used to compute the
curve.

Programming. KURVP1 employs the subroutines TERMS and SNHCSH. KURVPI1 and
TERMS were written by A. K. Cline and R. J. Renka (University of Texas at Austin).

351

CALL KURVP2(t,XT,YT,n,X,Y,DDX,DDY,S,0)

X and Y are arrays containing the abscissas xp,...,X, and ordinates y;,...,¥,, S is an
array containing sy,...,8,, and DDX and DDY are arrays containing the second derivatives
x"(s1),...,x"(sy) and y"(s1),...,¥" (sp).

Now consider the change of variables t = (s — s;)/s,, and let t > (X(t), ¥(t)) denote the
mapping s = (x(s), y(s)) in terms of the new parameter t. Then t = (X(t),¥(t)) maps the
interval [0,1] onto the entire closed curve, taking both O and 1 into the point (x;,y;).
Also t = (X(t), ¥(t)) is a periodic function (with period 1).

XT and YT are real variables. For any real t, KURVP2 computes the point (X(t), ¥(t))
on the curve and assigns XT the value X(t) and YT the value ¥ (t).

Remark. After DDX and DDY have been obtained, KURVP2 may be repeatedly called to
evaluate the curve at different points so long as the tension factor o remains fixed. How-
ever, if ¢ is modified then it should be emphasized that the derivative information in DDX
and DDY will have to be recomputed before KURVP2 can be used with the new tension
factor.

Programming. KURVP2 employs the function INTRVL and subroutine SNHCSH. KURVP2

was written by A.K. Cline and R.J. Renka (University of Texas at Austin). INTRVL was
written by A. H. Morris.

352

THREE DIMENSIONAL SPLINE UNDER TENSION CURVE FITTING

Given a sequence of points (X;,¥;,2y),...,(Xp,¥,,2,). One procedure for fitting a curve
to the points is to let ;=0 and 5;=s;_; + V(% =%_1)2 + (% - ¥-1)? H(z;—7_)2 fori=2,..,n,
and then to find splines x(s),y(s),z(s) with tension o that satisfy x(s;) = x;, y(5,) =, and
z(s;) = z; for i = L..,n. If (x,y;,2)) and (x],y,,z) are the desired slopes for the curve
s =>(x(s),y(s),z(s)) at the points (x,y,,2,) and (x_,¥,,Z), then the splines x(s), y(s), 2(s)
can be selected so that x'(s) = x{, y'(s) =y, and z'(s) =z for i=1n. The curve
s > (x(s),y(s), z(s)) then passes through the points (%, ¥, 2) and has the required slopes at
the end points. The subroutine QURV1 is available for obtaining the second derivatives
x"(s),¥"(s;),2"(s;) (i = 1,...,n) which characterize this curve, and the subroutine QURV2 is
available for computing the curve.

CALL QURV1 (n,X,Y,Z,SLP1X,SLP1Y,SLP1Z,SLPNX,SLPNY,SLPNZ,
IND,DDX,DDY,DDZ, TEMP, S,0,IERR)

X, Y, and Z are arrays containing the x-coordinates Xx,,...,X, y-coordinates y,,...,¥, ,
and z-coordinates Z s 2y It is assumed that n = 2 and that the points (xi,yi,zi) are
indexed in the order that they are to be traversed by the curve. It is also assumed that
(X5 ¥;5 Z) # (Riyps Yier Ziat) fori=1,..,n-1.

SLP1X, SLP1Y, SLP1Z and SLPNX, SLPNY, SLPNZ are assigned the values x}, y},2;
and x,y,,z . The user may omit values for SLP1X, SLP1Y, SLP1Z and/or SLPNX, SLPNY,
SLPNZ. The argument IND specifies the information that is provided.

IND =0 Values are supplied for SLP1X, SLP1Y, SLP1Z and SLPNX, SLPNY,

SLPNZ.

IND =1 Values are supplied for SLP1X, SLP1Y, SLP1Z but not for SLPNX,
SLPNY, SLPNZ.
IND = 2 Values are supplied for SLPNX, SLPNY, SLPNZ but not for SLP1X,

SLP1Y,SLPIZ.
IND =3 No values are supplied for SLP1X, SLP1Y, SLP1Z and SLPNX, SLPNY,
SLPNZ.
If a value is not supplied by the user, then the routine provides a value.

o is the tension factor to be employed. If lol is small, say |ol <1073, then x(s), y(s),z(s)
approximate cubic splines. However, if || is large, say |o| > 100, then the resulting curve
will approximate the polygonal line from (Xv Y zl) to (xn, Yy 2o)

IERR is an integer variable and S, DDX, DDY, DDZ are arrays of dimension n or larger.
When QURV1 is called, if no input errors are detected then IERR is assigned the value
0 and the values $»-..,8, are computed and stored in S. Also, the second derivatives
x"(s,),¥"(s;),2"(s;) (i = 1,...,n) are computed and stored in DDX, DDY, DDZ.

353

TEMP is an array of dimension n or larger that is used for a work space.

Error Return. 1ERR reports the following input errors:

IERR = 1ifn<?2

IERR = 2if (X5 %35 2) = (K Vi Ziay) for sc.)me i . -
When either of these errors is detected, the routine immediately terminates.

Remark. X, Y, Z, n, SLP1X, SLP1Y, SLP1Z, SLPNX, SLPNY, SLPNZ, IND, and ¢ are not
modified by QURV1,

Programming. QURV1 employs the subroutines CEEZ, TERMS, and SNHCSH. QURVI,
CEEZ, and TERMS were written by A. K. Cline and R. J. Renka (University of Texas at
Austin).

CALL QURV2(t,XT,YT,ZT,n,X,Y,Z,DDX,DDY,DDZ,S,0)

X, Y, and Z are arrays containing the x-coordinates x,,...,X_, y-coordinates y,,...,¥,,
and z-coordinates z,...,z . S is an array containing s,,...,s and DDX, DDY, DDZ are
arrays containing the second derivatives x"(s,), y"(s;), 2'(s;) (i = L...,n).

Now consider the change of variables t = s/sn and let t—*(i(t),?(t),?(t))denote the
curve in terms of the new parameter t. XT, YT, ZT are real variables. For any 0 <t <1,

QURV?2 computes the point (X(t),y(t),z(t)) on the curve and assigns XT, YT, ZT the
values x(t),y(t),z(t) .

Remark. After DDX, DDY, DDZ have been obtained, QURV?2 may be repeatedly called
to evaluate the curve at different points so long as the tension factor ¢ remains fixed.
However, if ¢ is modified, then it should be emphasized that the derivative information
in DDX, DDY, DDZ will have to be recomputed before QURV2 can be used with the
new tension factor,

Programming. QURV?2 employs the function INTRVL and subroutine SNHCSH. QURV2
was written by A. K. Cline and R. J. Renka (University of Texas at Austin).

354

B-SPLINES

For k=1 let f(t)= (t —x)¥"! when t>x and f(t) = 0 when t < x. Then for any sequence
t <o St where t, <t,,,, let Blk(x) (o -t f[t 1+k] where f[t 1+k] is the
kth order divided d1fference of f(t). The function B ik i8 called a B-spline of order k. For
k =1 it follows that

| lft sx< t,
B,(x) =

0 otherwise

More generally, fork =2 B;, (x) =0 when K¢ [t,ty) Fort <x<t,

t. . k-1
B, (x) = <tl——t> when t, =<-= =t and

x-ti -1
B, (x) = T —t, when t = =t .

i+k
Otherwise, if no point appears more than k —1 times in the sequence {ti, to } then
-t g~
B, (x) = L_ B, (X) + —m—— B, .;(X).
ik ti+k-l = ti i,k-1 ti+k = ti+1 i+l k-1

From these relations it follows that B. k(x) > 0 when t <x < o Now let 51 L e K Er
be the distinct points m{t1 ot +k} where EJ appears mJ times for j=1,...,r. Then it can be
verified that B, isa polynomial of order <k (degree < k - 1) on each interval [E £ +1)
G=1,..,r=1), and that B, is of class Ck-™j! at gforj=1,.

We note in passing that if t(i= 0,+1,£2,..)is a sequence where t, <t and t,<t, .
for each i, then for any xe [t t+1), B, (x) # 0 only wheni=j -k + 1,.. ,_] Moreover it

can be verified that £.B,, (x) =1.

Now let & <+ < €., be a sequence of points, which we shall call knots or break
points. If £ = 2 then &,,...,§, will be called the interior knots. For each interior knot
E let there be associated an integer m. > 1, called the multiplicity of the knot. Then for

any k > max{m,,..,m }let t; < - <t (n=k+m,+ e +m) be any sequence
where
(1) t, <<t = ¢,
2) tk $1oees by are the interior knots, where each interior knot Ej appears exactly
m, times, and
(3) &b Tt S St

355

Otherwise, if € =1 then for k = 1 let t, S <t (n=k) be any sequence where
t, <<t =% and §, = tie S <t Then for 2 1, we note that B> By
are the only B-splines of order k which need not be 0 on the interval (t..t,4) Let
& [t,....t ,,1 denote the collection of all piecewise polynomials p(x) defined on the
interval [tk,tn+1) where p(x) is a polynomial of order < k (degree <k-1) on [Sj,£j+1) for
j=1,..,2, and p(x) is of class C¥"™j1 at each interior knot Ej where m, < k. Then by the
above remarks B,y s> By are in Q[tk,..,,tnﬂ]. Also it can be verified that B By

form a basis for the vector space & [tk,...,tn+1]. Thus any piecewise px(l)lynomial p(x)
in & t,...,t,,] can be represented uniquely in the form p(x) = 2, a B, (x) for

t, <x <t ,,. Thisrepresentation is called a B-spline representation for p(x).

356

PIECEWISE POLYNOMIAL INTERPOLATION

Fornzk=1llett <<= <t .. be a sequence where t. <t (fori=l.., n Further
assume that t, < 1;k+1 and t <t and consider a set of n pomts {(xl,y) g }where
LS x <o <x St . Then we wish to find a piecewise polynom1al f= 21 a, B, de-
fined on the interval [tk tn+l) which satisfies f(x;) =y, for i= Lo.,n [Ifx =t then by
f(x) =y, we mean f(x-) =y, .J This problem has a unique solutlon when X, <t
t, < X; < o for 1 <i<n, and X, >t . The following subroutine is available for obtaining

the coefficients g, of the interpolatmg piecewise polynomial.

CALL BSTRP(X,Y,T,n,k,A,WK,IFLAG)

X is an array containing X,,..., X, Y an array containing y,,..., ¥;, and T an array con-
taining t;,...,t 4. A is an array of dimension n or larger, and IFLAG an integer variable. On
an 1n1t1a1 call to the routine the user may assign IFLAG any nonzero value. In this case, if
no errors are detected then IFLAG is reset by the routine to 0 and the B-spline coefficients

a;,..,a are computed and stored in A. The routine may be recalled with IFLAG = 0 on
1nput when only Y is modified. In this case, no error checking is performed and IFLAG = 0
on output. Also the B-spline coefficients a,...,a of the new interpolating piecewise
polynomial are computed and stored in A.

WK is an array of dimension (2k—1)n or larger that is used for temporary storage
by the routine. When BSTRP terminates, WK contains information needed for subsequent
calls to the routine.

Error Return. IFLAG is assigned the value 1 if a violation of any of the conditions
X, Leee <X,
b S %<ty
t, <x; <t for 1<i<n
tn < 'xn < tn+1
is detected. When an error is detected, the routine immediately terminates.

Example. Given n > 4 data points (x;,), then for k = 4 one may set t; ==t =X,
teei = Xisa for i=1,...,n-k, and X, =t ==t Then Xgsems Xy 5 ATE the interior
knots for the interpolating piecewise polynomlal f. Here we have cubic spline interpolation

where the data points x, and x__, are not knots for f.

Selection of t e g Lok given the data (xl.,y,.). It is recommended that one set t; = ¢+ =
toand t ., =0 =t L. For k = 2 it is frequently convenient to select n — k points
in X,,...,x,_; to be the interior knots for f. (This was done in the above example.)
If k > 2 then an alternative approach, which often gives excellent results, is to set t_ . =
(X teest xi+k-1)/(k—1) fori=1,...,n-k.

357

Remark. After the B-spline representation Z,8,B,, is obtained, then the subroutine BSPP
can be used to obtain the Taylor series representation. The Taylor series representation is

what is normally used for evaluating piecewise polynomials.

Programming. BSTRP calls the subroutines BSPEV, BANFAC, and BANSLV. BSTRP is
a modified version by A. H. Morris of the subroutine SPLINT. The routines SPLINT,
BANFAC, and BANSLV were written by Carl de Boor (University of Wisconsin).

Reference. de Boor, Carl, A Practical Guide to Splines, Springer-Verlag, 1978.

358

CONVERSION OF PIECEWISE POLYNOMIALS FROM
B-SPLINE TO TAYLOR SERIES FORM

Forn=2k 21 let t,<eee <t ., beasequence where t,<t,, fori=1,..,n Further

i+k
n
assume that t < t . and let f(x) = i2=31 a;B, (x) for t<x< ter: If £1<"- <¢

the distinct points in the sequence {tk,...,tn+1} then the piecewise polynomial f can be

0+1 are

represented in the form f(x) = _21 c(x— Ej)i‘l for Ej <x< £j+1 (G =1,...,9. The following
l:

subroutine is available for obtaining the coefficients Ci of this representation.

CALL BSPP(T.A.n.k,BREAK.C,L ,WK)

T is an array containing ti ...t 4 and A an array containing a,....,a . BREAK is an
array of dimension £ + 1 or larger, C a 2-dimensional array of dimension k X €, and L a
variable. When BSPP is called then L is assigned the value € (which is computed by the
routine), the break points £, < <, +1 are found and stored in BREAK, and the coeffi-
cients ¢;; are computed and stored in C. The j® column of the matrix C then contains the
coefficients of the j™ polynomial forming f (j = 1,..., 2).

WK is an array of dimension k(k +1) or larger that is used for a work space by the
routine.

Remarks

(1) Since €< n-k+ 1, BREAK may be declared to be of dimension n —k + 2 and C to be
of dimensionk X (n—~k + 1).

(2) After C is obtained, then PPVAL may be used to evaluate f at any point x.

Programming. BSPP is a reformulation by A. H. Morris of the subroutine BSPLPP. written
by Carl de Boor (University of Wisconsin).

Reference. de Boor, Carl, A Practical Guide to Splines, Springer-Verlag, 1978.

359

PIECEWISE POLYNOMIAL EVALUATION
k .
Given X, <0 <X, andlet f be a piecewise polynomial where f(x) =i2=)1 cij(x - xj)“'1
for X <x< Xj4q (G =1,...,2). Then the following subroutine is available for computing f at

any point x.

CALL PPVAL (X,C,k,2,XI,YI,m)

X is an array containing the knots X5 Xg and C a k X £ matrix containing the coeffi-
cients ¢;;. It is assumed that k>1and £ > 1. Let X,,...,x_ be the points at which f is to be
evaluated. XI is an array containing X,,...,X_ and YI is an array of dimension m or larger.
When PPVAL is called, f (')Zj) is computed and stored in YI(j) for j=1,...,m.

Remarks

(1) X need not contain the knot x,, .

(2) It is not required that f be continuous at an interior knot x;. If x; appears in XI then
f(x;+) is computed.

(3) It is not required that the output points ij in XI be in the interval [x;,X,;).
If x <x, then Zc;(x - x; 31 is evaluated at X;. Otherwise, if X; > X, then
Z6(x = x, ¥l is evaluated at X;.

Programming. PPVAL is an adaptation by A. H. Morris of code written by Rondall E. Jones
(Sandia Laboratories).

361

WEIGHTED LEAST SQUARES PIECEWISE POLYNOMIAL FITTING

For n >k > 1let t; < »+» <t be asequence where t; <t;,, fori=1,..,n. Further
assume that t, < t,,; and t,<t,,,, and consider a set of points {(xi,yi): i= 1,...,m‘; where
te S X S eee <Xy Sty Letwy >0 3= 1,...,m) be weights Then the subroutine
BSL2 is available for fmdllgg a piecewise polynom1a1 f= E a;B;, defined on the interval
[t, t,+1) which minimizes E Wi (f(x) = Vi) 21

CALL BSL2 (T,n,k,X,Y,WGT,m,A,WK,Q,IERR)

T is an array containing t;,...,t,4,, X an array containing Xy,..., Xp, Y an array con-
taining yj,..., ¥y, and WGT an array containing wy,...,Wp,. A is an array of dimension n or
larger, and IERR an integer variable. When BSL2 is called, if no input errors are detected
then IERR is set to O and the B-spline coefficients a,,...,a, of the least squares approxi-
mation f are computed and stored in A.

WK is an array of dimension n or larger, and Q an array of dimension kn or larger.
WK and Q are work spaces for the routine.

Error Return. 1ERR is assigned the value 1 if any of the conditions
nzkz=1
tn < th+1
LSX S <X, Sty

is violated. When an error is detected, the routine immediately terminates.

Selection of t; * < ¢, given the data (x,y,). It is recommended that the knots t be
selected so that there are data points x; < s <K satisfying

t < %, < by !

t <xv<t for » = 2,...1n

If these conditions are satisfied then the least squares approximation is unique.

Remark. After the B-spline representation X;a;B;, of the least squares approximation is
obtained, then the subroutine BSPP can be used to obtain the Taylor series representation.
The Taylor series representation is what is normally used for evaluating piecewise poly-
nomials.

Programming. BSL2 calls the subroutines BSPEV, BCHFAC, and BCHSLV. BSL2 is a
modified version by A. H. Morris of the subroutine L2APPR. The routines L2APPR,
BCHFAC, and BCHSLV were written by Carl de Boor (University of Wisconsin).

Reference. de Boor, Carl, A Practical Guide to Splines, Springer-Veilag, 1978.

1 = P
If X tn+1 then by f(xi) we mean f(xi).

363

BI-SPLINES UNDER TENSION

Given a tension factor o and a set X = {xl,...,xm} where x; < *** <xp,. Let S, (X)
denote the collection of splines having tension o and the knots x;,...,Xy,. Then S;(X) is a
vector space. Also each spline f(x) in S, (X) is uniquely characterized by the values
£(%1),...,f(x,,) and the slopes f'(x;) and f'(xy). Let $;(x) (i=1,...,m) denote the spline in
S, (X) satisfying

Yixg) = 1

Yilx) =0 for k #i

Yikx)) = ¥i(xy) = 0
and let ¥, +1, Ym+p be the splines satisfying

Yma1 () =0 Ypnea(x) =0 (= L.,m)

W;n+1(x1) = W;n+2(x1) =0

Vi1 () = 0 Yhea(xpy) = 1. _

Then {¥q,...,¥m+2} is a basis for S,(X) and f = _21)Y+ XD VU1 T X)) Vin+2
i=

for each spline f(x) in S, (X).

Let Y = {yy,...,va} where y; < *** <y, and let {{,....¥542} be the corresponding

basis for S, (Y). Then we note that there exists an unique surface
m+2 n+2

F(x,y) = i§1 j§1 a5 ¥;(x) _lpj(Y)

in the tensor product space S, (X) ® S, (Y) which satisfies the conditions

F(x;,y;) = £(x3,¥;) i=1l..,m j=1.,n

D, F(x;,¥1) = Dy f(x5,¥1) } i=1..m

D, F(x;,) = Do f(x5,) T

DIF(XI’ Yj) = le(Xl,Yj) } i=1 N

D1F(xp,¥;) = Dif (X, ¥j) - .

DD, F(xy,¥e) = D1Dof (%, ¥) k=1,m £=1,n

for given data f(x;,y;), D, f(X;, ¥1),---D1 Dy f(%y, ¥o).1 Such a surface is called a bi-spline

with tension o. It is easily checked that the bi-spline F(x,y) has the following properties:

(1) F(x,y)is aC2 mapping on [xq,X,] X [y, ¥,]-

(2) The partial derivatives D%D% F(x,y) and D%D%F(x, y) exist and are continuous, and
D?D3F(x,y) = D3D?F(x, y).

(3) For each fixed y the mapping x > F(x, y) is a spline in S, (X), and for each fixed x the
mapping y = F(x,y) is a spline in S_(Y).

(*)

For a given tension factor o, let F, denote the unique bi-spline in S,(X)® S, (Y)
which satisfies conditions (¥). If 0 = 0 then F, is the standard bicubic spline. Also it can
be verified that when o = oo, F converges uniformly on [xy,Xn] X [y1,¥al to the piecewise
bilinear function £(x, y) where

' D F and D,F denote the partial derivatives of F.

365

Xi+1 — X Yj+1 = Y Xie1 ~X Y 7 Y
2 = f(x;,V; ir ¥
x,y) (xl,yj) Iy K + f(x1,Y,+1) hy k;

X = X; Yi+1 =Y oYY
+f(xi+1’Yj) h1 kJ + f(xi+1’Yj+1) hi kj

forxy SX < x4y and y; Sy <yj+;. Here h; = x5 — X4 and k; = yj+1 ~ ;-

366

BI-SPLINE UNDER TENSION SURFACE INTERPOLATION

Given X, Lo < x oand y, <+e¢ < ¥, Also assume- that we are given the values
z, (i=1,..,m;j=1,..,n) and a tension factor g. Then the subroutine SURF is available for
finding a bi-spline F(x,y) with tension ¢ that satisfies F(x,,y;) = Z; for each i,j. Boundary
conditions can be imposed on the surface F(x,y) if desired.

CALL SURF (m,n,X,Y,Z,kz,0PT,DDZ,WK,0,IJERR)

X is an array containing X;,..,X_, Y an array containing y;,...,¥,, and Z the m X n
matrix (zi.). The argument kz is the number of rows in the dimension statement for Z in
the calling program, It is assumed that m=>2,n=2, and kz=m.

OPT is an array, called the option vector, which permits the user to specify any
boundary conditions that are to be imposed on the surface. If no boundary conditions
are to be specified then OPT may be declared to be of dimension 1 and OPT(1) must be
assigned the value 0. The details concerning the specification of boundary conditions in
OPT are given below.

DDZ is a 3-dimensional array of dimension m X n X 3 and IERR is a variable. When
SURF is called, if no input errors are detected then IERR is assigned the value 0 and
the partial derivatives D F(x;,y,), D3F(x.,y)), DiDjF(x.,y)) (i = 1,..,m; j = 1...,n) are
computed and stored in DDZ. DDZ(i,j,1) = D%F(xi,yj), DDZ(i,j,2) = D%F(xi,yj), and
DDZ(i,j,3) = D} D F(x,,y,) for each i,j.

WK is an array of dimension m + 2n or larger that is used for a work space.

Error Return. 1ERR reports the following input errors:
IERR =1 ifm<2orn<?2
IERR =2 ifx, <eee<<x ory1<-°'<ynisnotsatisfied
IERR =3 if OPT contains an error.

When an error is detected, the routine immediately terminates.

Remark. After DDZ is obtained then SURF2 and NSURF2 may be used to evaluate the
bi-spline F(x,y).

The option vector OPT. 1f no boundary conditions are to be imposed then OPT may be
declared to be of dimension 1 and OPT(1) must have the value 0. Otherwise, OPT is an
array containing the information key,, data, key,, data,,..., key, data, 0. The last entry
in OPT is the value 0. Each group of data key,, data, (i =1,...,8) is called an option. Each
key, is an integer and data, a list of partial derivative values that the surface F(x,y) is
required to satisfy. The following options are available:

367

key = 1 The values D, F(x, ,yj) (j = 1,...,n) must be satisfied.
key = 2 The values DIF(xm,yj) (j =1,...,n) must be satisfied.
key = 3 The values D,F(x;,y,) (i = 1,...,m) must be satisfied.
key = 4 The values DzF(Xi,Yn) (i=1,...,m) must be satisfied.
key = 5 The value D, D,F(x,,y,) must be satisfied.
key = 6 The value D,D,F(x,,y,) must be satisfied.
key = 7 The value D, D, F(x,,y,) must be satisfied.
key = 8 The value D, D,F(x .y,) must be satisfied.

The order of the options in OPT is arbitrary. If an unrecognized key is used then the error
indicator IERR is assigned the value 3 and the routine terminates.

Example. Assume that we have an array DY! containing values D,F(x,,y;) (i = 1,...,m)
which are to be satisfied, and that we also want D, D,F(x_,y,) = —1.3 to be satisfied.
Then OPT must be of dimension 2 m + 4 and OPT can be defined as follows:

OPT (1)=3.0 (First option)
DOI0I=1M
10 OPT (I +1)=DYI(D)
OPTM +2)=8.0 (Second option)
OPTM+3)=-1.3
OPT(M + 4) =0.0 (Terminates the option vector)

Background. The evaluation of D%F(xi,yj), D%F(xi,yj), and D2D3F (x;,y;) reduce to the
evaluation of second derivatives of splines. Specifically, for each i < m D%F(xi,yl),...,
D%F(xi,yn) are the second derivatives that characterize the spline y-+F(x,,y), and for
eachj<n DfF(xi,y.),...,D%F(xm,y.) are the second derivatives that characterize the spline
x->F(x,yj). Also DID%F(xl,yj) and DID%F(xm,yj) (G = 1,...,n) are the second deriva-
tives that characterize the splines y—>D,F(x,;,y) and y—D,F(x_,y). For each j < m,
after one obtdins the values D%F(xi,yj) through which the spline x*D%F(x,yj) will pass
and the end slopes DID%F(xl,yj) and DngF(x m,yj) which this spline must have, then
the second derivatives that characterize this spline can be computed. D%D%F(xl,yj),...,
D%D%F (xm,yj) are the second derivatives that characterize x*D%F(x,yj).

Programming. SURF employs the subroutines CEEZ, TERMS, and SNHCSH. SURF was

written by A. K. Cline and R. J. Renka (University of Texas at Austin), and modified by
A. H. Morris.

368

BI-SPLINE UNDER TENSION EVALUATION

Given Xy Leoee K X and v <o <y, and let F(x, y) be a bi-spline with tension o.
If the part1al derivatives D2 F(x y) D? F(xl,y), DZD2 F(x;, y) are known fori=1,.
and j=1,...,n, then the functlon SURF2 may be used for evaluatlng F(x,y) at a s1ng1e
point, and the subroutine NSURF2 may be used for evaluating F(x, y) on a grid of points.

SURF2(s.t,m nX.Y,Z kz DDZ,0)

X is an array containing x,,...,x_, Y an array containing y,,...,¥, and Zanm X n
matrix containing the values F(x,, Y). The argument kz is the number of rows in the dimen-

sion statement for Z in the calhng program. It is assumed that m> 2, n= 2, and kz=2m.

DDZ is a 3-dimensional array of dimension m X n X 3 containing the partial derivatives
where
DDZ(l J; 1) = D2F(X1= Y_‘)
DDZ(G,j, 2) = D? 1F (x5 v7)
DDZ(,], 3) = DZD,F(x,, Vi)
foreachi,j. SURF2(s,t,m,n,X,Y,Z,kz, DDZ, ¢) = F(s, t) for any point (s, t).

Remark. After DDZ has been obtained, SURF2 may be repeatedly called to evaluate the
surface at different points so long as the tension factor o remains fixed. However, if o is
modified then it should be emphasized that the derivative information in DDZ will have to
be recomputed before SURF2 can be used with the new tension factor.

Programming. SURF2 employs the function INTRVL and subroutine SNHCSH. SURF2
was written by A. K, Cline and R. J. Renka (University of Texas at Austin).

CALL NSURFZ(smm,smax,ms, mins tmax> e, W, KW, m, 1,
o X,Y.Z kz,DDZ,WORK,0)

The arguments s in and s ax aT€ the lower and upper limits of the x-coordinates of the
grid on which F(x, y) is to be evaluated, and the arguments t mandt - oare the lower and
upper limits of the y=coordinates. The purpose of the routme 1s to evaluate the surface at
the points (Si’ tj) where

- (1) Jmax ~ Smin
$ = Spijn T (- 1) - m, — 1

tmax - tmin
n, — 1

-
!

i = tmin +(G-1)

fori=1,..,mgandj=1,.,n, Itisassumed thatmg>1andn, = 1.

369

W is a 2-dimensional array of dimension kw X n, where kw = m,, When NSURF2 is
called W(i, j) is assigned the value F(s;, t;) fori= I,..,mgandj=1,..,n.

The arguments m,n, X, Y,Z,kz, DDZ, ¢ are the same as in SURF2. WORK is an array
of dimension 4mg or larger that is used for a work space.

Programming. NSURF2 employs the subroutine SNHCSH. NSURF2 was written by
A K. Cline (University of Texas at Austin).

370

SURFACE INTERPOLATION FOR ARBITRARILY POSITIONED DATA POINTS

Let{(x;,v;,2):i=1,...,n } be a set of 4 or more points which are not collinear. If
(X, ¥;) # (x5,y;) for i # j then the problem is to find a smooth mapping z = F(x, y) for
which z; = F(x;,y;) fori= 1,...,n. The desired degree of smoothness might vary, but it is
almost always required that F(x, y) be at least continuously differentiable.

A procedure for constructing a smooth mapping F(x, y) generally contains the follow-
ing components:

(1) An algorithm for forming a triangular grid for the convex hull of {(x;, y;):i= L,...,n}.
The data points (x;, y;) are the vertices of the triangular cells of the grid.

(2) A procedure for estimating the first (and possibly higher order) partial derivatives of
F(x,y) at the data points (x;,y;). There is currently no known best method for per-
forming this task. At a point (x;,y;), it is agreed that the derivative estimation should
depend not only on z;, but also on z; for neighboring points (xj,yj). However, the
number of neighboring points that should be used in the derivative estimation is
normally unclear.

(3) For any point (x,y) in the grid, a routine for finding the triangular cell which contains
the point. If extrapolation is to be permitted, then the region outside of the grid must
be partitioned and a routine provided for locating any point which lies outside the grid.

(4) A smooth interpolating algorithm for evaluating F(x,y) on each triangular cell of the
grid. If extrapolation is to be permitted, then an algorithm must also be provided to
compute F(X,y) on each cell of the partitioned region outside of the grid.

Generally, the derivative estimation appears to be the most ad hoc portion of most smooth

interpolating procedures. This quite probably is unavoidable at the present time. However,

it is unfortunate since the manner in which the derivative estimation is performed can
significantly effect the results obtained from any interpolating procedure.

The subroutines BVIP and BVIP2 are available for obtaining a continuously differ-
entiable surface z = F(x, y) for which z, = F(x;,y) fori=1,.,n. Extrapolation is allowed,
and the user is permitted to specify (via the argument n) the number of neighboring points
to be used for derivative estimation. BVIP is used if F(x, y) is to be evaluated on an arbi-
trary collection of output points, whereas BVIP2 is applicable only if F(x,y) is to be
evaluated on a rectangular grid of output points. If BVIP is employed to evaluate F(x, y)
in a rectangular grid, then BVIP will produce the same results as BVIP2 but it will be less
efficient.

CALL BVIP(MO,n_.,n,X,Y,Z,m,XL,YL,ZI,IWK,WK,IERR)

X is an array containing X;,...,X,, Y an array containing y,...,y,, and Z an array
containing z,,...,z,. The input argument n_ is the number of neighboring points to be used
for derivative estimation. It is assumed that 2 < n, <n and n, <25. Currently no theory

371

is available for indicating how n, should be set. The only comment that can be made is
that setting n_ to 3, 4, or 5 normally produces satisfactory results.

It is assumed that F(x,y) is to be evaluated at the points (X;,¥;),...,(Xm, ¥ip)- Xl is an
array containing %,,...,X,,, YI an array containing ¥,,...,¥p, and ZI an array of dimension m
or larger. When BVIP is called, if no input errors are detected then F(X;,¥;) is computed
and stored in ZI(i) fori=1,...,m.

One may wish to recall BVIP a number of times to compute F(x,y) for different sets
of points. If recalls are needed then a portion of the information that is generated on the
first call to BVIP can frequently be reused. The reuse of information is controlled by the
input argument MO. MO must have the value 1 on the first call to BVIP. For subsequent
calls MO may be assigned the following values:

MO = 1 This setting must be employed when any of the data n_,n, X, Y is modified.

In this case, none of the previously generated information can be reused.

MO = 2 This setting may be used when n_,n, X, Y are not modified.

MO = 3 This setting is permissible when only Z is modified.

If MO # 1 then the contents of IWK and WK must not be altered.

IWK is an array of dimension kn + m or larger where k = max{31, 27+n, }, and WK is
an array of dimension 8n or larger. IWK and WK are storage areas for the routine.

Error Return. 1ERR is an integer variable. If no errors are detected then IERR is set to O.
Otherwise, IERR is assigned one of the following values:
IERR=1 MOisnotl, 2, or3.
IERR =2 Either 2 <n, <n or n, < 25 is violated.
IERR=3 n<4
IERR=4 m<1
IERR =5 Either n; or n has been modified. This cannot occur when MO # 1.
IERR = 6 The argument m has been modified. This cannot occur when MO = 3.
IERR =7 Points (x;,y;) and (x;,y;) are equal or are too close where IWK(1) =iand
IWK(2) =]j.
IERR =8 The points (x;,¥;,2;) (i=1,...,n) are collinear or almost collinear.
When an error is detected, the routine immediately terminates.

Remarks

(1) Accuracy may be lost due to roundoff error.

(2) The procedure is invariant under a rotation of the x-y coordinate system.

(3) The results are exact when F(x, y) represents a plane.

(4) Derivative estimation at a data point depends on points closest to the data point. Thus

the procedure is dependent on the scaling of the abscissae X; and ordinates y; of the
data points.

372

Programming. BVIP employs the subroutines IDTANG, IDCLDP, IDLCTN, IDPDRV,
IDPTIP and the function IDXCHG. The routines save and exchange information in labeled
common blocks. The block names are IDLC and IDPI. The routines were written by
Hiroshi Akima (Institute for Telecommunication Sciences, Boulder, Colorado). IDPTIP
was modified by Albrecht Preusser (Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin).

The error handling was modified by A. H. Morris.

References

(1) Akima, Hiroshi, “A Method of Bivariate Interpolation and Smooth Surface Fitting for
Irregularly Distributed Data Points,” ACM Trans. Math Software 4 (1978), pp. 148-159.

(2) Preusser, A., “Remark on Algorithm 526,” ACM Trans. Math Software 11 (1985),
pp. 186-187.

CALL BVIP2(MO,n_,n,X,Y,Z,4,m,XLYI,ZI,IWK, WK,IERR)

X is an array containing Xi,...,X,, Y an array containing y,,...,y,, and Z an array
containing z,,...,z,. The input argument n_ is the number of neighboring points to be used
for derivative estimation. It is assumed that 2 <n_, <n and n, < 25. Currently no theory is
available for indicating how n, should be set. The only comment that can be made is that
setting n; to 3, 4, or 5 normally produces satisfactory results.

It is assumed that F(x, y) is to be evaluated at (X;, Vj) fori=1,..,2and j=1,...,m.
XI is an array containing X;,...,X,, YI an array containing ¥4,...,Vn, and ZI a 2-dimensional
array of dimension X m. When BVIP2 is called, if no input errors are detected then
F(x;, ¥;) is computed and stored in ZI(j, j) fori=1,...,.8 and j = 1,...,m.

One may wish to recall BVIP2 a number of times for different grids (X;, 'yj). If results
are needed then a portion of the information that is generated on the first call to BVIP2
can frequently be reused. The reuse of information is controlled by the input argument MO.
MO must have the value 1 on the first call to BVIP2. For subsequent calls MO may be
assigned the following values:

MO = 1 This setting must be employed when any of the data n., n, X,Y is modified.

In this case, none of the previously generated information can be reused.

MO = 2 This setting may be used when n, n, X, Y are not modified.

MO = 3 This setting is permissible when only Z is modified.

If MO # 1 then the contents of IWK and WK must not be altered.

IWK is an array of dimension kn + 2m or larger when k = max{31, 27 + n.}, and WK
is an array of dimension 5n or larger. IWK and WK are storage areas for the routine.

Error Rerurn. TERR is an integer variable. If no errors are detected then IERR is set to O.
Otherwise, IERR is assigned one of the following values:

IERR =1 MOisnotl, 2, or3.

IERR = 2 Either 2<n. <norn, <25 is violated.

IERR =3 n<4

373

IERR = 4 Either 8<<1orm <1.

IERR = 5 Either n; or n has been modified. This cannot occur when MO # 1.

IERR = 6 Either £ or m has been modified. This cannot occur when MO = 3.

IERR = 7 Points (x;, y;) and (xj, yj) are equal or are too close where IWK(1) =i
and IWK(2) =j.

IERR = 8 The points (x;, y;, z;) (i = 1,...,n) are collinear or almost collinear.

When an error is detected, the routine immediately terminates.

Remarks

(1) Accuracy may be lost due to roundoff error.

(2) The procedure is invariant under a rotation of the x-y coordinate system.

(3) The results are exact when F(x, y) represents a plane.

(4) Derivative estimation at a data point de_‘ends on points closest to the data point. Thus
the procedure is dependent on the scaling of the abscissae x; and ordinates y; of the
data points.

Programming. BVIP2 employs the subroutines IDTANG, IDCLDP, IDGRID, IDPDRYV,
IDPTIP and the function IDXCHG. The routines save and exchange information in a
labeled common block named IDPI. The routines were written by Hiroshi Akima (Institute
for Telecommunication Sciences, Boulder, Colorado). IDPTIP was modified by Albrecht
Preusser (Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin). The error handling was
modified by A. H. Morris,

References

(1) Akima, Hiroshi, “A Method of Bivariate Interpolation and Smooth Surface Fitting for
Irregularly Distributed Data Points,” ACM Trans. Math Software 4 (1978), pp. 148-159.

(2) Preusser, A., “Remark on Algorithm 526, ACM Trans. Math Software 11 (1985),
pp. 186-187.

374

WEIGHTED LEAST SQUARES FITTING WITH POLYNOMIALS OF N VARIABLES

Let { (xl(i),...,xn(i)) :i=1,.,2} be aset of & distinct points, Z,,...,2, be the corre-
sponding function values to be approximated, and W, e Wy be positive weights. Then for
any nonnegative integer IDEG where ("*!DEG) < @,! the subroutines MFIT and DMFIT are
available for obtaining the coefficients of the unique polynomial F(x, ,...,x) of degree IDEG

which minimizes _%1 w,[F(x,®,x @) — 2]2, Also, the subroutines MEVAL and

DMEVAL are available for computing this polynomial, MFIT and MEVAL vyield single
precision results, and DMFIT and DMEVAL yield double precision results.

CALL MFIT(n,IDEG,m,2,X,kx,Z,W,R,IERR,IWK,WK LIWK,LWK,
MIWK,MWK)

CALL DMFIT(n,IDEG,m,%,X kx,Z,W,RJERR IWK,WK,LIWK,L WK,
MIWK ,MWK)

It is assumed that n > 1 and £ > 1. X is an £ X n matrix whose ith row contains the
point (x,,.x W), ie., X(1,j) = xj(i) fori=1,..,2 and j = 1,...,n. The argument kx is the
number of rows in the dimension statement for X in the calling program. Z is an array
containing Zy peeesy and W an array containing w,,...,w,. X and Z are modified by the
routine,

Remark. For IDEG > 0, ("*IDEG) polynomials 1,x,,....x, ’X12 XX, ... are needed for a
basis of the space of polynomials of degree <X IDEG. The basis polynomials are ordered.
For k > 1, the degree k — 1 basis polynomials precede the degree k polynomials, The

degree k basis polynomials are X; .--X; where 1 <i <+ <i <n. Forany two such

1k

polynomials X, .--x, and X; X let r be the smallest integer such that i # j . Then
1 'k k

X, --X. precedes x, ...x. wheni < j.
iy i § § T T

IDEG and m are variables. If IDEG > 0 then the routine attempts to obtain the
polynomial F(x,,...,x) of degree IDEG which is the best least squares fit. Otherwise,
if IDEG < 0 then it is assumed that m > 1 and that the first m basis polynomials are to be
used to obtain the least squares fit. When the routine terminates, IDEG = the degree of the
polynomial F(x, ,...,xn) obtained and m = the number of basis polynomials that are actually
used.

R is an array of dimension £ or larger. R(i)=z — F(xl(i),...,xn(i)) fori=1,...,2 when
the routine terminates.

1 N
(15) —1and (1;)= w fori=1.2,.
1!

375

IWK is an array of dimension LIWK and WK an array of dimension LWK. When the
routine terminates, IWK and WK contain the information needed for computing the poly-
nomial F(x,,....x_). Sufficient storage for IWK and WK can be assured by setting LIWK
and LWK as follows: If IDEG > 0 then let N = min {2, (n”IPEG)} and § = IDEG. Otherwise,
if IDEG < 0 then let N = m and 8 be the smallest nonnegative integer such that (ﬂl’;5)= m.
Then set

LIWK = 4N + én

LWK>2N+n+ 1+ON+2(N— DN - 2),
N is the maximum number of basis polynomials that will be used, and § is the degree of the
polynomial F(xy%,) if N basis polynomials are used.

MIWK and MWK are variables. MIWK is set by the routine to the dimension needed
for IWK, and MWK is set to the dimension needed for WK. MIWK and MWK depend only
onn, £, IDEG, and m.

If MFIT is called then X, Z, W, R, and WK are single precision real arrays. Qtherwise,
if DMFIT is called then X, Z, W, R, and WK are double precision arrays.

IERR is a variable that reports the status of the results, When the routine terminates,
IERR has one of the following values:

IERR =0 The desired polynomial was obtained,

IERR = —1 Not all the basis polynomials could be used. IDEG is the degree of the
polynomial obtained. This setting occurs when the problem is not solvable
or is too ill-conditioned for the requested degree.

IERR=1 Only ¢ basis polynomials were used. A polynomial F(xl ,...,xn) was
obtained which solves the equations F(xl(i),..,,xn(i)) =z fori=1,..2

IERR=2 (Inputerror) IDEG<0and m <0,

IERR=3 (Inputerror) n< 1 or ¢£<1.

IERR =4 (Input error) LIWK or LWK is too small. Set LIWK > MIWK and
LWK = MWK,

When an input error is detected, the routine immediately terminates.

Remark. When IERR < 1 then MEVAL or DMEVAL may be used to compute the poly-
nomial obtained.

Algorithm. The revised Gram-Schmidt orthogonalization procedure is used.

Programming. MFIT employs the subroutines ALLOT, BASIZ, MTABLE, GNRTP, INCDG,
SCALPM, SCALDN, and DMFIT employs the subroutines ALLOT, BASIZ, MTABLE,
DGNRTP, DINCDG, DSCALP, DSCALD. MFIT and DMFIT are modifications by
A. H. Morris of CONSTR, written by Richard H. Bartels (University of Waterloo) and
John J. Jezioranski (Ontario Cancer Institute).

376

References

(1) Bartels, R, H and Jezioranski, J. J., “Least Squares Fitting using Orthogonal Multi-
nomials,” ACM Trans. Math Software 11 (1985), pp. 201-217.

2) , “Algorithm 634, CONSTR and EVAL: Routines for Fitting Multi-
nomials in a Least Squares Sense,”” ACM Trans. Math Software 11 (1985), pp. 218-228.

CALL MEVAL(n,KDEG,Iﬁ,'E,XI,kxg,ZI,IND,IWK,WK,LIWK,LWK,T)
CALL DMEVAL(n,KDEG,m,% X1 kxi,ZI,IND,IWK,WK,LIWK,LWK,T)

MEVAL (DMEVAL) computes the polynomial obtained by MFIT (DMFIT), or a
portion thereof, Let IDEG and m be the output values given by MFIT (DMFIT).

The argument m is a variable, If KDEG < 0 then it is assumed that 1 < m < m and
that the polynomial using the first m basis polynomials is to be computed. In this case,
the polynomial computed is the best least squares fit for the basis polynomials involved.

If KDEG = 0 then it is assumed that KDEG < IDEG. In this case, when the routine
terminates, m = the number of basis polynomials used, If m < m (which will be the case
when KDEG < IDEG), then the polynomial computed is the polynomial of degree KDEG
which is the best least squares fit.

Usage. If IERR = = 1 when MFIT (DMFIT) terminates, then the setting KDEG = IDEG
normally causes an error to occur since m > m, Hence, if it is desired that the full poly-
nomial obtained by MFIT (DMFIT) be computed, no matter whether the value for IERR
is 0 or ¢ 1, then KDEG should be assigned a negative value and m = m,

It is assumed that the polynomial is to be computed at the points (x,V,...x (V) for
i=1,.% XIisan ¢ X n matrix whose i row contains the point (X,,...x 7). The
argument kxi is the number of rows in the dimension statement for XI in the calling
program, ZI is an array of dimension ? or larger, When the routine terminates, ZI(i)
contains the value of the polynomial at the point (il(i),...,in(i)) fori= 1,.,%.

IWK and WK are the arrays obtained from MFIT or DMFIT. LIWK is the dimension of
IWK and LWK the dimension of WK. T is an array of dimension n or larger that is a work
space for the routine,

If MEVAL is called then XI, ZI, WK, and T are single precision real arrays. Otherwise,
if DMEVAL is called then XI, ZI, WK, and T are double precision arrays.

IND is a variable that reports the status of the results. When the routine terminates,
IND has one of the following values:

377

IND=0 The desired computation was performed,
IND=-1 (Inputerror) m<1 or m>m,
IND=—-2 (Inputerror) n<1 or 2 <1,

Programming. MEVAL calls the subroutine MEVAL1 and DMEVAL calls the subroutine
DMEVALI1. MEVAL and DMEVAL are modifications by A. H. Morris of EVAL, written by

Richard H. Bartels (University of Waterloo) and John J. Jezioranski (Ontario Cancer
Institute).

378

EVALUATION OF INTEGRALS OVER FINITE INTERVALS

QAGS, QSUBA, and DQAGS are available for computing integrals over finite intervals.
The subroutine QAGS and function QSUBA vyield single precision results, and the sub-
routine DQAGS vyields double precision results. These procedures are adaptive. In such
procedures, the selection of the points at which the integrand is evaluated depends on the
nature of the integrand.

CALL QAGS(F,a,b,AERR,RERR,zZ, ERROR ,NUM,IERR 2, m,n IWK,WK)

F(x) is a user defined function whose arguments and values are assumed to be single
precision real numbers. The purpose of QAGS is to compute the integral fab F(x)dx. F need
not be defined at a and b, and it is not required that a<<b. F must be declared in the call-
ing program to be of type EXTERNAL.

AERR and RERR are the absolute and relative error tolerances to be used, and z is a
variable. When QAGS is called, z is assigned the value obtained for [b F(x)dx. The routine
attempts to obtain avalue z which satisfies |f F(x)dx—z| < max {AERR,RERR S F(x)dxl}.
It is assumed that AERR = 0 and RERR = 0. If one wants accuracy to k significant digits
then set RERR = 107k,

ERROR and NUM are variables. When QAGS terminates, ERROR is the estimated
absolute error of the result and NUM is the number of points at which F was evaluated.

IWK is an array of dimension £ and WK is an array of dimension m. IWK and WK
are work spaces for the routine. The input argument £ is the maximum number of sub-
intervals in which the interval of integration may be partitioned. It is assumed that 22> 1
and m = 4L. The argument n is a variable. When QAGS terminates, n = the number of sub-
intervals that appeared in the partition. Normally n < 100.

IERR is a variable that reports the status of the results. When the routine terminates,
IERR will have one of the following values:

IERR =0 The routine is satisfied that the integral has been computed to the
desired accuracy.

IERR =1 The interval of integration was partitioned into f subintervals. More
subintervals are needed to compute the integral to the desired accuracy.

IERR =2 The integral has been computed, but because of roundoff error QAGS
is not certain of the accuracy of the result. The error may be greater
than that reported by ERROR.

IERR =3 Extremely bad integrand behavior occurs in the interval of integration.
The routine is not certain of the accuracy obtained.

379

IERR =4 The algorithm does not converge. It is assumed that the requested
accuracy cannot be achieved and that the result is the best which can
be obtained.

IERR =5 The integral may be divergent or it may converge extremely slowly.
In this case, the value for z may be meaningless.

IERR =6 (Input Error) Either £ <1, m<42, or AERR=0 and RERR <507
where 7 is the smallest number for which 7 = 5-1071° and 1+ 7> 1
(1=27%7 for the CDC 6700). In this case, the variables z, ERROR,
NUM, and n are set to 0.

Note. F may have singularities at a and b. However, it is recommended that no singu-
larities appear in the interior of the interval of integration.

Algorithm. The 21 point Kronrod rule and e-algorithm of P. Wynn are used.
Programming. QAGS employs the subroutines QAGSE, QK21F, QPSRT, and QELG.
These routines were developed by Robert Piessens and Elise de Doncker-Kapenga (Katholieke

Universiteit Leuven, Heverlee, Belgium). The function SPMPAR is also used.

Reference. Piessens, R., de Doncker-Kapenga, E., Uberhuber, C. W., and Kahaner, D. K.,
QUADPACK: A Subroutine Package for Automatic Integration, Springer-Verlag, 1983.

QSUBA (F,a,b,RERR,MCOUNT,ERROR,IND

F(x) is a user defined function whose arguments and values are assumed to be single
precision real numbers. The purpose of QSUBA is to compute the integral f: F(x)dx.
F need not be defined at the points a and b. However, it is assumed that a <<b. F must
be declared in the calling program to be of type EXTERNAL.

RERR is the relative error tolerance to be satisfied. It is assumed that RERR > 0.
If one wants accuracy to k significant digits then set RERR = 107k,

The input argument MCOUNT is the maximum number of points at which F may be
evaluated. It is recommended that MCOUNT = 1000.

ERROR is a variable that is set by QSUBA. If the value of QSUBA is not 0 then
ERROR is a rough estimate of the relative error of the computed result. Otherwise, if the

value of QSUBA is 0 then ERROR is a rough estimate of the absolute error.

IND is a variable that reports the status of the results. When QSUBA terminates, IND
will have one of the following values:

380

IND=0 The function QSUBA is satisfied that the integral has been computed to
the desired accuracy.
IND=1 The integral has been computed, but QSUBA is not certain of the accu-
racy of the result.
IND =2 F(x) was evaluated at MCOUNT points. More evaluations are needed to
complete the computation of the integral.
IND=3 The function QSUBA cannot compute the integral to the desired accu-
racy.
If IND = 0 or 1 then the function QSUBA is assigned the value obtained for the integral.
If IND = 2 then QSUBA has for its value the most recent acceptable partial estimate made
of the integral. Otherwise, if IND = 3, then QSUBA has for its value the best estimate of
the value of the integral that it can make.

Note. QSUBA assumes that F and its derivatives have no singularities in the closed interval
fa,b]. If this is not the case then QAGS should be used. QSUBA is recommended for
T

3 x2 dx whose integrands are finitely oscillatory.

computing integrals such as folo sin
Algorithm. Gaussian quadrature is employed.

Programming. QSUBA calls the subroutine QUAD. QSUBA and QUAD were written by
T. N. L. Patterson (Queen’s University, Belfast, Northern Ireland), and QSUBA was mod-
ified by A. H. Morris.

Reference. Patterson, T. N. L., “Algorithm for Automatic Numerical Integration Over a
Finite Interval,” Comm. ACM 16 (November 1973), pp. 694-699.

CALL DQAGS(F,a,b,AERR,RERR,zZ, ERROR,NUM,IERR £,m,n,IWK ,WK)

F(x) is a user defined function whose arguments and values are assumed to be double
precision real numbers. The purpose of DQAGS is to compute the integral f: F(x)dx. The
arguments a and b are double precision real numbers. F need not be defined at a and b,
and it is not required that a <<b. F must be declared in the calling program to be of types
DOUBLE PRECISION and EXTERNAL.

AERR and RERR are double precision real numbers and z is a double precision
variable. AERR and RERR are the absolute and relative error tolerances to be used. When
DQAGS is called, z is assigned the value obtained for f: F(x)dx. The routine attempts
to obtain a value z which satisfies | f F(x)dx - z| < max {AERR,RERR o |f F(x)dxl} . Itis
assumed that AERR 2 0 and RERR = 0.

381

ERROR is a double precision variable and NUM an integer variable. When DQAGS
terminates, ERROR is the estimated absolute error of the result and NUM is the number
of points at which F was evaluated.

IWK is an integer array of dimension £ and WK a double precision array of dimen-
sion m. IWK and WK are work spaces for the routine. The argument £ is the maximum
number of subintervals in which the interval of integration may be partitioned. It is as-
sumed that 21 and m > 42. The argument n is a variable. When DQAGS terminates,
n = the number of subintervals that appeared in the partition. Normally n < 100.

IERR is a variable that reports the status of the results. When the routine terminates,
IERR will have one of the following values:

IERR =0 The routine is satisfied that the integral has been computed to the
desired accuracy.

IERR =1 The interval of integration was partitioned into £ subintervals. More
subintervals are needed to compute the integral to the desired accuracy.

IERR =2 The integral has been computed, but because of roundoff error DQAGS
is not certain of the accuracy of the result. The error may be greater
than that reported by ERROR.

IERR =3 Extremely bad integrand behavior occurs in the interval of integration.
The routine is not certain of the accuracy obtained.

IERR =4 The algorithm does not converge. It is assumed that the requested
accuracy cannot be achieved and that the result is the best which can
be obtained.

IERR =5 The integral may be divergent or it may converge extremely slowly.
In this case, the value for z may be meaningless.

IERR =6 (Input Error) Either 2 <1, m <4{, or AERR =0 and RERR < 507
where 7 is the smallest number for which 7 > 5+102% and 1 +7> 1

(r =2795 for the CDC 6700). In this case, the variables z, FERROR,
NUM, and n are set to 0.

Remarks. F may have singularities at a and b. However, it is recommended that no singu-

larities appear in the interior of the interval of integration. DQAGS is a double precision
version of the routine QAGS.

Algorithm. The 21 point Kronrod rule and e-algorithm of P. Wynn are used.
Programming. DQAGS employs the subroutines DQAGSE, DQK21, DQPSRT, and DQELG.
These subroutines are double precision versions of the subroutines QAGSE, QK2 1F, QPSRT,

and QELG, developed by Robert Piessens and Elise de Doncker-Kapenga (Katholieke
Universiteit Leuven, Heverlee, Belgium). The function DPMPAR is also used.

382

Reference. Piessens, R., de Doncker-Kapenga, E., Uberhuber, C. W., and Kahaner, D. K.,
QUADPACK: A Subroutine Package for Automatic Integration, Springer-Verlag, 1983.

383

EVALUATION OF INTEGRALS OVER INFINITE INTERVALS
The subroutines QAGI and DQAGI are available for computing integrals over infinite
intervals. QAGI yields single precision results and DQAGTI vyields double precision results.
QAGI and DQAGI are adaptive routines.

CALL QAGI (F,a,MO,AERR,RERR,z, ERROR,NUM,IERR,¢,m,n,IWK,WK)

F(x) is a user defined function whose arguments and values are assumed to be real
numbers. The argument a is a real number, Z is a variable, and MO may be 1, -1, or 2.
When QAGI is called, z is assigned the value f F(x)dx if MO = 1 and the value f F(x)dx
if MO = -1. Otherwise, if MO = 2 then z is assigned the value f F(x)dx. If MO =*1 then
F need not be defined at a. Otherwise, if MO = 2 then a is not used. F must be declared
in the calling program to be of type EXTERNAL.

AERR and RERR are the absolute and relative error tolerances to be used. The
routine attempts to obtain a value z which satisfies |/ F(x) dx —z | < max {AERR, RERR-
| fJF(x)dx I}. It is assumed that AERR > 0 and RERR > 0. If one wants accuracy to k
significant digits then set RERR = 107k,

ERROR and NUM are variables. When QAGI terminates, ERROR is the estimated
absolute error of the result and NUM is the number of points at which F was evaluated.

IWK is an array of dimension £ and WK is an array of dimension m. IWK and WK are
work spaces for the routine. The input argument £ is the maximum number of subintervals
in which the interval of integration may be partitioned. It is assumed that £ > 1 and m > 4¢.
The argument n is a variable. When QAGI terminates, n = the number of subintervals that
appeared in the partition. Normally n < 100.

IERR is a variable that reports the status of the results. When the routine terminates,
IERR will have one of the following values:
IERR = 0 The routine is satisfied that the integral has been computed to the
desired accuracy.

IERR = 1 The interval of integration was partitioned into £ subintervals. More
subintervals are needed to compute the integral to the desired accuracy.

IERR = 2 The integral has been computed, but because of roundoff error QAGI
is not certain of the accuracy of the result. The error may be greater
than that reported by ERROR.

IERR = 3 Extremely bad integrand behavior occurs in the interval of integration.
The routine is not certain of the accuracy obtained.

IERR = 4 The algorithm does not converge. It is assumed that the requested

accuracy cannot be achieved and that the result is the best which can be
obtained.

385

IERR = 5 The integral may be divergent or it may converge extremely slowly.
In this case, the value for z may be meaningless.
[ERR = 6 (Input Error) Either 8 < 1. m < 4%, or AERR =0 and RERR < 507

where 7 is the smallest number for which 7 > 5-1071% and 1+ 7> 1
(r=27%7 for the CDC 6700). In this case, the variables z, ERROR,
NUM, and n are set to 0.

Note. F may have a singularity at a when MO = £1. However, it is reccommended that no
singularities appear in the interior of the interval of integration.

Algorithm. The integrals are transformed as follows:

e 1
f F(x)dx =f F(a—1+1/t)5t1—2t-
a 0

a 1
J’ F(x) dx =f Fa+1-1/95
—oo 0

. 1
f F(x) dx =f [F(-1+1/t)+ F(1-1/t)] %;[‘
o 0

The transformed integrals are computed by the 15 point Kronrod rule and the e-algorithm
of P. Wynn.

Programming. QAGI employs the subroutines QAGIE, QK 151, QPSRT, and QELG. These
routines were developed by Robert Piessens and Elise de Doncker-Kapenga (Katholieke
Universiteit Leuven, Heverlee, Belgium). The function SPMPAR is also used.

Reference. Piessens, R., de Doncker-Kapenga, E., Uberhuber, C. W., and Kahaner, D. K|,
QUADPACK: A Subroutine Package for Automatic Integration, Springer-Verlag, 1983.

CALL DQAGI (F,a,MO, AERR, RERR, z, ERROR, NUM, IERR, £, m, n,IWK,WK)

F(x) is a user defined function whose arguments and values are assumed to be double
precision real numbers. The argument a is a double precision real number, z is a double
prec131on variable, and MO may be 1, -1, or 2. When DQAGI is called, z is assigned the
value f F(x)dx if MO =1 and the value f F(x)dx if MO = -1. Otherwise, if MO = 2 then
z is assigned the value f F(x)dx. If MO = %1 then F need not be defined at a. F must be
declared in the calling program to be of types DOUBLE PRECISION and EXTERNAL.

386

AERR and RERR are the absolute and relative error tolerances to be used. The
routine attempts to obtain a value z which satisfies | f[F(x) dx - z| < max {AERR,RERR-
| fF(x) dxl}. It is assumed that AERR and RERR are nonnegative double precision real
numbers.

ERROR is a double precision variable and NUM an integer variable. When DQAGI
terminates, ERROR is the estimated absolute error of the result and NUM is the number of
points at which F was evaluated.

IWK is an integer array of dimension £ and WK a double precision array of dimension
m. IWK and WK are work spaces for the routine. The argument £ is the maximum number
of subintervals in which the interval of integration may be partitioned. It is assumed that
¢ 21 and m > 4L. The argument n is a variable. When DQAGI terminates, n = the number
of subintervals that appeared in the partition. Normally n < 100.

IERR is a variable that reports the status of the results. When the routine terminates,
IERR will have one of the following values:
IERR = 0 The routine is satisfied that the integral has been computed to the
desired accuracy.

IERR = 1 The interval of integration was partitioned into £ subintervals. More
subintervals are needed to compute the integral to the desired accuracy.

IERR = 2 The integral has been computed, but because of roundoff error DQAGI
is not certain of the accuracy of the result. The error may be greater
than that reported by ERROR.

IERR = 3 Extremely bad integrand behavior occurs in the interval of integration.
The routine is not certain of the accuracy obtained.

IERR = 4 The algorithm does not converge. It is assumed that the requested
accuracy cannot be achieved and that the result is the best which can be
obtained.

IERR = 5 The integral may be divergent or it may converge extremely slowly.
In this case, the value for z may be meaningless.

IERR = 6 (Input Error) Either 8 < 1, m < 42, or AERR = 0 and RERR < 507

where 7 is the smallest number for which 7>5-1072% and 1+7>1
(1 =2 for the CDC 6700). In this case, the variables z, ERROR,
NUM, and n are set to 0.

Remarks. F may have a singularity at a when MO = +1, However, it is recommended that

no singularities appear in the interior of the interval of integration. DQAGI is a double
precision version of the routine QAGI.

Programming. DQAGI employs the subroutines DQAGIE, DQK15I, DQPSRT, and DQELG.
These subroutines are double precision versions of the subroutines QAGIE, QK15I, QPSRT,

387

and QELG, developed by Robert Piessens and Elise de Doncker-Kapenga (Katholieke Uni-
versiteit Leuven, Heverlee, Belgium). The function DPMPAR is also used.

Reference. Piessens, R., de Doncker-Kapenga, E., Uberhuber, C. W., and Kahaner, D. K.,
QUADPACK: A Subroutine Package for Automatic Integration, Springer-Verlag, 1983.

388

EVALUATION OF DOUBLE INTEGRALS OVER TRIANGLES
Let f(x,y) be a real-valued function defined on a triangle T. Then the subroutine
CUBTRI is available for computing the integral f Jpf(x,y)dxdy. CUBTRI is an adaptive

routine.

CALL CUBTRI(F,T, e, MAX,A,ERR,n,W, 2,IDATA,RDATA,IERR)

T is a 2-dimensional real array of dimension 2 X 3 where T(1,j) and T(2,j) are the x
and y coordinates of the j™ vertex of the given triangle =1,2,3).

IDATA and RDATA are arrays provided by the user containing any integer or real data
needed for computing the integrand f(x,y). The arrays may be of any size. F is a user
defined real-valued function having the arguments x,y,IDATA, RDATA. It is assumed
that F(x,y,IDATA,RDATA) = f(x,y) for any point (x,y) in the triangle of integration T.
F must be declared in the calling program to be of type EXTERNAL.

The input argument e is the error tolerance to be satisfied, and A is a variable. When
CUBTRI is called, A is assigned the value obtained for [fo (x,y)dx dy. The routine attempts
to obtain a value A which satisfies |fff(x,y) dx dy — A|<max {e,e IAI} . Thus if |JA| <1
then e is an absolute tolerance, whereas if |[A| > 1 then € is a relative tolerance. If one wants
k digit accuracy then set e = 107, ERR is a variable. When CUBTRI terminates, ERR is the
estimated error | f[ff(x,y)dx dy — A| of the result.

The input argument MAX is the maximum number of points (x,y) at which F may be
evaluated, and n is a variable. On an initial call to CUBTRI, the user must set n=0. When
the routine terminates, n will have for its value the number of points at which F was evalu-
ated. (For subsequent calls concerning the same integral, see below.)

W is an array of dimension £ for internal use by the routine. The input argument
specifies the maximum number of subtriangles in which the triangle of integration T may be
partitioned. The subtriangles are stored in W, each subtriangle requiring 6 storage locations.
Thus £/6 is an estimate of the maximum number of subtriangles that might have to be
stored (2 < max {1,3m +1} where m = (MAX/19 -1)/4).

IERR is an integer variable that reports the status of the results. When the routine
terminates, IERR will have one of the following values:

IERR = 0 The integral was computed to the desired accuracy.

IERR 1 MAX s too small. F must be evaluated at more points.

IERR = 2 The storage space W is full. Its dimension R must be increased.

]

389

IERR

1l
w

Further subdivision of the subtriangles impossible. This normally occurs
when f(x,y) has a singularity in the region. The situation can frequently
be eliminated by placing the singularity at a vertex of the triangle of
integration T.

No further improvement in accuracy is possible because of roundoff
error in the computation of F or the irregular behavior of F.

No further improvement in accuracy is possible because subdivision
does not change the estimated integral value A. Machine accuracy has
probably been reached.

i
N

IERR

IERR

Il
W

After an initial call to CUBTRI, the routine may be recalled to continue the computa-
tion of ff f(x,y)dx dy. When the routine is recalled, the value of n obtained on the previous
call to CUBTRI is used for the next call. This value for n tells the routine where computa-
tion should be resumed (using the information previously stored in W). At least one of the
values €, MAX, or £ must be modified before CUBTRI is recalled. F, T,n, W, IDATA, and
RDATA may not be changed when the routine is recalled.

Remark. F may have a singularity at one of the vertices of T (such as in the case when we
are computing fol fo X(x2 + 3y2)'1/2dy dx). However, it is recommended that no singularities
appear in the interior of the triangle of integration.

Algorithm. The 7-point degree 5 rule of Radon and a new 19-point degree 8 rule are used.

Programming. CUBTRI calls the function RNDERR and subroutine CUBRUL. Information
is saved in labeled common blocks. The block names are CUBSTA and CUBATB. The
routines were written by D. P. Laurie (National Research Institute for the Mathematical
Sciences, Pretoria, South Africa).

Reference. Laurie, D. P., “Algorithm 584, CUBTRI: Automatic Cubature over a Triangle,”
ACM Trans. Math Software 8 (1982), pp. 210-218.

390

SOLUTION OF FREDHOLM INTEGRAL EQUATIONS OF THE SECOND KIND

If k(s,t) and f(s) are continuous real-valued functions for a <s,t <b, then the equa-
tion to be solved is

b
x(s) — J k(s,t) x(t)dt = f(s)

for as<s<b. Let K be the operator defined by (Kx)(s) = fbk(s t) x(t)dt for any real-
valued functlon X continuous on [a,b]. Then (Kx)(s) is contmuous for a<s<b, and
k is called the kernel of K. Also the above integral equation can be written in the form
(I - K) x = f where I is the identity operator. This equation has a unique solution if and only
if I — K is 1-1, in which case x = (I —~ K)"'f. The subroutine IESLV is available for com-
puting this solution.

Remark. 1f C[a,b] is the normed space of real-valued functions x continuous on [a,b]
and having the norm x|l = max{|x(t)|: a < t < b}, then K is a compact mapping
Cla,b] >Cla,b] having the norm IK |l = max (°/k(s,0)|dt.

ass

CALL IESLV (k,f,a,b,EPS,IFLAG, S, X,£,N, M, NF, MF, NORMK, WK, IERR)

It is assumed that a <b, and that k(s,t) and f(s) are user defined real-valued functions
for a <s,t <b. Itisrecommended that k and f be several times continuously differentiable.
The functions k and f must be declared in the calling program to be of type EXTERNAL.

EPS is a variable and IFLAG an input argument whose values are 0 and 1. On input
EPS is the error tolerance that the solution must satisfy. If IFLAG = O then EPS is an
absolute tolerance. Otherwise, if IFLAG = 1 then EPS is a relative tolerance. If IESLV
successfully solves the equation, then on output EPS will be the estimated error of the
result.

Before the remaining arguments s,x,%,... can be described, it is necessary to give
a brief outline of the algorithm used. When IESLV is called, the integral equation is
approximated by

™) x(s)—Z w; k(st)x (t. Y=1(s)

njn

for a<s<(b. Here Win and tJ are the weights and nodes of Gauss-Legendre quadrature.
This equation is treated as an interpolation for x(s) in terms of the values x (t o). These
values are obtained by solving the equations

¢ X ()~ z Wi k() X, () = £t

jn

fori=1,...,n. ThlS system of equations can be solved directly or iteratively. The following
algorlthm isused:

391

(1) Setn=2and go to (2).
(2) The n equations are solved directly. Then set m = 2n and solve the m equations
(**) iteratively. If the rate of convergence is sufficiently rapid or n cannot be
increased, then go to (3). Otherwise, set n = m, and go to (2).
(3) Here n remains fixed. Repeatedly double the value of m and solve the m equations
(**) iteratively until convergence occurs, m cannot be increased, or the iterations
diverge.
When the algorithm terminates, values xm(tim) will have been computed for the nodes
t,, (i =1...,m). Then from (*), x(s) ~ x_(s) can be interpolated for a <s<b.

N and M are input arguments, and WK is an array that is a work space for the routine.
N and M are upper limits for n and m in the algorithm, and WK is of dimension 5N2 +
9(N + M) or larger. It is assumed that M >N > 2. Since n and m are always powers of 2,
N and M need only be set to powers of 2. However, this is not required.

S and X are arrays, and € is a variable. On input it is assumed that 2 0. If £ >0 then
S is assumed to contain ¢ points s,,...,s, at which the solution x(s) is to be evaluated. Also X
is assumed to be an array of dimension £ or larger. When IESLV terminates, X contains the
values obtained for x(sl),...,x(sg). (This is true irregardless of whether or not the desired
accuracy has been achieved.) Otherwise, if £ = 0 then S and X are assumed to be arrays of
dimension M or larger. When IESLV terminates £ = the final value obtained for m, S con-
tains the Gaussian nodes t,, (i=1,...,2), and X contains the values obtained for x(t;,).

NF and MF are variables. When the routine terminates, NF is the final value for n and
MEF the final value for m.

NORMK is a real variable. If £ > 0 on input, then when IESLV terminates, NORMK is
an approximation for IKll. Otherwise, if = 0 then NORMK = 0.

IERR is a variable that reports the status of the results. When the routine terminates,
IERR has one of the following values:

IERR = 0 The solution was obtained to the desired accuracy. EPS is the estimated
error of the result.

IERR = 1 The solution was not obtained to the desired accuracy. EPS is the esti-
mated error of the result.

IERR = 2 The solution was not obtained to the desired accuracy. It is not clear
what accuracy (if any) has been achieved. EPS has been set to 0.

IERR = 3 The input value for EPS was too small. This may be due to ill-condi-
tioning of the integral equation. The value of EPS was reset to a more
realistic tolerance, which the solution satisfied.

IERR = 4 The solution x(s) was obtained at the Gaussian nodes to the desired pre-

cision. However, the interpolation process may not preserve this accuracy

392

for the evaluation of x(s) for other points s. EPS is the estimated error
of the solution at the Gaussian nodes.

IERR =5 The solution x(s) was not obtained to the desired accuracy at the
Gaussian nodes. EPS is the estimated error at these nodes. The inter-
polation process may not preserve this accuracy for the evaluation of
x(s) for other points s.

IERR = 6 The input value for EPS was too small. This may be due to ill-condi-

tioning of the integral equation. The value of EPS was reset to a more
realistic tolerance, which the solution x(s) satisfied at the Gaussian nodes.
The interpolation process may not preserve this accuracy for the evalua-
tion of x(s) for other points s.
Difficulties can arise, causing IERR > 1, when the integral equation is ill-conditioned or the
kernel k(s,t) is not appropriate for standard Gaussian quadrature. 1ll-conditioning can occur
when the operator 1 - K is near singular or the norm | K|l is exceedingly large. Inappropriate
kernels k(s,t) include those which are highly oscillatory or not continuously differentiable
for s and t in the open interval (a,b).

Programming. 1ESLV employs the subroutines IEGS, NSTERP, WANDT, LEAVE, ITERT,
LNSYS and functions RMIN, RNRM, CONEW. The routines save and exchange information
in labeled common blocks. The block names are XXINFO and XXLIN. The routines were
written by Kendall E. Atkinson (University of Iowa), and modified by A. H. Morris. The
function SPMPAR is also used.

Reference. Atkinson, K. E., “An Automatic Program for Linear Fredholm Integral Equa-
tions of the Second Kind,” ACM Trans. Math Software 2 (1976), pp. 154-171.

393

THE INITIAL VALUE SOLVERS — INTRODUCTORY COMMENTS

Let y'(t) = f(t,y(t)) denote a system of n ordinary first order differential equations
where f(t,y) = (f, (t,y),....£, (t,y)) and y(t) = (yl(t),...,yn(t)). Assume that y(a) is known.
Then for b # a the subroutines ODE, RKF45, GERK, SFODE, and SFODE! are available
for computing y(b).- These routines are adaptive variable step differential equations solvers.
The remaining subroutines (RK and RKS8) are fixed order, one step procedures. Given a
value y(t) and a step size h, the one step procedures compute a value for y(t + h). The
problem of selecting an appropriate step size is left to the user. Given y(a) and b, the one
step routines must be repeatedly called to step along the interval from a to b. The situation,
however, is considerably different with the adaptive routines, ODE, SFODE, and SFODE1
are variable order, variable step procedures, and RKF45 and GERK are fixed order, variable
step procedures. Given y(a), b, and the error tolerances that are to be maintained, these
solvers continually adjust their orders and step sizes as they (automatically) step along the
interval from a to b.

The adaptive routines differ in their capabilities. While in principle any of the routines
can be used for solving a set of differential equations, ODE, RKF45, and GERK are recom-
mended for nonstiff equations, and SFODE and SFODE]1 are recommended for stiff equa-
tions (see the note at the end of this section). If one does not know whether the equations
are stiff, then ODE should be tried. ODE maintains greater accuracy than the other routines,
and it will notify the user if the equations appear to be stiff. ODE, RKF45, and GERK
should be able to handle mildly stiff problems satisfactorily, but they are decidedly not
appropriate for extremely stiff problems, SFODE and SFODEI are the only routines in
the mathematics library that are capable of solving extremely stiff equations.

If the equations to be solved are nonstiff, then the choice between ODE and RKF45
depends on the amount of accuracy needed and the cost of the derivative evaluations. If the
accuracy requirements are high then ODE is recommended. However, if the accuracy
requirements are low and the derivative evaluations are inexpensive, then RKF45 may be
the most efficient routine for the problem. RKF45 frequently requires more derivative
evaluations than ODE, but its overhead is considerably less than that for ODE.

When the user specifies the error tolerances to be satisfied, normally he is only
interested in the global error (the accuracy of y(b)). However, the adaptive routines employ
the tolerances for controlling local error (the error generated at each internal step in the
interval). No attempt is made to control the progressive erosion of accuracy that can occur
when the steps accumulate. GERK is the only routine that estimates the global error. This
routine employs the same Runge-Kutta-Fehlberg formulae used by RKF45. GERK is 2-3
times slower than RKF45, but it is more accurate.

395

Output Considerations. Generally, when the user has a system of equations y'(t) = f(t,y(t))
to be solved (where y(a;) is known), he wants its solution at a sequence of points a, ,...,ay .
If an adaptive routine is being used, then the routine will be repeatedly called to step along
the axis from each point a, to the next. If ODE, SFODE, or SFODEI!1 is being employed,
then the number and closeness of the output points : BN : N should be of no concern.
These routines partially ignore a;,, in the selection of the step size when going from a, to
a,,,. Instead, they step along the axis using the largest steps that are appropriate (efficiency
and accuracy are the prime concerns). Normally a,, is passed in the process. If &, is
passed then a quick interpolation yields the desired result at &, Thus the process of
solving the equations for a4 when y(a,) is known may require that no steps be taken
(a;,, may have been bypassed on a previous call to ODE, SFODE, or SFODE1), or it may
require that one or more steps be taken.

The situation is considerably different if RKF45 or GERK is used. These routines
select their step size so as not to bypass a,,, when going from a, toa, . Thus the output
points dy,...,8y may be so close to one another as to force inordinately small step sizes
(when such step sizes would otherwise not be needed). If this occurs then the efficiency of
RKF45 and GERK may deteriorate dramatically. The routines will notify the user of the
situation, and the user will be left with the following options:

(1) Switch to an adaptive routine such as ODE which performs interpolation.

(2) Use a nonadaptive one step routine such as RK or RKS.

(3) Use RKF45 or GERK in a one step mode (this capability is permitted).

If option (3) is taken, then the user may just repeatedly call RKF45 or GERK (in the one
step mode) until ay is reached. This will generate a sequence of output points a'l,...,a;n
wherea =ay.

Note. A system of equations y'(t) = f(t,y(t)) is stiff if its solution contains a component
that decays far more rapidly than the others. This occurs when the real parts of the eigen-
values of the Jacobian matrix J{(t) = (afi/ ayj) are widely separated and at least one of the
eigenvalues has a large negative real part. A set of equations may be stiff in some intervals
and nonstiff in other intervals. The difficulty that the traditional procedures have with
stiff equations is that the most rapidly decaying components force the step size to become
inordinately small, even after these components no longer contribute to the solution.

396

ADAPTIVE ADAMS SOLUTION OF NONSTIFF DIFFERENTIAL EQUATIONS

Let y'(t) = f(t,y(t)) denote a system of n ordinary first order differential equations
where f(t,y) = (f; (t,y),....f (t,y)) and y(t) = (yl (t),...,yn(t)). Assume that y(a) is known.
Then for b # a the subroutine ODE is available for computing y(b). ODE is recommended
for nonstiff equations. The algorithm used is a variable order, variable step Adams predictor-
corrector procedure.

CALL ODE(F,n,Y,T,TOUT,RERR,AERR,IFLAG,WK,IWK)

The argument F is the name of a user defined subroutine that has the format:
CALL F(t,Y,DY)
Y and DY are arrays of dimension n or larger. Y(1),...,Y(n) contain the values ¥y).,y (1)
for the argument t. F computes the derivatives v (t),...,y,, (t) using y'(t) = f(t,y(t)) and
stores the results in DY(1),...,DY(n). F must be declared in the calling program to be of type
EXTERNAL.

WK is an array of dimension 100 + 21n or larger, and IWK is an array of dimension
5 or larger. WK and IWK contain information needed for subsequent calls to ODE.

It is assumed that a # b. The argument Y in the call line of ODE is an array of
dimension n or larger, and the arguments T,RERR,AERR,IFLAG are variables. (TOUT need
not be a variable.) When ODE is initially called, it is assumed that:

T=a

TOUT = b

Y(1),...,Y(n) contain the values Y (a),...,yn(a)

RERR = the relative error tolerance to be satisfied

AERR = the absolute error tolerance to be satisfied

IFLAG = %1
It is preferable, both for efficiency and accuracy, that ODE be permitted to step along the
axis from a to b using the largest steps that are appropriate. This is what is done when
IFLAG is set to 1. If IFLAG =1 then ODE will step along the axis, possibly passing b and
going as far as the point a + 10 = (b - a). If b is passed, then the solution for the equations
at b is obtained by interpolation. However, IFLAG = 1 cannot be used if the equations are
not defined at all points between b and a + 10 = (b - a). In a situation such as this, when
integration cannot be permitted to automatically step internally past TOUT, IFLAG must
be set to - 1. If IFLAG =-1 then it is required that the subroutine F be defined at TOUT.
However, F need not be defined at points t past TOUT. If the equations y'(t) = f(t,y(t)) are
not defined at t = TOUT, then it should suffice to let F set each DY(@) = 0.0 when
t = TOUT. A solution (if one exists) will be obtained by extrapolation.

397

If IFLAG is positive (negative), then after ODE terminates IFLAG will have been reset
by ODE to one of the values 2,3,4,5,6,7 (2,-3,-4,-5,-6,7). These values have the following
meanings:

IFLAG

2 The equations have been solved at TOUT. T now has the value TOUT
and Y contains the solution at TOUT.

+3 The error tolerances RERR and AERR are too small. T is set to the
point closest to TOUT for which the equations were solved and Y
contains the solution at the point. RERR and AERR have been reset
to larger acceptable values.
MAXNUM steps were performed.! More steps are needed to reach
TOUT. T is set to the point closest to TOUT for which the equations
were solved and Y contains the solution at the point.
MAXNUM steps were performed. More steps are needed to reach
TOUT. T is set to the point closest to TOUT for which the equations
were solved and Y contains the solution at the point. The equations
appear to be stiff.
ODE did not reach TOUT because AERR = 0. T is set to the point
closest to TOUT for which the equations were solved and Y contains
the solution at the point.
No computation was performed. An input error was detected. The user
must correct the error and call ODE again.

IFLAG

IFLAG

I
I+
e

IFLAG

1l
I+
N

IFLAG

Il
I+
2

IFLAG

I
~1

If IFLAG = 3, £4, %5 then to continue the integration just call ODE again. Similarly,
if IFLAG = #6 then reset AERR to be positive and call ODE again. In these cases do not
modify T,Y,IFLAG. The output values for these parameters are the appropriate input values
for the next call to ODE. However, AERR and RERR may always be modified when
continuing an integration.

If the equations appear to be stiff (i.e., if IFLAG = £5) then ODE may not be suitable
for solving the equations. In this case it is recommended that a routine designed specifically
for stiff equations be used.

Whenever IFLAG = 2 occurs, then the equations have been solved at TOUT =b. WK
and IWK contain information that can often be reused in continuing along the axis and
solving the equations at a new point ¢. To continue the integration, normally one need only
reset TOUT to the new value ¢ and call ODE again. Do not modify T,Y ,IFLAG. The output
values for these parameters are normally the appropriate input values for the next call to
ODE. The one exception is when the equations are not defined at points past c¢. If this

!Each step normally requires two calls to the subroutine F. Currently the internal parameter MAXNUM is set at 500.

398

occurs, then one should also reset the output value IFLAG = 2 (from the last call to ODE)
to the input value IFLAG =-2 for the next call to ODE. If IFLAG is reset to -2, then
integration will not proceed internally past the new TOUT when ODE is recalled. In this
case, the subroutine F need not be defined for points past TOUT. However, it is required
that F be defined at TOUT.

If after going from a to b, ODE is recalled to continue the integration and solve the
equations at a new point ¢, then it is important that IFLAG be set to *2 for the next call to
ODE. Setting IFLAG to *1 causes the integration procedure to be restarted, thereby
eliminating the information being saved in WK and IWK. Restarting not only can take
more time, but also can lead to less accurate results. If IFLAG is set to +2, then the
integration procedure restarts itself only if

(1) the direction of integration is being reversed or

(2) IFLAG was negative when ODE was last recalled.

The direction of integration is reversed when b does not lie between a and c.

If one has a choice between setting IFLAG to be positive or negative, then always set
IFLAG to be positive. Extrapolation is normally involved when IFLAG is negative. The
extrapolation can require more time and be less accurate than the procedures employed
when IFLAG is positive.

Input Errors. IFLAG = 7 occurs when one of the following conditions is violated:
(1) n=1
(2) T # ToOUT
(3) RERR > 0and AERR > 0
(4) RERR and AERR are not both 0.
(5) 1 < |IFLAG| < 5
IFLAG = *6and AERR > 0
(6) When continuing an integration, the input value for T is the
output value of TOUT from the previous call to ODE.
The last condition is automatically satisfied if the user has not inadvertently modified T.

Error Control. Assuming that ODE has obtained the correct value for y(t), let e; denote the
error generated in the computation Y(i) of yi(t+h) fori = 1,.,n when ODE steps from t
to t+h. If EPS = max {AERR,RERR} then ODE attempts at each internal step to
maintain the accuracy

65 [! T < EPS
/ S1LWTGH)

399

where WT(i) = |Y(i)| * RERR/EPS + AERR/EPS. If the inequality is satisfied then
le;| < EPS *WT() = IY()| * RERR + AERR

fori = 1,..,n. This error criterion includes as special cases relative error (AERR = 0) and
absolute error (RERR = 0). However, if AERR = 0 and Y(i) = 0 for some i, then
WT(G) = 0and IFLAG = + 6 will occur.

When going from T to TOUT, ODE continually adjusts and readjusts its order and step
size so as to maintain accuracy at each step. However, no attempt is made to control the
progressive erosion of accuracy that can occur when the steps accumulate. Since the erosion
of accuracy can be significant, at times one may wish to double-check the results by
rerunning the problem. If this is done, then in the second run ask for greater accuracy.

Programming. ODE employs the subroutines DE1, STEP1, and INTRP. These routines were

written by L. F. Shampine and M. K. Gordon (Sandia Laboratories). The function SPMPAR
is also used.

Reference. Shampine, L. F., and Gordon, M. K., Computer Solution of Ordinary
Differential Equations. W. H. Freeman and Company, San Francisco, 1975.

400

ADAPTIVE RKF SOLUTION OF NONSTIFF DIFFERENTIAL EQUATIONS

Let y'(t) = f(t,y(t)) denote a system of n ordinary first order differential equations
where f(t,y) = (f, (t,y),...f (t,y)) and y(t) = (y1 (t),...,yn (t)). Assume that y(a) is known.
Then for b # a the subroutine RKF45 is available for computing y(b). RKF45 was designed
for solving nonstiff differential equations when derivative evaluations are inexpensive and
the accuracy requirements are low (less than 8 significant digits). The routine employs the
fourth-fifth order Runge-Kutta-Fehlberg formulae.

CALL RKF45(F.n,Y T TOUT,RERR,AERR.IFLAG.WK .IWK)

The argument F is the name of a user defined subroutine that has the format:
CALL F(1,Y,DY)
Y and DY are arrays of dimension n or larger. Y(1),...,Y(n) contain the values 12 (t),....y, (©)
for the argument t. F computes the derivatives y'1 (t),...,y;(t) using y'(t) = f(t,y(t)) and
stores the results in DY(1),...,.DY(n). F must be declared in the calling program to be of type
EXTERNAL.

WK is an array of dimension 3 + 6n or larger, and IWK is an array of dimension 5 or
larger. WK and IWK contain information needed for subsequent calls to RKF45.

Y is an array of dimension n or larger, and the arguments T, RERR, IFLAG are
variables. (TOUT and AERR need not be variables.) When RKF45 is initially called, it is
assumed that:

T=a

TOUT = b

Y(1),...,Y(n) contain the values ¥y (@),....y (@)

RERR = the relative error tolerance to be satisfied

AFRR = the absolute error tolerance to be satisfied

IFLAG = %1
Normally IFLAG = 1. However, if only a single step in the direction of TOUT is to be
taken, then set IFLAG = - 1.

On output T is set to the point closest to TOUT for which the equations were solved,
and Y contains the solution at T. Also IFLAG reports the status of the results. RKF45 sets
IFLAG to one of the following values:

IFLAG = 2 The equations were successfully solved at TOUT. T now has the

value TOUT.
-2 A single step in the direction of TOUT was taken.
3 The error tolerance RERR was too small. RERR has been reset to a
larger acceptable value.

IFLAG
IFLAG

401

IFLAG = 4 3000 derivative evaluations were performed. More derivative
evaluations are needed to reach TOUT.

IFLAG = 5 RKF45 did not reach TOUT because AERR = 0. AERR must be
made positive.

IFLAG = 6 Too much accuracy has been requested. AERR and/or RERR must
be increased in value.

IFLAG = 7 The closeness of the output points is restricting the natural step size
choice.

IFLAG = 8 No computation was performed. An input error was detected. The

user must correct the error and call RKF45 again.

If IFLAG = 2 then the equations have been solved at TOUT = b. The arrays WK and
IWK contain information that can often be reused in continuing along the axis and solving
the equations at a new point c. To continue the integration the user need only reset TOUT
to the new point ¢ and call RKF45 again.

If IFLAG = -2 then to continue the integration another single step just call RKF45
again. In the single step mode (IFLAG = -1, -2) the user must keep in mind that each step
taken is in the direction of the current TOUT. Upon reaching TOUT (which is indicated by
IFLAG being set to 2), the user may then define a new TOUT and set IFLAG to *2 for
further integration.

If IFLAG = 3 or 4 then to continue the integration just call RKF45 again. However, if
IFLAG = 5 then the user must first reset AERR to be positive before RKF45 can be
recalled. If IFLAG = 6 then it is required that IFLAG be reset to *2 and that AERR
and/or RERR be increased in value. If this is not done then the run will be terminated by a
STOP instruction!

If IFLAG = 7 then the user should either switch to another routine, or he should use
the one step mode. This situation is discussed in the Initial Value Solvers — Introductory
Comments section. If the user insists on continuing the integration with RKF45 in the
standard multistep mode, then it is required that IFLAG be reset to 2 before RKF45 is
recalled. If this is not done then the run will be terminated by a STOP instruction.

If after going from a to b, RKF45 is recalled to continue the integration and solve the
equations at a new point ¢, then it is important that IFLAG be set to 2 instead of 1.
Setting IFLAG = *1 causes the integration process to be restarted, thereby eliminating the
information being saved in WK and IWK. Restarting wastes time and is normally not needed.
The one exception is when the direction of integration is to be reversed. Then the
integration should be restarted.

402

Notes.

(1) AERR and RERR can be modified each time that RKF45 is called.

(2) When continuing an integration, one may switch from the standard multistep mode
(IFLAG = 2) to the one step mode (IFLAG = -2) whenever it is convenient to do so.

Input Errors. IFLAG = 8 occurs when one of the following conditions is violated:
(1) n=1

(2) T#TOUT when IFLAG # % 1

(3) RERR =0 and AERR>0

4) IFLAG = £1,+2,3,4,..,8

Error Control. Pure absolute error control is not permitted. If RERR = 0 then RERR is
reset to a value slightly greater than 10712, IFLAG is set to 3, and the routine terminates.

When going from T to TOUT, RKF45 continually adjusts and readjusts its step size so
as to maintain accuracy at each step. Assuming that RKF45 has obtained the correct value
for y(t), let € denote the error generated in the computation of yi(t+h) fori=1,.n
when RKF45 steps from t to t +h. Then at each step the error is controlled so that

< ly;(t)] + ly;(t + h)|

le, | < . RERR + AERR

fori = 1,...n. However, no attempt is made to control the progressive erosion of accuracy
that can occur when the steps accumulate. Since the erosion of accuracy can be significant,
at times one way wish to double-check the results. This can best be done by comparing the
results obtained by RKF45 with those obtained by ODE or GERK. If ODE is used then ask
for greater accuracy. However, if GERK is used then the current error tolerances can be
used. GERK is more accurate than RKF45, and it estimates the global error generated.

Programming. RKF45 employs the subroutines RKFS and FEHL. These routines were
written by H. A. Watts and L. F. Shampine (Sandia Laboratories).

References. Shampine, L. F., and Allen, R. C., Numerical Computing: An Introduction,
W. B. Sanders, Philadelphia, 1973.

403

ADAPTIVE RKF SOLUTION OF NONSTIFF DIFFERENTIAL EQUATIONS WITH
GLOBAL ERROR ESTIMATION

Let y'(t) = f(t,y(t)) denote a system of n ordinary first order differential equations
where f(t,y) = (f, (ty),....f (t,y)) and y(t) = (y, (t),...,yn(t)). Asume that y(a) is known.
Then for b # a the subroutine GERK is available for computing y(b). GERK was designed
for solving nonstiff differential equations when derivative evaluations are inexpensive and
the accuracy requirements are low (less than 8 significant digits). The routine employs the
fourth-fifth order Runge-Kutta-Fehlberg formulae. GERK estimates the accuracy of the
solution y(b).

CALL GERK(F,n,Y,T,TOUT,RERR,AERR,IFLAG,GERROR WK IWK)

The argument F is the name of a user defined subroutine that has the format:
CALLF(t,Y,DY)
Y and DY are arrays of dimension n or larger. Y(1),...,Y(n) contain the values ¥y (1),.. 5y (D)
for the argument t. F computes the derivatives yl(t), ,y (t) using y'(t) = f(t,y(t)) and
stores the results in DY(1),...,DY(n). F must be declared in the calling program to be of type
EXTERNAL.

WK is an array of dimension 3 + 8n or larger, and IWK is an array of dimension 5 or
larger. WK and IWK contain information needed for subsequent calls to GERK.

Y is an array of dimension n or larger, and the arguments T and IFLAG are variables.
(TOUT, RERR, AERR need not be variables.) When GERK is initially called, it is assumed
that:

T=a

TOUT = b

Y(1),...,Y(n) contain the values Y, (a),...,yrl (a)

RERR = the relative error tolerance to be satisfied

AERR = the absolute error tolerance to be satisfied

IFLAG =
Normally IFLAG = 1. However, if only a single step in the direction of TOUT is to be
taken, then set IFLAG = —1.

GERROR is an array of dimension n or larger. On output T is set to the point closest
to TOUT for which the equations were solved, Y contains the solution at T, and
GERRORC(I) is an estimate of the error of Y(@) fori= 1,..,n. Also IFLAG reports the
status of the results. GERK sets IFLAG to one of the followmg values:

IFLAG = 2 The equations were successfully solved at TOUT. T now has the
value TOUT.

405

IFLAG = -2 A single step in the direction of TOUT was taken.

IFLAG = 3 9000 derivative evaluations were performed. More derivative
evaluations are needed to reach TOUT.

IFLAG = 4 GERK did not reach TOUT because AERR = 0. AERR must be
made positive.

IFLAG = 5§ Too much accuracy has been requested. AERR and/or RERR must
be increased in value.

IFLAG = 6 The closeness of the output points is restricting the natural step size
choice.

IFLAG = 7 No computation was performed. An input error was detected. The

user must correct the error and call GERK again.

If IFLAG = 2 then the equations have been solved at TOUT = b. The arrays WK and
IWK contain information that can often be reused in continuing along the axis and solving
the equations at a new point ¢. To continue the integration the user need only reset TOUT
to the new point ¢ and call GERK again.

If IFLAG = -2 then to continue the integration another single step just call GERK
again. In the single step mode (IFLAG = -1,-2) the user must keep in mind that each step
taken is in the direction of the current TOUT. Upon reaching TOUT (which is indicated by
IFLAG being set to 2), the user may then define a new TOUT and set IFLAG to £2 for
further integration.

If IFLAG = 3 then to continue the integration just call GERK again. However, if
IFLAG = 4 then the user must first reset AERR to be positive before GERK can be
recalled. If IFLAG = 5 then it is required that IFLAG be reset to +2 and that AERR
and/or RERR be increased in value. If this is not done then the run will be terminated by a
STOP instruction!

If IFLAG = 6 then the user should either switch to another routine, or he should use
the one step mode. This situation is discussed in the Initial Value Solvers—Introductory
Comments section. If the user insists on continuing the integration with GERK in the
standard multistep mode, then it is required that IFLAG be reset to 2 before GERK is
recalled. If this is not done then the runs will be terminated by a STOP instruction.

If after going from a to b, GERK is recalled to continue the integration and solve the
equations at a new point ¢, then it is important that IFLAG be set to +2 instead of 1.
Setting IFLAG = #*1 causes the integration process to be restarted, thereby eliminating the
information being saved in WK and IWK. Restarting wastes time and is normally not needed.
The one exception is when the direction of integration is to be reversed. Then the
integration should be restarted.

406

Notes

(1) AERR and RERR can be modified each time that GERK is called.

(2) When continuing an integration, one may switch from the standard multistep mode
(IFLAG = 2) to the one step mode (IFLAG = ~2) whenever it is convenient to do so.

Input errors. IFLAG = 7 occurs when one of the following conditions is violated:
(1) n=1

(2) T#TOUT when IFLAG # + 1

(3) RERR>0and AERR=0

(4) IFLAG = #1,%2,3,4,...7

Accuracy Considerations. Error control in GERK is almost identical to that in RKF45. One
minor difference is that GERK never employs relative error tolerances less than 3-10-11,
whereas RKF45 never employs relative error tolerances less than 10 =12,

The only significant difference between GERK and RKF45 is that GERK generates
two solutions for the differential equations, whereas RKF45 generates only one. Let y(1)
and Y(t) denote the solutions generated by GERK at point t. One of these solutions, say
y(t), will frequently be identical to the solution computed by RKF45. When going from t to
t+h, the step size h is selected so that y(t +h) satisfies the local error criterion. After a
suitable h is found then GERK takes two steps, each of length h/2, to generate ¥(t + h) from
y(t). When GERK terminates, say at point T, then the y(T) solution is stored in the Y array
and GERK estimates the error of Vi(T) to be (y;,(T) - Vi{(T)/31 fori = 1,...n.

Programming. GERK employs the subroutines GERKS and FEHL. These routines were
written by H. A. Watts and L. F. Shampine (Sandia Laboratories). The function SPMPAR

is also used.

Reference. Shampine, L. F., and Allen, R. C., Numerical Computing: An Introduction,
W. B. Saunders, Philadelphia, 1973.

407

ADAPTIVE SOLUTION OF STIFF DIFFERENTIAL EQUATIONS

Let y'(t) = f(t,y(t)) denote a system of n ordinary first order differential equations
where f(ty) = (f1 (t,y),...,fn (t,y)) and y(t) = (y1 (t),...,y, (t)). Assume that y(a) is known,
Then for b # a the following subroutines are available for computing y(b). These routines
are designed for stiff differential equations, The algorithm used is a variable order, variable
step backward differentiation procedure.

CALL SFODE(F,n,Y,T,TOUT,INFO,RERR,AERR,IERR,WK £, IWK ,m,RD,ID)

RD and ID are arrays defined by the user containing any real and integer data that is
needed for computing f. These arrays may contain any information that the user desires.
The argument F is the name of a user defined subroutine that has the format:

CALL F(t,Y,DY,RD.ID)
Y and DY are arrays of dimension n, On input Y contains the values ¥, (D,....y (t) for
the argument t. F computes the derjvatives yl'(t),...,yn'(t) using y'(t) = f(t,y(t)) and stores
the results in DY. F must be declared in the calling program to be of type EXTERNAL.

INFO is an array of dimension 4, WK an array of dimension £, and IWK an array of
dimension m, WK and WK are work spaces for the routine, and INFO is an array defined
by the user containing information on how the equations are to be treated,

INFO(1): Set INFO(1) = 0 on an initial call to the routine, On a continuation
call INFO(1) = 1.

INFO(2): Normally INFO(2) = 0. However, INFO(2) = 1 when the intermediate
output mode is desired (see below).

INFO(3): When INFO(3) = 0, SFODE proceeds from a to b using the largest steps

that are appropriate. If b is passed then y(b) is obtained by interpo-
lation. However, for some problems the routine cannot be permitted
to step past a point TSTOP because y'(t) = f(t,y(t)) is discontinuous
or not defined beyond TSTOP. When this is the case set INFO(3) = 1
and WK(1) = TSTOP.
INFO(4): When proceeding from a to b, the n X n Jacobian matrix Jf(t)= (afi/ayi)
is computed and stored in WK. Normally it 1s assumed that
INFO4)=0
2>250+ 10n + n?
m =55 +n,
However, if Jf(t) is banded for all t, having the lower and upper band
widths m, and m where 2Zm, + m <n, then the following setup can

be used:
INFO(4)=1
IWK(1) = m,
IWK(2)=m,

409

22250+ 10n+ (2m, +m_ + 1)n
mz55+n

T, TOUT, RERR, and AERR are variables, and Y is an array of dimension n or larger,
On an initial call to the routine it is assumed that

INFO(1)=0

T=a
TOUT=b

Y(1),...,Y(n) contain the values Y, (a),...,yn(a)
RERR = the relative error tolerance to be satisfied (RERR = 0)
AERR = the absolute error tolerance to be satisfied (AERR = 0).

IERR is a variable, When SFODE terminates T is the final point where the equations
were solved, Y contains the solution at T, and IERR -reports the status of the results.
IERR is assigned one of the following values:

IERR =1
IERR =12
IERR = 3
IERR = —1
IERR = -2
IERR =-3
IERR = -6
IERR = -7

A step was taken in the intermediate output mode. TOUT was not
reached. To continue, call the routine again.

The solution at TOUT was obtained by stepping exactly to TOUT.

The solution at TOUT was obtained by stepping past TOUT and then
interpolating, On output T = TOUT.

500 steps have been taken. TOUT has not been reached. To continue,
call the routine again.

The tolerances RERR and AERR were too stringent. RERR and AERR
have been modified by the routine. The tolerances may be further
modified by the user if he desires. To continue, call the routine again.
In this case AERR = 0. SFODE stopped when y, became 0. INFO(1)
was set to —i. To continue set AERR to be positive, INFO(1) = 1,
and call the routine again.

Convergence failed on the last attempted step. An inaccurate jacobian
matrix may be the problem. To continue, restart the routine by setting
INFO(1) = 0 and call the routine again.

Repeated error test failures occurred on the last attempted step, The
problem should be reexamined. A singularity may be present in the
solution. To continue, restart by setting INFO(1) = 0 and call the
routine again.

IERR < —33 An input error was detected (see below).
When [ERR = —2, then INFO(1) = 1 on output,

When the equations are solved at TOUT (IERR = 2 or 3), integration can be continued
along the axis to solve the equations at a new point ¢ beyond TOUT. To continue, one need
only set TOUT to the new value ¢ and call the routine again. When continuing an integration

410

where INFO(1) = 1, never modify T, Y, WK, IWK, INFO(3), and INFO(4). However,
INFO(2), RERR, AERR, RD, and ID may be modified at any time,

Intermediate Outpur Mode. 1f one wishes to study the behavior of the solution y(t) as
the routine steps from T to TOUT, then set INFO(2) = 1. Then SFODE will stop after
each successful step (yielding IERR = 1) until TOUT is reached. One may switch from the
standard mode of operation (INFO(2) = 0) to the intermediate output mode (INFO(2)= 1)
or visa versa at any time,

Remark. The diagnostic IERR = —1 does not state that 500 steps have been taken on the
current call to SFODE. On an initial call to the routine the step counter is set to 0. On
continuation calls, the counter continues to increase until 500 steps have accumulated,
When IERR = —1 is reported, the counter is reset to 0, and only then does the step counting
begin again.

Input Errors. IERR is set to one of the following values when an input error is detected.
IERR = -33 n<1
IERR = -34 RERR <0
IERR = -35 AERR <0
IERR = —36 The routine has been called with TOUT, but it has also been told not
to step past the point TSTOP.
IERR = —37 T =TOUT. This is not permitted on continuation calls,
IERR = —38 The user has modified T.
IERR = -39 TOUT is not beyond T. An attempt is being made to change the
direction of integration without restarting,
IERR = —40 The jacobian matrix is banded. However, m, and m, do not satisfy
0<m, <nand0<m < n,
IERR = 41 2< 250 + 10n + n?
IERR = —42 2< 250+ 10n + (Cm,+m + I)n
IERR=-43 m<55+n
IERR = —44 INFO(1) is incorrect,
After the error is corrected, set INFO(1) = 0 and call the routine again,

Error Control. Assuming that SFODE has the correct value for y(t), let e, denote the
error generated in computing y;(t + h) fori=1,..,n when SFODE steps from ttot+h,

The routine attempts at each step to maintain the accuracy 3 Z.(e; /w ¥ < 1 where
= RERR Jy,(t)] + AERR. When this criterion is satisfied, leil \/n w, fori=1,.n

This criterion includes as special cases relative error (AERR = 0) and absolute error
(RERR = 0). However, if AERR = 0 and ¥;(t) = O for some i, then this criterion cannot
be applied and IERR = —3 occurs.

When proceeding from T to TOUT, the routine continually readjusts its order and step
size so as to maintain accuracy at each step. However, no attempt is made to control the

411

progressive erosion of accuracy that can occur when the steps accumulate, Since the erosion
of accuracy can be significant, at times one may wish to double-check the results. If the
problem is nonstiff or mildly stiff for an interval, then the best procedure is to compare the
results obtained by SFODE with those obtained by ODE for the interval. ODE normally
maintains greater accuracy than SFODE. However, if the problem is extremely stiff then
rerun the problem with SFODE. On the second run, request greater accuracy.

Programming. SFODE calls the subroutines STFODE and ZZZJAC. STFODE employs the
subroutines LSOD1, HSTART, INTYD, STOD, CFOD, PJAC, SLVS, SGBFA, SGBSL,
SGEFA, SGESL, SAXPY, and SSCAL, and the functions VNORM, VNWRMS, ISAMAX,
SDOT, and SPMPAR. The routines save and exchange information in a labeled common
block having the block name DEBDF1. STFODE is a modification by A. H. Morris of the
subroutine DEBDF, designed by L. F Shampine and H. A. Watts (Sandia Laboratories).
DEBDF appears in the SLATEC library. STFODE is a driver for a modification of the code
LSODE, written by A. C. Hindmarsh (Lawrence Livermore Laboratory).

CALL SFODE1(F,n,Y,T,TOUT,INFO,RERR,AERR,IERR,WK,%,IWK,m,RD,ID)

SFODE differs from SFODE only in the treatment of RERR and AERR. In SFODEI,
RERR and AERR are arrays of dimension n. RERR(i) and AERR(i) are relative and
absolute error tolerances to control the accuracy of the it solution component y;(t) for
i=1,..,n. Lete, denote the error generated in the computation of y,(t + h) from y,(t) when
SFODEI steps from t to t + h. Then SFODE1 attempts at each step to maintain the
accuracy % Zi(ei/wi)2 < 1 where w,= RERR() ly;(t)| + AERR(1). When this criterion is

satisfied le;,| <+/n" w; for i = 1,..,n. However, if AERR(i) = 0 and y;(t) = 0 for some i,
then the criterion cannot be applied and IERR = —3 occurs,

When IERR references RERR and AERR, the settings for [IERR provide the following

information:

IERR = -2 The accuracy required by RERR and AERR is too stringent. RERR
and AERR have been modified by the routine. RERR and AERR may
be further modified by the user if he desires. To continue, call SFODEI
again.

IERR=-3 SFODEI stopped when y, became 0 and AERR() = 0. INFO(1) was
set to —i. To continue set AERR(i) to be positive, INFO(1) = 1, and
call the routine again.

IERR = =34 (Inputerror) RERR(i) < 0 for some i.

IERR = —35 (Inputerror) AERR(i) <O for some i.

RERR and AERR may be modified on any continuation call to SFODE.

Programming. SFODEI calls the subroutines STFODE and ZZZJAC.

412

FOURTH-ORDER RUNGE-KUTTA

Let y'(t) = f(t, y(t)) denote a system of n ordinary first order differential equations
where y(t) = (y{(t),...,¥,(t)). Assume that y(ty) is known. Then for a small real number h,
the subroutine RK is available for computing y(t, + h). RK employs the standard fourth-
order Runge-Kutta procedure.

CALL RK(n,T,h,A,F)

T is a variable having the value to and A is an array of dimension 3n or larger. It is
assumed that A(1),...,A(n) contain the values V1 (to)s--., ¥ (tp). If h =0 then RK computes
the derivatives y} (tg),...,y5(ty) and stores them in A(n+ 1),...,A(2n). If h # O then it is
assumed that the derivatives y] (to)s-..,Va(ty) have already been computed and stored in
A(n+1),..,A(2n). In this case, when RK is called, the values y; (t +h),...,y, (ty +h) and
derivatives y} (to +h),...,y; (ty + h) are computed and stored in A(1),...,A(2n). Also T is
reset to the value t; + h.

The argument F is the name of a user defined subroutine that has the format:
CALL F(t,Z)
Z is an array of dimension n or larger where Z(1),...,Z(n) contain the values y, (t),...,y, (t)
for the argument t, F computes the derivatives y1(),...,y5(t) using y'(t) = f(t,y(t)) and
stores the results in Z(1),...,Z(n). F must be declared in the calling program to be of type
EXTERNAL.

Note. The area A(2n + 1),...,A(3n) serves as a work space for the routine.
Programmer. A.H. Morris

Example. Consider the equations

x'(t) = y(t)

y'(t) = —x(t)
where x(0) = 0 and y(0) = 1, The following code may be used for solving these equations
at the points .01, ,02,..,,1.00, and storing the results in the arrays X and Y.

DIMENSION A(6), X(100), Y(100)
EXTERNAL FUN

T=0.0

H=.01

A(1)=10.0

A2)=1.0

AB)=1.0

A(4) = 0.0

413

DO 10 I=1, 100
CALL RK(2,T,H,A,FUN)
X = A1)

10 Y(D = AQ2)

Here FUN may be defined by:

SUBROUTINE FUN(T,Z)
DIMENSION Z(2)

X = Z(1)

Y = Z(2)

Z(1) =Y

Z(2) = -X

RETURN

END

Note that the statements A(3) = 1.0 and A(4) = 0.0, which store the derivatives x'(0) and
y'(0) in A(3) and A(4), can be replaced with CALL RK(2,T,0.0,A,FUN).

414

EIGHTH-ORDER RUNGE-KUTTA

Let y'(t) = f(t, y(t)) denote a system of n ordinary first order differential equations
where y(t) = (y;(t),...,¥,(t)). Assume that y(t;) is known. Then for a small real number h,
the subroutine RKS8 is available for computing y(t, + h).

CALL RK8(n,T,h,Y,DY,WK,F)

T is a variable having the value ty, and Y and DY are arrays of dimension n or larger.
It is assumed that Y(1),...,Y(n) contain the values y, (ty),...,¥, (ty). If h = O then RKS8
computes the derivatives y'l (tg)s.--»¥a(ty) and stores them in DY(1),...,DY(n). If h # 0
then it is assumed that the derivatives y) (tg),-..,Va(tg) have already been computed and
stored in DY(1),...,DY(n). In this case, when RKS8 is called, the values y;(t; +h),...,
Va(to T h) and derivatives y] (ty + h),...,ys(ty +h) are computed and stored in Y and DY.
Also T is reset to the value ty + h.

WK is an array of dimension 8n or larger that is used for a work space by the routine.
The argument F is the name of a user defined subroutine that has the format:
CALL F(t,Z)
Z is an array of dimension n or larger where Z(1),...,Z(n) contain the values y, (t),...,y, (t)
for the argument t. F computes the derivatives y; (t),...,y, (t) using y'(t) = f(t,y(t)) and
stores the results in Z(1),...,Z(n). F must be declared in the calling program to be of type
EXTERNAL.

Algorithm. The routine employs formulae (8-12) given on p. 34 of the reference.

Remarks. RKS8 is used in the same manner as the routine RK. RK8 takes more time and
storage than RK, but may be more accurate.

Reference. Shanks, E.B., “Solutions of Differential Equations By Evaluations of Func-
tions,” Math. Comp. 20, 1966, pp. 21-38.

Programmer. A.H. Morris

415

SEPARABLE SECOND-ORDER ELLIPTIC EQUATIONS
ON RECTANGULAR DOMAINS

Given a separable elliptic equation
a(x)u, +bx)u, +c(x)u+dy) u,, t e(y) u, + fy)u=gx,y)

on the rectangle a; < x < a,, by <y <b,, where u is periodic in x or y, or u or its normal
derivative du/dn is given on each of the edges. For m, n > 1 let X, =a +({— Dhand
Y, = b, + G — 1)k where h = (a, — a,)/(m — 1),k = (b, ~- b)(n—1),i=1,.m, and
j = 1,...,n. Then the subroutine SEPDE is available for computing u at the points (xi,yj).

CALL SEPDE(COFX,COFY g, ITYPE,BVAL,IORD,z, 2, .m,b, b, n,
U ku,W,¢,IERR)

It is assumed that m > 7 and n = 6. U is an m X n matrix. The argument ku is the
number of rows in the dimension statement for U in the calling program. When SEPDE is
called, if the elliptic equation is solved then U(i,j) = u(xi,yj) fori=1,..,mandj=1,.,n

The input argument IORD is the order of the approximation procedure to be used.
IORD may have the values 2 or 4.

The argument COFX is the name of a user defined subroutine that has the format:
CALL COFX(x,A,B,C)
A, B, and C are variables. COFX sets A = a(x), B = b(x), and C = ¢(x) for the argument x.
COFX must be declared in the calling program to be of type EXTERNAL.

The argument COFY is the name of a user defined subroutine that has the format:
CALL COFY(y,D,E,F)
D, E, and F are variables. COFY sets D = d(y), E = e(y), and F = f(y) for the argument y.
COFY must be declared in the calling program to be of type EXTERNAL.

The argument g is the name of a user defined function, where g(x,y) gives the right
hand side of the elliptic equation for all a SXx<a,,b <y<b,. Theargument g must
be declared in the calling program to be of type EXTERNAL.

Boundary conditions. The edges of the rectangular domain are labeled in a clockwise
manner as follows:
i=3 edge1={(x,b1) 3, <x<a,)
edge 2 = {(al y) 1 b <y<b2}
edge 3 = {(x,bz) P& <x<a2}
edge 4= {(a,,y) : b, <y<b,)

i=2 i=4

417

ITYPE is an array of dimension 4. For edge i (i = 1,...,4), ITYPE(i) specifies the type of
boundary condition on the edge. ITYPE(i) must be set by the user to one of the following
values:

ITYPE(i)=0 It is assumed that u is given on the edge.

ITYPE() =1 Ifi=1o0ri=3 then u, is given on the edge, Otherwise, if i = 2
or i = 4 then u_ is given on the edge.

ITYPE(i))=—1 Ifi=1 ori = 3 then it is assumed that u is periodic in y; i.e.,
u(x,y + b, — b,) =u(xy) for all x,y. In this case ITYPE(i) must be
—1forbothi=1andi=3.

If i = 2 or i = 4 then it is assumed that u is periodic in x; i.e.,
ux +a, —a;,y)=uxy) for all x,y. In this case ITYPE(i) must
be —1 for bothi=2 and i = 4.

The argument BVAL is the name of a user defined function. BVAL(i,x,y) is defined
for any point (x,y) on edge i when ITYPE(i) = 0 or 1, where
u(x,y) if ITYPE(®)=0
BVALG,xy) = {u (xy) if ITYPE@)=1 (i=1ori=3)
u (xy) if ITYPE({@)=1 (i=2 or i=4)
The function BVAL(I,x,y) is ignored when ITYPE(@{) = —1. BVAL must be declared in
the calling program to be of type EXTERNAL.

W is an array of dimension £ that is a work space. The argument £ is a variable whose
value depends on IORD, m, n, and the types of boundary conditions used. Let » be the
largest integer <log,nand 8, = — 1) 2%*2 4+ p + 14m + 12n + 6. Then

L= if IORD=2

2= +mn ifIORD=4.

When the routine terminates, £ will have been reset to the actual amount of storage needed.

IERR is a variable that reports the status of the results, When SEPDE terminates,
IERR has one of the following values:

IERR =0 The solution U was obtained,

IERR = —1 A constant (which is stored in W(1)) was subtracted from the right hand
side of the equation in order to obtain a solution U. The solution is a
weighted minimal least squares solution of the original problem.

IERR =1 (Input error) a, =>a, or b, = b,.

IERR =2 (Input error) ITYPE(@) # 0, + 1 for some edge i,

IERR =4 The approximating linear system of equations is not diagonally domi-
nant, This cannot occur when m and n are sufficiently large. Increase
m and n, and reset £.

TERR = 5 (Input error) ku <m

IERR = 6 (Input error) m <7

418

IERR =7 (Input error) n < 6

IERR = 8 (Input error) IORD # 2, 4

IERR = 10 (Input error) a(x) d(y) <0 for some interior point (x,y) of the rectangle.
This violates the assumption that the equation is elliptic.

IERR = 11 (Input error) £ was too small, f has been reset to the minimum amount
of storage needed for W.

IERR = 12 (Input error) ITYPE() = —1 for edge 1 or 3, but not for both edges.

IERR = 13 (Input error) ITYPE(i) = —1 for edge 2 or 4, but not for both edges.

Precision. 1If IORD = 2 then the elliptic equation is approximated by a set of linear
equations using finite differences, Qtherwise, if IORD = 4 then the approximating equations
are obtained by deferred corrections. The most accuracy is achieved when ITYPE() = 1
boundary conditions are not involved. For m, n > 100, 3-4 digit accuracy may be attained
when IORD = 2 and 7-8 digit accuracy when IORD = 4. When ITYPE(@) = 1 boundary
conditions are used, then for m, n > 100, 2-3 digits may be attained when IORD = 2 and
5-6 digits when IORD = 4.

Programming. SEPDE is an interface by A. H. Morris for SEPELL, a modification of the
routine SEPELI described in the reference. SEPELI was developed by John C. Adams,
being supported (in part) by codes written by Paul Swarztrauber and Roland Sweet (National
Center for Atmospheric Research, Boulder, Colorado). SEPDE employs the subroutines
PDEDGE, SEPELL, SEPEL1, CHKPRM, CHKSNG, ORTHG, MINSOL, TRISP, DEFER,
DXFN, DYFN, BLKTRI, BLKTRI1, COMPB, PRODO, PRODP, CPRODO, CPRODP,
INDXA, INDXB, INDXC, PPADD, TQLRTO and functions PSGF, BSRH, PPSGF, PPSPF,
SPMPAR. The routines exchange information in the labeled common blocks having block
names CBLKT and SPLP.

Example. Consider (1 +x)? u_ — 2(1+x)u_+ u,, = 3(1+ xy*siny for0<x<1 and

lyl<m

y

where u 0, y)=4siny vl<w
u(l,y)=16siny

and u is periodic in y. This problem has the solution u= (1 + x)* siny. Let

ITYPE(1)=—1
ITYPE(2)= 1
ITYPE(3)= -1
ITYPE4)= 0.

419

Then the following routines and functions may be used for describing the problem. (Here
g=GVAL.

SUBROUTINE COFX (X, A, B, C)
T=10+X
A= TxT
= 2.05T
CcC=200
RETURN
END

SUBROUTINE COFY (Y, D, E, F)
D= 1.0

E= 00

F=100

RETURN

END

REAL FUNCTION GVAL (X, Y)
GVAL = 3.0%(1.0 + X)**4+SIN(Y)
RETURN

END

REAL FUNCTION BVAL (I, X, Y)
BVAL = 4.0%SIN(Y)

IF (I1.EQ. 4) BYAL = 4.0sBVAL
RETURN

END-

COFX, COFY, GVAL, and BVAL must be declared in the calling program to be of type
EXTERNAL.

Reference. Adams, J., Swarztrauber, P., and Sweet, R., FISHPAK: Efficient FORTRAN

Subprograms for the Solution of Separable Elliptic Partial Differential Equations, Vv ersion 3.
National Center for Atmospheric Research, Boulder, Colorado, 1978.

420

UNIFORM RANDOM NUMBER GENERATOR

The following subroutine is available for generating a sequence of uniform variates in
the interval (0,1).

CALL URNG(ix,A,n,IERR)

. The argument n is the number of variates to be generated. A is an array of dimension n
or larger, and ix and IERR are variables. On input, ix is an integer (called a seed) for initial-
izing the sequence of variates. It is assumed that 1 <ix <231 — 1, When URNG is called,
if no input errors are detected then IJERR is set to O and n uniform variates are stored in A.
On output, ix is a new seed for generating more variates,

Error Return. 1ERR = 1if n < 0 and IERR = 2 if ix is not a proper seed,

Usage. A given seed always initiates the same set of variates, Thus, the following two sets
of instructions

1 IX =103
4 CALL URNG(IX,A,30,IERR)
, IX=103
(2) CALL URNG(IX,A,20,IERR)

CALL URNG(X,A(21),10,JERR)

generate the same 30 variates.

Remark. It is assumed that the integer arithmetic being used handles all integers i in the
interval |i| <231 — 1.

Programming. Written by Linus Schrage (University of Chicago). Adapted by A. H. Morris.

Reference. Schrage, Linus, “A More Portable Fortran Random Number Generator,” ACM
Trans. Math Software 5 (1979), pp. 132-138).

421

™y

GAUSSIAN RANDOM NUMBER GENERATOR USING THE
BOX-MULLER TRANSFORMATION

The following subroutine is available for generating a sequence of normal variates
from a normal distribution with mean 0 and standard deviation 1.

CALL NRNG(ix,A,n,IERR)

The argument n is the number of variates to be generated. A is an array of dimension n
or larger, and ix and IERR are variables. On input, ix is an integer (called a seed) for
initializing the sequence of variates. It is assumed that 1 <ix < 23! _ 1, When NRNG
is called, if no input errors are detected then IERR is set to O and n normal variates are
stored in A. On output, ix is a new seed for generating more variates.

Error Retrurn. 1ERR = 1 if n < 0 and IERR = 2 if ix is not a proper seed.

Algorithm. When NRNG is called, an even number of uniform variates u;,...,u is generated
(m=nifniseven and m =n + 1 if n is odd). Then the Box-Muller transformation

a = Vv—-2In u,_ cos 271'uk+1

k=13,5,..)

3 = /~—2Inu_ sin2mu

is applied to obtain n normal variates a,,..,a . This transformation generates pairs of
normal variates (a,,a,), (a;,3,), ... from the corresponding pairs of uniform variates. If

n is odd then only the first variate of the final pair (a2 ;) is computed,

Usage. A given seed always generates the same sequence of wumiform variates. Thus, if
we consider the following three sets of instructions

M IX =73

CALL NRNG(IX,A,30,JERR)

IX =73

(2) CALL NRNG(IX,A,10,JERR)
CALL NRNG(IX,A(11),20,IERR)

IX =73
3 CALL NRNG(IX,A,9,IERR)
CALL NRNG(IX,A(10),20,IERR),

423

then we note that (1) and (2) generate the same 30 normal variates. Also (3) produces
29 of these 30 variates, skipping the 10t normal variate. The reason for this is that the
request in (3) for 9 normal variates requires 10 uniform variates to be generated. The
10 uniform variates could be used for computing 10 normal variates (as is done in (2)).
However, since only 9 normal variates are requested, computation of the 10'® normal
variate that would usually be generated is skipped.

Remark. NRNG calls the subroutine URNG for the uniform variates. Thus, it is assumed
that the integer arithmetic being used handles all integers i in the interval [i| < 231 —1.

Programmer. A.H. Morrs

424

Polaroid Corporation

2 Osborn Street

Attn: M. Abdulwahab
Mail Stop — 1M
Cambridge, MA 02139

Virginia Polytechnic Institute and
State University

Department of Computer Science

Attn: Dr. Donald C.S. Allison

Blacksburg, VA 24061

E.T.S. Ingenieros Industriales
Dept. de Energia Nuclear
Attn: Rosario Arroyo

P. de 1a Castellana, 80
Madrid 6, Spain

Old Dominion University
Department of Mathematics
Attn: Dr. Howard W. Baeumler
Norfolk, VA 23508

Aerojet ElectroSystems

P.O. Box 296

Attn: Maryann Becker 160/4343
Azusa, CA 91702

System Development Corporation
Satellite Programs Branch

Attn: Dr. John R. Berg

2500 Colorado Avenue

Santa Monica, CA 90406

IBM Federal Systems Division
Attn: Dr. Terry D. Boldt
2625 Townsgate Rd.

Westlake Village, CA 91361

Unilever Australia Ltd.

Technical Information Department
Attn: Vivien Bowman

P.O. Box 9 Balmain 2041
Reynolds Street

Balmain NSW, Australia

DISTRIBUTION

Copies

Westinghouse Defense and Electronics Center

Attn: Angela M. Brusca
P.O. Box 746

MS 1297

Baltimore, MD 21203

Naval Coastal Systems Laboratory
Attn: Code 760 (C.M. Callahan)
Panama City, FL. 32401

General Mills, Inc.

James Ford Bell Technical Center
Attn: Mark Chatterton

9000 Plymouth Avenue, North
Minneapolis, MN 55427

U.S. Army Engineer Waterways
Experiment Station

Coastal Engineering Research Center

Attn: H.S. Chen

Vicksburg, MS 39180

Georgia Institute of Technology
Office of Computing Services
Attn: Rand H. Childs

M.C. Trauner
Atlanta, GA 30332

Vandenberg Air Force Base

ITT Federal Electric Corporation
Attn: Chuck Converse

DS 450 P.O. Box 1886

Lompox, CA 93437

System Development Corporation
Attn: Elaine Denton (72-31)
2500 Colorado Ave.

Santa Monica, CA 90406

Naval Coastal Systems Center
Attn: Code 4210 (Joyce Elliott)
Panama City, FL. 32407

Naval Underwater Systems Center
Attn: Code 714 (Gerald J. Elias)
Newport, RI 02840

1

Naval Underwater Systems Center
Attn: Code PA-4 (Tom Galib)
New London, CT 06320

Network Analysis Associates, Inc.
Attn: J.D. Gaski

P.O. Box 8007

Fountain Valley, CA 92728

Control Data Corporation
Attn: William E. Glass
Mail Station HQCO1P
8100 34th Avenue, South
Bloomington, MN 55431

Webb Institute of Naval Architecture
Attn: Martin A. Goldberg

Crescent Beach Road

Glen Cove, NY 11542

Queen’s University

Computing and Communications Services
Attn: Donna Hamilton

Kingston K7L 3N6, Ontario

Canada

Polaroid Corporation
Attn: Cheryl Healy
750 Main Street 1-B
Cambridge, MA 02139

Coastal Engineering Research Center
Department of the Army

Attn: Barry E. Herchenroder
Kingman Bldg.

Fort Belvoir, VA 22060

Litton Systems Inc.

Amecon Division

Attn: John L. Houser MS 2-23
5115 Calvert Road

College Park, MD 20740

Norton Company

Chemical Process Products Division
Attn: Alex Hsia

P.O. Box 350

Akron, OH 44309

Copies

Copies

Westinghouse Defense and Electronics Center

Attn: Joshua C. Hung
P.O. Box 746
Baltimore, MD 21203

Rijksuniversiteit Utrecht

Academisch Computer Centrum Utrecht
Attn: Jan van Kats

Budapestlaan 6

Postbus 80.011

3508 TA Utrecht, Netherlands

Diamond Shamrock Corporation
Computer Services

Attn: Ted E. Keller

P.O. Box 348

Painesville, OH 44077

Special Products Development

Systems Engineering and Applications
Division

TRW Defense Systems Group

Attn: Manfred Kory

7600 Colshire Drive

McLean, VA 22102

Case Western Reserve University
School of Medicine

Department of Biometry

Attn: Dr. Robbin B. Lake
Cleveland, OH 44106

Acadia University

Computer Centre

Attn: Kim Leonard

Wollfville, Nova Scotia, Canada BOP 1X0

Mary Washington College
Mathematics Department
Attn: Dr. Stephen Lipscomb
Fredericksburg, VA 22401

Naval Weapons Station
Attn: NQEC — Code 302 (Jim Liverman)
Yorktown, VA 23691

1

Internationale Atomreaktorbau GmbH
Interatom

Attn: Mr. Luigs

9130 EDV und Mathematik

Postfach 5060

Bergisch Gladbach 1

West Germany

Georgia Institute of Technology
Electronics Research Bldg.
GTRI/MCSF
Attn: Gerald F. Mackey

Lee Gantt
Atlanta, GA 30332

Mr. Eugene Maguin
234 S. Magnolia
Lansing, MI 48912

Massachusetts Institute of Technology
Lincoln Laboratory

Attn: Dr. Eugene J. Mallove

P.O. Box 73

Lexington, MA 02173

Mayo Foundation
Medical Sciences Computer Facility
Attn: John M. McKinley
3-16 Medical Science (Wes von Nurden)
200 First Street SW
Rochester, MN 55905

Naval Ocean Systems Center
Attn: Code 9122 (Chuck Messinger)
San Diego, CA 92152

Naval Research Laboratory

Attn: Code 2303 (Alvin B. Owens)
Code 2303.1 (Allen R. Miller)

Washington, DC 20375

Virginia Polytechnic Institute and
State University

Department of Computer Science

Attn: Dr. Richard E. Nance

Blacksburg, VA 24061

Copies

Easams LTD
Attn: K.D. Needham

1 Lyon Way, Frimley Road
Camberley GU16 SEX, Surrey
England

Westinghouse Electric Corporation
Attn: Dr. Steve Orbon

Box 158

Madison, PA 15663

Pratt and Whitney Aircraft

Attn: Code EB2C (Scott M. Ramsey)
400 Main Street

East Hartford, CT 06108

Mr. John Reed

Mail Code Al

16441 Space Center Blvd.
Houston, TX 77058

Correios € Telecomunicacoes de Portugal

R.S. Jose, 10-70

Attn: Vitor Rodrigues
1198 Lisboa Codex
Portugal

Universitat Dortmund

FB Informatik, Systemanalyse
Attn: Dr. Ing. H.P. Schwefel
Postfach 500500

4600 Dortmund 50

West Germsny

Merck and Company, Inc.
1 Attn: Jerome Starr
1 P.O. Box 2000

Rahway, NI 07065

Science Applications Inc.
Attn: Dr. Fred Stern
134 Holiday Court

1 Suite 318
Annapolis, MD 21401

Copies

Department of the Army
Waterways Experiment Station
Corps of Engineers

Attn: Connie A. Stirgus

P.O. Box 631

Vicksburg, MS 39180

Westinghouse Electric Corporation
Attn: Vish Subramaniam

Avenue A and West Street, Forrest Hills

Pittsburg, PA 15221

The Analysts Schlumberger
Attn: Jerry Sychra

200 Macco Blvd.

Sugar Land, TX 77478

Naval Air Development Center
Attn: Code 8511 (Dan Tarrant)
Warminster, PA 18974

Energy, Mines, and Resources Canada
Mining Research Laboratories

Attn: Neil Toews

555 Booth Street

Ottawa, Ontario K1A0G1

Canada

Aerojet ElectroSystems Company
Attn: D.S. Toomb

1100 West Hollyvale Street

P.O. Box 296-111

Azusa, CA 91702

Internal Distribution:

C 1 E211 (Sullivan)
D 1 F
D1 1 Fo1
D101 1 F10
D2 1 F20
D21 1 F30
D22 1 F40
D23 1 G
D24 1 Go1
D25 1 G10
E 1 G20
E02 1 G30
E10 1 G40
E20 1 G600
E30 1 H

Copies

[T Gy W W W S Y e

Norwegian Contractors
Attn: Per Urvik

P.O. Box 40
Ankertorvet

Oslo 1 Norway

Queen’s University

Dept. of Mathematics and Statistics
Jeffrey Hall

Attn: James H. Verner

Kingston K7L 3N6, Ontario
Canada

Virginia Polytechnic Institute and
State University

Department of Computer Science

Attn: Dr. Layne T. Watson

Blacksburg, VA 24061

Norton Company

Chemical Process Products Division
Attn: Jan York

P.O. Box 350

Akron, OH 44309

Library of Congress
Attn: Gift and Exchange Division
Washington, DC 20540

HO2 1 N20
H10 1 N30
H20 1 N40
H30 1 R

K 1 RO1
K02 1 RI10
K10 1 R30
K20 1 R40
K30 1 U

K33 500 U01
K40 1 U10
K30 1 U220
N 1 U30
NO1 1 U40
N10 1 X

Copies

Pt pdk ek ek ek ek ek ek ek i ek ek fewh ek ek

