
SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 6 August 2007; 38:509–522 Prepared using speauth.cls [Version: 2002/09/23 v2.2]

The benefits of posing
software as a language
interpreter

W. Van Snyder

Jet Populsion Laboratory, Pasadena, CA 91109

SUMMARY

Complicated and comprehensive software that is meant to execute in a non-interactive
or semi-interactive mode needs to be configured to carry out the desired tasks, needs to
carry out those tasks efficiently, needs to be extensible to take on additional ambitions,
and needs to be maintainable. All of these goals can be advanced by posing the software
as a language interpreter. Herein, we describe the application of that principle to data
analysis software for the Microwave Limb Sounder instrument on the Earth Observing
System Aura satellite.

Introduction

Data analysis software for the Microwave Limb Sounder (MLS) instrument on the Earth
Observing System Aura satellite [1] is divided into four major programs. The second of these,
called “Level 2,” or more tersely “L2,” is charged with the task of analyzing the microwave
emission of the atmosphere (the “radiance”), as observed by the instrument, to deduce the
concentration of trace constituents of the atmosphere, and its temperature, at roughly 3,500
profiles extending from ten to one hundred kilometers altitude, each profile containing 37
points, every day.

As one might expect, extensive computations are required, but that is not the end of the
story. In addition to the radiance, additional data, including but not limited to a spectroscopy
catalog, antenna patterns, filter shapes, orbit and attitude data, and an initial guess for the
parameters of interest are required, and that’s also not the end of the story. Radiances in
some spectral bands are useful to observe one molecule but irrelevant to another, or are
useful at one altitude but not another, but that’s also not the end of the story. Emission

Contract/grant sponsor: This work was carried out at the Jet Propulsion Laboratory, California Institute of
Technology, under contract with NASA.

Copyright c© 6 August 2007 John Wiley & Sons, Ltd.



510 W. V. SNYDER

from different molecules can most efficiently be modeled by different computational methods.
Finally, the same models that are inverted to determine the temperature and composition of
the atmosphere can be used, given a sample atmosphere, to produce simulated instrument
data sets, and to produce, offline, derivatives of radiance with respect to composition and
temperature, for use by one of the methods to deduce composition from radiance.

The details of the foregoing are not really relevant to the remainder of this report. The intent
is to convince the reader that numerous factors contribute to the computational organization
and progress.

Other than the radiance, orbit and attitude data, and initial guess (which is obtained
from climatological averages), all of the considerations arising from the foregoing could be
incorporated into the program as initial data and ordinary program decision making. From
experience with a previous instrument and its analysis software, we learned that configuring the
software to operate efficiently, reliably and accurately requires extensive experimental tuning.
Statements in a general-purpose programming language are very low-level representations of
the configuration of a program. As such, if the configuration were expressed by ordinary
decision-making statements in the program, it would be tedious to change, and more error
prone than if it were expressed at a higher level. Perhaps more importantly, since the size of
the program now exceeds 200,000 lines, recertification after each tiny tweak of the configuration
could be hideously expensive.

Therefore, we chose to configure the MLS programs by input. In a bygone era, that input
might have been a sequence of numbers, carefully organized in a rigid sequence. Tuning a
configuration expressed in that way would have been nearly as difficult as tuning one expressed
within the program. An inch further along, one might have used something less rigid, such as
Fortran NAMELIST. Fortunately, we have more computational resources at our disposal, and
more software technology upon which to draw.

We instead chose to pose the configuation specification as a “little language,” and to organize
the program as an interpreter of that language.

Superficial description of compiler technology

To process the input, we use conventional techniques borrowed from compilers. The characters
of input are grouped into “tokens” (analogous to words and punctuation marks in natural
languages) by a process called “lexing.” The structure of sequences of tokens is then recognized
by a process called “parsing,” which is analogous to grammatical analysis of sentences in
natural language. In middle school we are taught to draw “sentence diagrams.” The program
uses an analogous process, producing a sentence diagram called an “abstract syntax tree” (just
“tree” from now on). Just as with natural language, it is possible in synthetic languages to
express perfectly grammatical nonsense, so the first step after constructing the tree is a first-
cut sanity check. Finally, the program traverses the tree in a depth-first left-to-right order,
carrying out computations it recognizes to be demanded thereby.

The first three of those processes are described superficially here. The interested reader is
referred to a text specifically concerned with compiler technology for more details [2], [3]. The
fourth is then described in more detail.

Copyright c© 6 August 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 6 August 2007; 38:509–522
Prepared using speauth.cls



SOFTWARE AS A LANGUAGE INTERPRETER 511

Syntax

We chose an IDL-like [4] syntax, but others might have different tastes. In outline, each
specification consists of a word followed by a list of zero or more name-value pairs, each pair
preceded by a comma. The entire specification can be preceded by an optional label followed
by a colon.

Lexing

Lexing is carried out by a deterministic finite automaton. Each invocation of the lexer returns
one token, which consists of its “part of speech” (name, number, plus sign. . . ), the index of its
text in a “string table” (so no further searching is needed when the text is used), and where
it appeared in the input (for error reporting).

The string table consists of three data structures. The first is an array of characters that
holds the text of the tokens. The second is an array of numbers, the zeroth element of which
is zero, and after that the ith one is the index in the character table of the last character of
the ith string. If we call the character array C and the string table S, the text of string i is in
C(S(i− 1) + 1 : S(i)) and the length of the string is S(i) − S(i− 1).

Input is read into the end of the character array. As lexing proceeds, if the text of a token
is new it is added to the end of the string table and its string index is the index of the
newly-created string; otherwise, its string index is the index of the found string.

To facilitate finding whether a string is a new one, the third data structure is a hash table
[5].

The module that manages the string table provides numerous inquiry procedures such as
get string, display string, enter string and string length.

Parsing

Although it would not be irrational to use an LR parser driven by a table generated by
a parser generator such as YACC [6], we chose to carry out parsing using a handwritten
recursive-descent (LL) parser, to avoid the need for dependence upon yet another program.

No matter what parsing methodology is chosen, if the result needs to be examined more
than once, it’s useful to represent the “sentence diagram” by an abstract syntax tree (abstract
because extraneous details such as comments have been striped away). In the case of MLS L2,
we traverse at least part of the tree once for each “chunk” of data (about 15 profiles). We have
chosen to represent the tree using “CDR code” [7].

CDR code represents a tree by writing the sons of a vertex as consecutive array elements.
Then, each vertex that has descendants includes the index of its first son and the number of
sons. Vertices at the “leaves” of the tree represent names, numbers and strings, by replacing
the “first son” index with an index in the string table. The representation is compact, can be
easily produced either by LL or LR parsers, and can be referenced quickly, but is difficult to
modify. In our application, however, there is no need to modify it.

Copyright c© 6 August 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 6 August 2007; 38:509–522
Prepared using speauth.cls



512 W. V. SNYDER

In addition to procedures used by the parser to build the tree, the module that manages the
tree provides procedures to access it, such as nsons, subtree (actually the index of the root
of the subtree), node id, and sub rosa (the string index in a leaf).

Type checking

The syntax allows the value of each field of a specification to be a number, a word, a more
general expression, or a string, but if a field is expected to be a numeric expression, the
label of another specification, or a string, isn’t appropriate (i.e., it’s grammatically correct
nonsense). One of the benefits of posing software as a language interpreter is that the type of
each value can be checked, relations between input items can be specified and checked, and
the physical units of numeric inputs can be specified and checked, and converted to standard
units (e.g., kilometers or megahertz, even if the inputs are meters or gigahertz), all within a
single framework.

The MLS L2 program encodes the requirements for each specification – what fields it can
have — and for each field — what types of values are allowed — using a tree. The type-
specification tree is built in the same array that holds the abstract syntax tree, before the
parser runs. This is done by program statements, not as a result of input, as it doesn’t change
frequently (but changes are quite simple). After the parser runs, the two trees are joined by a
new root node.

Then, a single process traverses the entire tree, aided by a data structure called the
“declaration table,” which is a two-level structure similar to the string table (thereby allowing
several definitions for each word), indexed by the string index. As the tree is traversed
declarations of words are entered into the declaration table. Vertices within subtrees related
to declarations may be connected one to another using a field in each tree vertex called the
“decoration,” and ultimately to the declaration table. When a reference to a word is discovered,
the tree vertex of the reference is linked to a tree vertex related to the declaration. The structure
of the declaration tree is used to determine that the fields of a specification are allowed, and
that the types of values of the fields (including the labels of other specifications) are allowed.
This unified type checking system relieves the remainder of the program of this responsibility.
Units checking for numeric values could have been incorporated into this framework, but the
importance of doing so was not recognized at the time of its design; since other development has
been of higher priority, it has not yet been so incorporated, so each process that evaluates an
expression is responsible for units checking (conversion to standard units is done automatically
within the expression evaluator).

Traversing the type-checked tree

After type checking is complete, the actions proper of the program are carried out by a second
depth-first left-to-right traversal of the part of the tree that arose from the input (i.e., skipping
the type definitions). The program uses the name of each specification (actually an index
created by the type-checking process) as a selector to carry out an action. For example, the
procedure that processes a vector specification allocates space for a vector (and decorates the

Copyright c© 6 August 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 6 August 2007; 38:509–522
Prepared using speauth.cls



SOFTWARE AS A LANGUAGE INTERPRETER 513

tree vertex of the specification with the vector’s index in the vector database). Each procedure
that processes a specification uses the fields in the specification to complete its definition.
Continuing the vector example, a field specifies which quantities the vector contains. When a
field for which the value is required to be a vector is processed, the decoration of the field’s tree
vertex indicates the position in the tree of the vector declaration (thanks to the type checker),
whose declaration in turn is the index of the vector as described above. It is clear that the
program can be configured to deal with any desired number of vectors, each with any desired
collection of quantities (which are in turn defined by declarations within the configuration
specification); this flexibility extends to all of the data structures to which the configuration
specification has access.

Ultimately, when used to process satellite data, retrieve specifications are encountered;
the program typically spends 94% of its time evaluating the forward model of the atmosphere,
and nearly all of the remaining 6% doing linear algebra related to inverting the model, all
of which is triggered by a retrieve specification. Thus, it is clear that posing the program
as a language interpreter has imposed essentially no measurable cost compared to the major
mission of the program.

Additional benefits
In addition to automatic and complete type checking, several other benefits accrue as a
consequence of posing the program as a language interpreter. First, of course, is that the
type checking is concentrated in one process, so if errors are discovered they can be corrected
in only that place. If a similar process is carried out throughout a program, it may be slightly
different, and subtly differently incorrect, in each place. Thus concentrating type checking in
one place reduces the chance for difficult-to-find subtle errors, thereby increasing reliability
and reducing maintence cost.

As new ambitions for the program arise, it has proven to be easy to add them, either by
allowing new values to existing fields (usually new literals for enumerated types but occasionally
by allowing new types), new fields for existing specifications, or new specifications. In most
cases the new facilities were added by minor modifications of existing procedures (especially in
the case of new values of existing fields or new fields), or by entirely new procedures that are
nearly independent of other procedures. Thus posing the program as a language interpreter
has allowed modifications to be implemented at relatively lower cost than would be the case
with a different design.

As experience with the program was gained, it became clear, as anticipated, that
performance, both in terms of running time and accuracy of results, could be improved
by tuning the configuration. The configuration for production runs now approaches 25,000
specifications. Although this tuning has been a time-consuming process, it would have been
far more difficult if the configuration specification were more rigid. Posing the program as a
language interpreter provides the necessary flexibility in the configuration specification.

Copyright c© 6 August 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 6 August 2007; 38:509–522
Prepared using speauth.cls



514 W. V. SNYDER

Conclusions

Posing a program as a language interpreter confers several benefits. First, it allows checking
that values in the input have the correct types and the correct relations one to another.
Second, it allows type checking to be concentrated in one place, thereby reducing development
and maintenance cost, and increasing reliability. Third, many of the facets of the input can
be processed more independently from one another than might be the case with a more
rigid input structure. Fourth, it allows modifications to the program to be implemented
more independently than might be the case with a different organization, thereby reducing
development and maintenance costs. Fifth, it separates configuration of the program from
the program proper, thereby separating instead of conflating certification of the program and
its configuration, which reduces certification cost substantially. Sixth, it confers considerable
flexibility on the organization of the input, and thereby on the operation of the program.
Finally, it deploys well-known existing technology that has a well-understood theoretical and
mathematical foundation, without imposing a significant performance penalty.

ACKNOWLEDGEMENTS

The author learned how to construct a program as a language interpreter by attending a class on
compiler technology, given by Frank DeRemer and Tom Pennello as part of the Summer Institute for
Computer Science at the University of Califonia, Santa Cruz, in 1983. The author subsequently used
the framework learned in that class, cast in Pascal, Modula-2, Ada and Fortran 95, in many projects
prior to EOS MLS, and to teach undergraduate-level compiler classes for fourteen years. The Fortran
95 instance of the framework, similar to what is used in EOS MLS, accompanies this manuscript.
The module parser m is not the LL parser used for MLS L2; rather, it is an interpreter of tables
produced by the LR parser generator written by Charles Wetherell and Alfred Shannon [8], which is
not included.

REFERENCES

1. Joe W. Waters et. al. The Earth Observing System Microwave Limb Sounder (EOS MLS) on the Aura
satellite. IEEE Transactions on Geoscience and Remote Sensing Special Issue on the EOS Aura Mission,
44(5), May 2006.

2. Alfred. V. Aho, Ravi Sethi, and Jeffrey. D. Ullman. Compilers. Principles, Techniques and Tools. Addison-
Wesley, Reading, MA, 1986.

3. Charles N. Fischer and Richard J. LeBlanc, Jr. Crafting a Compiler with C. Benjamin/Cummings, New
York, 1991.

4. Research Systems, Inc., Boulder, Colorado, USA. IDL Reference Guide, April 1998.
5. Donald. E. Knuth. The Art of Computer Programming: Sorting and Searching. Addison–Wesley, Reading,

Massachusetts, 1973.
6. S. C. Johnson. Yacc: Yet another compiler compiler. Computer Science Technical Report #32, Bell

Laboratories, Murray Hill, NJ, 1975.
7. John McCarthy and Michael Levin, et. al. LISP 1.5 Programmer’s Manual. MIT, 1966.
8. Charles Wetherell and Alfred Shannon. LR — Automatic parser generator and LR(1) parser. IEEE Trans.

Software Eng., 7(3):274–278, 1981.

Copyright c© 6 August 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 6 August 2007; 38:509–522
Prepared using speauth.cls


