
Algorithm 723
Fresnel Integrals

W. VAN SNYDER

Jet Propulsion Laboratory, California Institute of Technology

An Implementation of approximations for Fresnel integrals and associated functions m described.

The approximations were originally developed by W. J. Cody, but a Fortran implementation

using them has not previously been published.

Categories and Subject Descriptors: G. 1.2 [Numerical Analysis]: Approximation—i-atmrd

approxmzatzon; G.4 [Mathematics of Computing]: Mathematical Software—certzfica tzon and

testing

General Terms: Algorithms

Additional Key Words and Phrases: Special functions

Cody [1968] describes approximations for computing the real Fresnel inte-

grals

c(l) = Jxcos (i:t2 dt
o

S(x) = /’sin
[1
;t2 dt

o

and the associated functions

() [)fix) = [1/2 – S(x)]cos jxz – [1/2 – C(x)] sin ~xz

()
g(x) = [1/2 – C(x)lcos ;X2

(1
+ [1/2 – S(x)] sin :X2

as defined by equations 7.3.1, 7.3.2, 7.3.5, and 7.3.6 in [Abramowitz and

Stegun, 1966].
Fortran implementations of algorithms based on Cody’s approximations

have not previously been published, but an Algol 60 procedure has appeared

The work described in this paper was carried out by the Jet Propulsion Laboratory, California

Institute of’ Technology, under contract with the National Aeronautics and Space Administration.

Author’s address: Jet Propulsion Laboratory, 4800 Oak Grove Drive, Mail Stop 601-108,

Pasadena, CA 91109.

Permission to copy without fee all or part of this material is granted provided that the copies are

not made or distributed for direct commercial advantage, the ACM copyright notice and the title

of the publication and its date appear, and notice is given that copying is by permission of the

Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or

specific permission.

1There is an error in the microfiche supplement, in Table VIIIC: Where Cody wrote

x-’/2, p,’z, q,, x,, x
1. he evidently meant to write 1 -’z,p, x-’’/x, q\x-”.

01993 ACM 0098-3500/93/1200-0452 $03.50

ACM Transactions on Mathematical Software, Vol 19, No 4, December 1993, Pages 452-456

Algorithm 723: Fresnel Integrals . 453

in Hemker [1981]. A Fortran algorithm by Morris [1990], based on approxi-

mations by Hershey [1971], yields only 12 decimal digit relative accuracy.

Cody dismisses approximations by N6meth [1965] because they “converge

painfully slowly.” Later work by Bulirsch [1967], partly based on the work of

N6meth, is more efficient, but Bulirsch gives only 15 significant digits in the

coefficients, while Cody gives 21 digits in some cases, and some of the

approximations are accurate to nearly 19S.

ORGANIZATION OF THE ALGORITHM

In the organization of the algorithm, we adopted one principle from the

discipline of object-oriented programming, namely, an object may have an

internal state, and one uses methods to affect and observe that state. The

Fortran function program unit that constitutes the algorithm may be consid-

ered to be an object.2 There are four entries, each of which evaluates one of

the four functions described above. Each entry may be considered to be a

method associated to the object.

Cody provided approximations for C(x) and S(x) for Ix I <1.6, and for f(x)

and g(x) for x > 1.6. If C(x) or S(x) is needed for x > 1.6 the algorithm

evaluates ~(x) and g(x) using Cody’s approximations, and computes C(x) or

S(x) as appropriate from f(x) and g(x). Similarly, if f(x) or g(x) is needed

for Ix\ < 1.6 the algorithm evaluates C(x) and S(x) using Cody’s approxima-

tions, and computes f(x) or g(x) as appropriate from C(x) and S(x). In some

applications, one may need C(x) and S(x) for the same value of x > 1.6. To

avoid recomputing f(x) and g(x) at the same value of x as used on the

previous invocation, the algorithm retains an internal state consisting of the

last value of x at which any of the four functions was evaluated, the last

value computed for any of the four functions, and four Fortran LOGICAL

variables that indicate whether the value stored for a function corresponds to

the stored value of x. By analogy with object-oriented programming, this

internal state may be considered to be represented by instance variables.

There are no a priori restrictions on the range of arguments. The algorithm

will evaluate the desired function without complaint no matter what the

argument. For x <0, the algorithm uses C(–x) = – C(x), S(–x) == –S(x),

g(–x) = cos(w/2x2) + sin(w/2x2) – g(x) and f(–x) = cos(7i-/2x2) –
sin(m-/2 x 2) – f(x). The accuracy of trigonometric functions decreases for

large Ix I in most computing environments, so one should not expect values of

C(x) and S(x) to be as accurate for large Ix I as for small Ix 1,nor should one

expect f(– x) or g(– x) to be as accurate as f(x) or g(x) for large x. The

algorithm assumes arguments are exact. That is, if the arguments were to

have been presented to arbitrarily greater precision the additional digits

would be zero. As a consequence, when Ix I > 2.0/pl/2, where p is the round

off level (that is, the difference between 1.0 and the next larger representable

number), we assume that rr/2 x 2 is an integer multiple of 2 T, and therefore

cos(7r/2 X2) = 1.0, and sin(n-/2 X2) = 0.0.

2Of course, in FORTRAN there can only be one instance of the object.

ACM Transactions on Mathematical Software, Vol. 19, No. 4, December 1993.

454 . W. Van Snyder

When formulating an application, one should if possible choose to use C(x)

and S(x) when 1x1 < 1.6, use f(x) and g(x) when x > 1.6, and avoid using

x < – 1.6.

In the text of the program, we provide all of the coefficients given in the

microfiche supplement to Cody [1968]; all but the highest degree in each

range are present in the form of comments. Each polynomial is evaluated by

nested multiplication in a single statement (no loops are present). Thus,

moderate but nontrivial editing would be required to specialize the procedure

for higher performance at a lower degree of precision. The work required

would, however, be substantially less than would be required if one had to

enter the coefficients from the microfiche supplement to Cody [1968] manu-

ally.

In the microfiche supplement Cody [1968] gave complete details of the

truncation error characteristics of the formulae. A summary of the relative

truncation error of the highest-degree formulae, that is, those used in the

algorithm in its published form, appears in the following table, in which ~

denotes the relative truncation error. The slightly smaller accuracy of the

approximations for g(x) when x > 1.9 is not a substantial defect in applica-

tions in which C(x) and S(x) are used, because for x > 1.9, f(x) > 10g(x).

Thus when one computes C(Y) or S(x) from f(x) and g(x) the relative error

of g(x) is only one tenth as large, relative to the desired function, as the

relative error of ~(x).

Range Function –loglo e Function –loglo E

1X1<1.2 c(x) 16.24 s(x) 17.26

1.2< 1X1 <1.6 c(x) 17.47 s(x) 18.66

1.6< 1X1 <1.9 f(x) 17.13 g(x) 16.25
1.9< 1x1<2.4 f(x) 16.64 g(x) 15.65

2.4< 1x1 f(x) 16.89 g(x) 15.58

TESTING

We verified correct programming, and Cody’s assertions regarding the accu-

racy of the approximations. For O s x < 2.4, we divided each range over

which Cody provided a distinct approximation into 200 equal subranges. For

x > 2.4, for which Cody provides a single approximation, we divided the

ranges 2.4 < x s 6, 6 < x < 50 and 10-3 < l/x < 0.02 into 200 equal sub-

ranges. We selected a point randomly in each subrange, and compared the

functions for which Cody provides an approximation to a value computed by

an extended-precision algorithm for the Fadeeva function w (z) using rela-

tions 7.3.22 and 7.3.23 from Abramowitz and Stegun [1966]. Cody’s approxi-

mations for f(x) and g(x) have the same asymptotic form as the functions

when x > 2.4. The first two terms of Cody’s approximation for f(x) are

exactly the same as the fh-st two terms of the asymptotic expansion when

x > 1/(pn5)l’9; for g(x) they are exactly the same when x > 1/(pwG)l’ll,

These values of x are approximately 29 and 14, respectively, when using

IEEE format double-precision arithmetic. Since the approximations become

ACM Transactmns on Mathematical Software, Vol 19. No, 4, December 1993

Algorithm 723: Fresnel Integrals . 455

more accurate as x increases, one expects results as accurate as round-off

error allows when x is sufficiently large.

The results of our testing for O < x < 1000 are summarized below. In each

interval we report the error in units of the last position of the test value

under a column headed ULP, the error relative to the true value under a

column headed REL, and the absolute error under a column headed ABS.

Calculations were carried out using an IBM PC/AT, for which p = 2.22E-16

in double precision.

Argument Mean Max Mean Max Mean Max

Function Interval ULP ULP REL REL ABS ABS

c(x) [0..1.2] 0.57 p 2.18 p 0.40 p 1.29 p 0.19p 0.83 p

(1.2..1.61 0.70 p 2.52 p 0.48 p 1.55 P 0.19p 0.63 p

s(x) [0..1.2] 0.74 P 2.42 P 0.52 P 1.39 P 0.09P 0.65 P

(1.2..1.61 0.75 P 2.20 p 0.55 P 1.55 P 0.38 p 1.10 P

f(x) (1.6..1.91 0.51 p 1.50 p 0.36 p 1.10 p 0.06 p 0.19p

(1.9..2.4] 0.30 p 0.96 p 0.26 p 0.77p 0.04 p 0.12 p

(2.4..6.0] 0.43 p 1.15 p 0.29p 0.80 p 0.02 p 0.07p

(6.0..50.0] 0.45 p 1.05 p 0.31 p 0.71 p 0.00 p 0.03 p

(50..1000] 0.39 p 1.02 p 0.27p 0.72 p 0.00 p 4E-3 p

g(x) (1.6..1.91 0.53 p 1.92 p 0.38 p 1.11 p 0.01 p 0.02 p

(1.9..2.41 1.06 p 3.43 p 0.75 p 1.93 p 0.01 p 0.02 p

(2.4..6.01 1.51 p 4.04 p 1.01 p 2.61 p 0.00 p 0.01 p

(6.0..50.01 1.40 p 3.62 p 0.97p 2.11 p 0.00 p 3E-4 p

(50..1000 1.09 p 2.40 p 0.75p 1.50p 0.00 p 2E-7 p

Cody’s testing of the approximations, as described earlier and in [Cody, 1968],

indicated a relative accuracy of 15 to 18 digits. Thus one should expect to

achieve only slightly more accuracy, at most two or three digits, by carrying

out the calculations using more precision, e.g., by using double-precision

arithmetic on a Cray computer.

Cody noted the possibility of substantial cancellation in evaluating approxi-

mations for C(x) and S(x) over the interval 1.2 < Ix I < 1.6. He suggested

that the numerator and denominator polynomials should be transformed to

the equivalent finite Chebyshev polynomial expansions, and the more expen-

sive Clenshaw-Rice scheme described in Rice [1965] should be used for

evaluation. We were unable to detect this difficulty, perhaps because our

testing apparatus used full IEEE standard arithmetic, including guard digits.

We verified correct programming of f(x) and g(x) for)x I <1.6, and for

C(x) and S(x) for x >1.6, by comparing selected results to values published

in Abramowitz and Stegun [1966]. Extensive accuracy testing would simply

have validated the trigonometric function routines.

REFERENCES

ABRAMOWITZ, M., AND STEGUN, I. 1966. Handbook of Mathematical Functions. Appl. Math. Ser.

55, National Bureau of Standards.

ACM Transactions on Mathematical Software, Vol 19, No 4, December 1993.

456 . W. Van Snyder

BULIRSCH, R. 1967. Numerical calculation of the sine, cosine and Fresnel integrals. Numer.

Math. 9, 380-385.

CoDY, W. J. 1968. Chebyshev approximations for the Fresnel integrals. Math. Comput. 22,

450–453, plus microfiche supplement.

HEMKER, P. W., Ed. 1981. NUMAL, Numerical Procedures in Algol 60 MC Syllabus 47.6,

Mathematisch Centrum, Amsterdam.

HERSHEY, A. V. 1971. Approxzmatlons of Functzons by Sets of Poles. Internal report TR-2564,

Naval Weapons Laboratory, Dahlgren, Va.

MORRIS, A. H., JR. 1990. NSWC Library of Mathematics Subroutines. Internal report NSWC

TR 90-21, Naval Surface Warfare Center, Dahlgren, Vs., Jan.

NfiMETH, G. 1965. Chebyshev expansions for Fresnel integrals. Numer. Math. 7, 310-312.

RICE, J. R. [1965], On the conditioning of polynomial and rational forms. Numer. Math. 7,

426-435.

Received February 1992; revised September 1992; accepted November 1992

ACM Transactions on Mathematical Software, Vol 19, No. 4, December 1993

