Cleanse Electrolyte W. Van Snyder January 23, 2023 #### Abstract Present methods to separate caesium and strontium from other fission products use expensive and hazardous solvents such as calixarene ethers, bis-1,2-dicarbollyl cobalt titanium in nitrobenzene, and an aqueous phase containing polyethelene glycol and 1,2-cyclohexyldiaminetetraacetic acid. A simple aqueous process can separate caesium and strontium from other fission products that remain in electrolyte after pyroelectric refining. All steps operate at atmospheric pressure. Chemical steps operate at room temperature. The only consumed inputs are heat and ammonium sulfate. Inexpensive initial inputs are required, but they are conserved. There are no hazardous or expensive solvents, and no wastes other than fission products. The final waste forms have significantly higher fission-product density than in the zeolite waste form produced at Experimental Breeder Reactor II. Essentially all electrolyte is recovered. The objective is not to obtain pure caesium and strontium, but rather to produce other waste forms that do not contain them. Whether this process is useful depends upon the relationship of its expense to the cost savings that result from storing caesium and strontium separately from other fission products. ### 1 Introduction After using the pyroelectric method developed at EBR-II to process one tonne of 5.218%-burnup metallic nuclear reactor fuel that had been stored for ten years, then drawing out trivalent lanthanides [10], and drawing down actinides below 100 ppm [10], eutectic KCl-LiCl electrolyte would contain the amounts of fission products shown in Table 1, according to output from the ORIGEN-2 computer program [1]. This assumes that sodium-soluble fission products such as barium, caesium, iodine, rubidium, strontium, and tellurium have not diffused into bond sodium and then been removed by other means [8]. | | Element | | Chloride | Power | Radiotoxicity | | |----------------|------------------------|-----------------------|------------------------|------------------------|------------------------|----------------------| | Element | Grams | wt. % | Grams | Watts (th) | Sieverts | $T_{1/2}$ | | Antimony (III) | 29.06 | 0.246 | 54.40 | 5.218 | 6.77×10^4 | 2.759 y | | Arsenic | 0.2982 | 2.41533 | 0.72 | 0 | 0 | ∞ | | Barium | 2776 | 23.5 | 4212.49 | 0 | 0 | $2.552~\mathrm{m}$ | | Beryllium | 2.29×10^{-4} | 1.90×10^{-6} | 1.87×10^{-3} | 5.338×10^{-9} | 1.809×10^{-4} | 1.6 My | | Caesium | 3680 | 31.2 | 4653.29 | 709.8 | 6.745×10^7 | 30.04 y | | Carbon | 4.02×10^{-5} | 3.41×10^{-7} | 4.41×10^{-4} | 52.53×10^{-9} | 3.844×10^{-3} | 5700 y | | Europium (II) | 233.4 | 1.98 | 341.68 | 73.35 | 6.241×10^5 | 8.593 y | | Gallium | 7.93×10^{-6} | 6.72×10^{-8} | $2.01{ imes}10^{-5}$ | 0 | 0 | ∞ | | Germanium | 0.9951 | 8.43×10^{-3} | 2.87 | 0 | 0 | ∞ | | Indium | 2.892 | 2.45×10^{-2} | 5.58 | $< 1 \times 10^{-12}$ | 1.998×10^{-8} | $441 \mathrm{\ Ty}$ | | Iodine | 357.6 | 3.03 | 357.6 | 22.33×10^{-6} | 196.6 | $16.1 \mathrm{My}$ | | Lithium | 2.57×10^{-5} | 2.18×10^{-7} | 1.57×10^{-4} | 0 | 0 | ∞ | | Rubidium | 524.5 | 4.44 | 735.08 | 26.47×10^{-9} | 1.758×10^{-3} | $48.1 \mathrm{Gy}$ | | Samarium (II) | 1284 | 10.9 | 1894.60 | 65.21×10^{-3} | 2017 | 90 y | | Selenium | 84.68 | 0.718 | 159.09 | 153.9×10^{-6} | 66.32 | 377 ky | | Silver | 115.4 | 1.01 | 153.03 | 4.922×10^{-3} | 30.38 | $249.8 \ d$ | | Strontium | 1135 | 9.78 | 2040.96 | 562.84 | 8.697×10^{7} | 28.79 | | Tellurium (IV) | 749.1 | 6.35 | 1572.27 | 0.3411 | 1.307×10^4 | $57.4 \mathrm{d}$ | | Tin | 139.9 | 1.19 | 221.68 | 2.076×10^{-3} | 213.8 | 230 ky | | Yttrium | 676.2 | 5.73 | 1486.14 | 0 | 0 | $2.671 \mathrm{\ d}$ | | Zinc | 9.72×10^{-3} | 8.24×10^{-5} | 0.02 | 0 | 0 | ∞ | | Total | 11810 | | 17867 | 1351.5 | 15.51×10^7 | | | Gases | 8558 | Not in electrolyte | | | | | Other FP 31812 Already removed from electrolyte There are radioactive isotopes with varying half lives, and nonradioactive isotopes, for most of the elements shown in Table 1. Only the half life of the most radiotoxic isotope is shown. Whether a high-level waste product contains 1% low-level waste is not important. A low-level waste product containing more than 100 ppm high-level waste is not acceptable. The goals are: - Process small amounts continuously to maintain desired concentration as fuel is processed. - Recover essentially all electrolyte in sufficient purity for re-use. - Produce a harmless barium product with less than 100 ppm caesium or strontium. - Produce a caesium product with only small amounts of electrolyte and other products. - Produce an europium product with less than 100 ppm caesium or strontium. - Produce a strontium product with only small amounts of other products. - Produce a final form of the other fission products with less than 100 ppm caesium or strontium. - Maximize storage density. - Minimize consumed materials. - No waste other than fission products. - No hazardous or expensive materials. #### 2 Method The method shown in Figure 1 is described in succeeding paragraphs. Figure 1: Separating fission products 1. Dissolve contaminated electrolyte in water. Remove precipitates of AgCl, and precipitates of $Sn(OH)_n$ that result from hydrolysis of $SnCl_n$. Reduce water to saturate remaining solution. 2. Add NH₃ and CO₂ to form (NH₄)₂CO₃. Metals other than those in group Ia form insoluble carbonates, but group Ia carbonates are all soluble, e.g., $$BaCl_2 + (NH_4)_2CO_3 \rightleftharpoons BaCO_3 \downarrow + 2 NH_4Cl$$ $[BaCO_3]/[BaCl_2] = 6.7 \times 10^{-5}$ $2 CsCl + (NH_4)_2CO_3 \rightleftharpoons Cs_2CO_3 + 2 NH_4Cl$ $[Cs_2CO_3]/[CsCl] = 71.2$ Separate and wash carbonate precipitates to remove essentially all group Ia salts. Small amounts of other fission product carbonates and chlorides in filtrate with group Ia salts are acceptable. The objective is to remove essentially all group Ia metals, not to obtain them in pure form. - 3. Add HCl to filtrate from step 2 as necessary to convert any carbonates to chlorides. Save CO₂ for use in step 2. Evaporate water, then heat to decompose NH₄Cl to NH₃ and HCl (337.6°C). Save the NH₃ for use in step 2. Save HCl for use in this step and step 4. If NH₄I is decomposed to NH₃ and HI (404.7°C), and HI is used with HCl in step 4, iodine will appear in the final product in step 8. The residue consists almost entirely of group Ia chlorides, and their iodides, depending upon the extent to which iodine appears as NH₄I that is not decomposed. - 4. Add HCl from steps 3 and 8 to carbonate residue from step 2. Save CO_2 for use in step 2. All carbonates are converted to soluble chlorides, except AgCl and $Sn(OH)_n$ if they are not removed in step 1. E.g., $$BaCO_3 \downarrow + 2HCl \rightarrow BaCl_2 + CO_2 \uparrow + H_2O$$ - 5. Add sufficient NH_4NO_3 to solution from step 4 to cause most $Ba(NO_3)_2$ to precipitate. $Ba(NO_3)_2$ is slightly soluble (9.02 g/100 ml H_2O at 20°C). The next least soluble nitrate is $Sr(NO_3)_2$ (70.8 g/100 ml H_2O at 20°C). Reduce water and separate the $Ba(NO_3)_2$ precipitate. Wash to remove $SrCl_2$ and $Sr(NO_3)_2$, but not enough to dissolve significant amounts of $Ba(NO_3)_2$. The objective is to obtain most of the barium as $Ba(NO_3)_2$ with $[Sr(NO_3)_2]/[Ba(NO_3)_2] < 10^{-4}$, not to obtain all barium. - 6. Add sufficient water to dissolve the Ba(NO₃)₂ precipitate from step 5. Add (NH₄)₂SO₄. Separate the BaSO₄ precipitate for disposal. Use less than the stoichometric amount of (NH₄)₂SO₄ so that all sulfate is removed as BaSO₄, and no strontium is removed as SrSO₄. Use the resulting NH₄NO₃ solution in step 5. If sulfate remains, step 5 will create EuSO₄ and SrSO₄ precipitates along with Ba(NO₃)₂. Recirculating small amounts of Ba(NO₃)₂ to step 5 is not harmful. - 7. Add (NH₄)₂SO₄ to filtrate from step 5. Sulfates of barium, europium, and strontium are the least soluble. The next least soluble sulfates are SmSO₄ (2.7 g/100 ml at 20°C) and In₂(SO₄)₃ (53.92 g/100 ml). Do not precipitate excessive amounts of samarium (there is 13% more samarium than strontium, and 5.5 times more than europium). Small amounts of samarium are acceptable. The objective is to concentrate europium and strontium, and to leave very small amounts in solution, not to obtain them as pure compounds. Separate sulfate precipitates. ``` \begin{array}{lll} BaCl_2 + (NH_4)_2SO_4 \rightleftharpoons BaSO_4 \downarrow + 2\,NH_4Cl & 0.285\,\,mg/100\,\,ml\,\,H_2O \\ EuCl_2 + (NH_4)_2SO_4 \rightleftharpoons EuSO_4 \downarrow + 2\,NH_4Cl & 0.180\,\,mg/100\,\,ml\,\,H_2O \\ SmCl_2 + (NH_4)_2SO_4 \rightleftharpoons SmSO_4 \downarrow + 2\,NH_4Cl & 2.7\,\,g/100\,\,ml\,\,H_2O\,\,[SmSO_4]/[SmCl_2] = 0.029 \\ SrCl_2 + (NH_4)_2SO_4 \rightleftharpoons SrSO_4 \downarrow + 2\,NH_4Cl & 13.2\,\,mg/100\,\,ml\,\,H_2O\,\,[SrSO_4]/[SrCl_2] = 2.5\times10^{-4} \end{array} ``` It might be possible to remove europium, barium, strontium, and samarium sequentially, without using steps 5 and 6, by careful control of the rate of addition of $(NH_4)_2SO_4$. EuSO₄ and SrSO₄ can be converted to less soluble EuF₂ and SrF₂ using NH_4F , or to Eu₃(PO₄)₂ or Sr₃(PO₄)₂ using $(NH_4)_3PO_4$. Phosphates generally make good glass. Molten EuCl₂ and SrCl₂ are immiscible [7, p. 170]. Their sulfates can be converted to chlorides by way of carbonates, which might be justified if separating their chlorides is sufficiently less expensive than separating their sulfates. 8. Evaporate water from filtrate chlorides from step 7 and heat sufficiently to decompose NH₄Cl. Save NH₃ for use in step 2. Save HCl for use in step 4. The only consumed input is $(NH_4)_2SO_4$, or NH_4F or $(NH_4)_3PO_4$ if sulfates are converted to less soluble fluorides or phosphates. There are no hazardous or expensive solvents. ## 3 Group Ia chlorides Chlorides from step 3 are almost all in group Ia. Metals from other groups appear to the extent their carbonates are soluble. All group Ia chlorides form binary eutectics at around 50 wt.% [7]. It is therefore not possible to perform complete separations using zone melt refining, layer freezing, or a clean cold surface. Williams et al [9] reported recovering 89% of electrolyte from a CsCl-LiCl-KCl mixture. Cho et al [5] reported recovering > 90% of LiCl from a CsCl-SrCl-LiCl mixture.. Assuming optimistically that 97.5% of electrolyte is separated, in a mixture of 50 wt.% KCl-LiCl, 43.5 wt.% CsCl, and 6.5 wt.% RbCl, fission products constitute 40 wt.%. In pure CsCl, the density of fission-product caesium is 79.2 wt.%. Borho et al proposed an alternative to vacuum distillation to separate eutectic mixtures [4]: - 1. Coat a clean surface with pure crystals of the highest melting point component of the eutectic. - 2. Flow or trickle molten eutectic over the surface, maintained at a temperature between the melting points of components to be separated. - 3. When the surface is sufficiently laden with product, wash it to remove eutectic, but not sufficiently to remove the product. - 4. Remove the product by melting or washing. To separate an eutectic that has more than two components, either a series of devices can be used, or the same device can be used for successive separations by cleaning the surface between separations. If a surface is always used only to separate a single product, it is not necessary to clean it between successive uses. The Borho et al process cannot be used on electrolyte without first doing steps 2 and 3 because the melting points of some chlorides are above the boiling points of others, e.g., BaCl₂ melts at 962°C, but TeCl₄ boils at 380°C, and some have nearly identical melting points, e.g., EuCl₂ melts at 738°C and RbCl at 737°C. Iodine should be recovered in step 3. Otherwise, it will appear with caesium and lithium chlorides in outputs from the Borho process. Seven surfaces instead of three would be necessary to separate it. #### 4 Other chlorides After actinides are drawn out of electrolyte using a third cathode process, about 100 ppm (0.01 wt.%) remain. Actinide carbonates are insoluble, so their chlorides will appear in the output from step 8. If electrolyte is cleansed when the load of fission products reaches 5 wt.%, after step 2 actinide concentration is 0.2 wt.%. If sarmarium is removed as sulfate before step 8, the concentration of actinides among the final chlorides is about 1.1 wt.% (as chloride). These actinides should be separated, and returned to the electrorefiner to "fertilize" the next processing operation. The goal is not to recover them as useful fuel, but to allow to store the remainder as low-level waste. Storing all chlorides from step 8 with caesium as high-level waste would increase the weight by 170%. Storing all the chlorides resulting from step 3 together, instead of removing barium, europium, strontium, and maybe samarium, would increase the weight by 380% compared to storing caesium separately. Even if an immiscible solvent process such is PUREX or TRUEX is necessary for the final actinide separation, the device would be very small because after step 8 only 3.3 kilograms of chlorides remain (assuming samarium is not removed), per tonne of 5.2%-burnup fuel processed. #### 5 Final waste form Zeolite-A is used to cleanse electrolyte at Experimental Breeder Reactor II (EBR-II). Ackerman and Johnson [3, p. 5] reported that zeolite includes "significant amounts of occluded and adhered electrolyte" but did not quantify "significant amounts." They also remarked "it appears that Cs and I are also removed, although less strongly." Contaminated zeolite is then mixed with glass frit and compression melted to make a final waste form consisting of glass and sodalite. The method proposed here would put less electrolyte into the final waste form, and less caesium and iodine back into the electrorefiner. After processing one tonne of 5%-used spent fuel, caesium and strontium must be stored as high-level (154 MSv) high-heat (1273 watts) long-duration (300 y) waste. Europium is medium-level (624 kSv) medium-heat (73.74 watts) medium-duration (85 y) waste. The output from step 8 can be stored as low-level (83 kSv) low-heat (4.8 watts) waste, some of very long duration and therefore very low activity. ⁹⁰Y is the decay product of ⁹⁰Sr. After strontium is removed, ⁹⁰Y in the output from step 8 quickly decays to non-radioactive ⁹⁰Zr. The final waste form produced at EBR-II contained 4 wt.% of fission products [2, p. 141]. Table 3 shows that storing europium and strontium as sulfates, fluorides, or phosphates increases storage density compared to storage in zeolyte. Chlorides, including caesium, have been successfully stored in hastalloy containers at Hanford [6]. Forsberg [6] concluded that storing different categories of wastes separately reduces total storage cost. The decision whether to separate fission products depends upon whether the reduction in storage cost offsets the increase in processing cost. | Table 5. Pission product densities, wt./0 | | | | | | | | | | |---|---------|----------|-----------|----------|--|--|--|--|--| | Element | Sulfate | Fluoride | Phosphate | Chloride | | | | | | | Caesium | | | | 79.2 | | | | | | | Europium | 61.3 | 80.0 | 70.6 | | | | | | | | Strontium | 47.7 | 69.6 | 55.8 | | | | | | | Table 3: Fission product densities, wt.% ## 6 Processing rate For a fuel burnup B, the mass of fission product metals that appear in electrolyte is F = 11.81B/0.05218 = 226.33 B kilograms per tonne of fuel. The amount of contaminated electrolyte containing weight fraction R of fission-product metals (not chlorides) is C = F(1-R)/R kilograms per tonne of fuel. Assuming that fissioning one tonne of heavy metal produces one tonne of fission products and one GWe-year of electricity, with power output P in gigawatts, the rate of fission product production is D = 0.6197 P kilograms per day. The amount of electrolyte that must be processed per day is A = D(1-R)/R kilograms per day. A 300 MWe plant produces D = 186 grams per day of fission product metals that must be removed from electrolyte after the actinide and lanthanide drawdown steps. Maintaining a weight fraction R = 0.05 of fission-product metals (not chlorides) in electrolyte requires processing A = 3.532 kilograms of contaminated electrolyte per day, and maintaining R = 0.1 requires processing A = 1.673 kilograms per day. #### 7 Conclusions The process as described separates caesium, and then europium and strontium, from other fission products. Europium can be easily separated from strontium if desired. Innocuous barium is obtained with less than 100 ppm caesium or strontium. After removing those, the final waste form contains less than 100 ppm caesium or strontium, and very little electrolyte. The original 100 ppm actinide concentration in electrolyte is concentrated to 1.1 wt.% in the final chloride form, from which actinides ought to be separated. All final waste forms have significantly higher fission-product densities than their density in zeolite as used at Experimental Breeder Reactor II. The process operates at atmospheric pressure. The chemical steps are aqueous steps that operate at room temperature. The only consumed inputs are heat, ammonium sulfate, and ammonium phosphate or fluoride depending upon the final form chosen for europium and strontium. There are no expensive or hazardous solvents. There are no wastes other than the fission products' final forms. Whether this process is useful depends upon the relationship between its expense and the cost savings that result from storing fission products having different hazards in different repositories. ## References - [1] RSICC computer code collection ORIGEN 2.2. Technical Report ORNL/CCC-371, Oak Ridge National Laboratory, June 2002. - [2] J. P. Ackerman, T. R. Johnson, L. S. H. Chow, E. L. Carls, W. H. Hannum, and J. J. Laidler. Treatment of wastes in the IFR fuel cycle. *Progress in Nuclear Energy*, 31(1/2):141–154, 1997. - [3] John P. Ackerman and T. R. Johnson. New high-level waste management technology for IFR pyroprocessing wastes. Seattle, WA, September 1993. Global '93 International Conference on Future Nuclear Systems Emerging Fuel Cycles and Waste Disposal Options. - [4] Klaus Borho, Jörg Heilek, and Gunter Schnabel. Separation of liquid eutectic mixtures by crystallization on cold surfaces and apparatus for this purpose, September 1998. U. S. Patent number 5,814,231. - [5] Yung-Zun CHo, Gil-Ho Park, In-Tae Kim, and Dae-Seok Han. Concentration of cesium and strontium elements involved in a LiCl waste salt by a melt crystallization process. *Nuclear Technology*, 171(3):325–334, 2010. - [6] Charles W. Forsberg. Rethinking high-level waste disposal: Separate disposal of high-heat radionuclides (90 Sr and ¹³⁷Cs). Nuclear Technology, 131(2):252–268, 2000. - [7] V. I. Posypaiko and E. A. Alekseeva. *Phase Equilibria in Binary Halides*. Plenum, New York Washington London, 1987. - [8] W. Van Snyder. Finely-divided metal as nuclear power reactor fuel. Nuclear Technology, 208(9):1416–1432, November 2022. - [9] Ammon N. Williams, Supathorn Phongikaroon, and Michael F. Simpson. Separation of CsCl from a ternary CsCl-LiCl-KCl salt via a melt crystallization technique for pyroprocessing waste minimization. *Chemical Engineering Science*. - [10] James L. Willit, Magdalena M. Tylka, Mark A. Williamson, Stanley G. Wiedemeyer, and Javier Figueroa. Actinide and rare earth drawdown system for molten salt recycle, February 2020. U. S. Patent number 10,550,489.